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A B S T R A C T   

Given the novel corona virus discovered in Wuhan, China, in December 2019, due to the high 
false-negative rate of RT-PCR and the time-consuming to obtain the results, research has proved 
that computed tomography (CT) has become an auxiliary One of the essential means of diagnosis 
and treatment of new corona virus pneumonia. Since few COVID-19 CT datasets are currently 
available, it is proposed to use conditional generative adversarial networks to enhance data to 
obtain CT datasets with more samples to reduce the risk of over fitting. In addition, a BIN residual 
block-based method is proposed. The improved U-Net network is used for image segmentation 
and then combined with multi-layer perception for classification prediction. By comparing with 
network models such as AlexNet and GoogleNet, it is concluded that the proposed BUF-Net 
network model has the best performance, reaching an accuracy rate of 93%. Using Grad-CAM 
technology to visualize the system’s output can more intuitively illustrate the critical role of 
CT images in diagnosing COVID-19. Applying deep learning using the proposed techniques 
suggested by the above study in medical imaging can help radiologists achieve more effective 
diagnoses that is the main objective of the research. On the basis of the foregoing, this study 
proposes to employ CGAN technology to augment the restricted data set, integrate the residual 
block into the U-Net network, and combine multi-layer perception in order to construct new 
network architecture for COVID-19 detection using CT images. − 19. Given the scarcity of COVID- 
19 CT datasets, it is proposed that conditional generative adversarial networks be used to 
augment data in order to obtain CT datasets with more samples and therefore lower the danger of 
overfitting.   

1. Introduction 

According to Hubei Province’s clinical diagnosis criteria, CT scan images are diagnostically significant for COVID-19 severity since 
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they are incorporated into the definition of pneumonia imaging symptoms. GGO, diffuse alveolar destruction, intraregional vascular 
thickening, lesions in several lung lobes and the lower pleural area presenting a “crazy-paving” form, etc. are the most conspicuous 
features of COVID-19 chest CT scans (Jiang et al., 2021). A computer-aided diagnostic system for COVID-19 should be developed in 
order to quickly identify COVID-19 cases, thereby preventing the disease’s rapid spread. A total of more than 200 countries have been 
infected by COVID-19, with more than 100 000 domestic confirmed cases and more than 95 000 cured cases; more than 173 million 
confirmed cases globally and more than 139 million fixed cases. Table 1 displays statistics on the nationwide outbreak. 

Deep learning is increasingly being used in the medical profession at the moment. Convolutional neural networks are very suc
cessful in solving challenges related to medical image processing and computer vision. Numerous layers comprise the convolutional 
neural network—automatic feature extraction from picture data. The technique has been used to a variety of medical pictures, 
including breast lesions segmentation, brain and skin lesions segmentation, and lung nodule segmentation; on the other hand, deep 
learning and computer vision are utilized to diagnosis illnesses considerably more correctly than radiologists. As a result, incorporating 
deep learning technology into radiology enables more precise diagnosis. Convolutional neural networks can considerably increase the 
speed and accuracy of CT image identification of new coronary pneumonia by recognizing images with critical traits in order to 
authenticate covid-19 test. As is well known, deep learning techniques require a huge number of sample data, but convolutional neural 
networks require a big amount of data and computational resources yet produce superior results on large data sets. As a result, given 
the restricted size of the public dataset, it is required to enrich it using a variety of data augmentation techniques. Deep learning is 
currently being applied quite extensively in the health world. Convolutional neural networks have turned out to be exceptionally 
powerful at fixing things in medicinal computer vision and image processing. The author (Yang et al., 2021) conducted a thorough 
assessment of relevant research on existing image enhancement techniques and presented typical study findings for each category of 
augmentation research; the author (Wu et al., 2020) extended the usage of CXR pictures with sparse labeling. This document describes 
the different issues that individuals and health professionals are encountering as a result of COVID-19. Several methods for controlling 
the effect of COVID-19 employing Internet of things are explored in this study (Ajaz et al., 2022).The distribution of training data for 
supervised learning was investigated, and it was shown that performance may be considerably improved by integrating basic weakly 
labeled augmentation training data into the original dataset; Author proposed incorporating traditional data augmentation techniques 
such as flipping, rotation, and elastic deformation, as well as random cropping and synthetic data generation methods based on 
generative adversarial networks; Author used GAN to generate multiple X-ray images and selected three deep transfer models with the 
highest possible accuracy for research. X-ray imaging revealed the infection (Soni et al., 2022). GANs (Generative Adversarial Net
works) are convolutional infrastructure that can generate images with conceptual annotations that can be utilized to enrich data.Deep 
learning methods are frequently employed in medical imaging because they can automatically or via pre-trained networks retrieve 
characteristics. Author (Xu et al., 2022) classified liver CT pictures using three support vector machine approaches, neural network, 
and random forest, and obtained favorable results; Author (Churi et al., 2021) classified blood vessels in chest CT images using 
three-dimensional CNN. Classified as arteries and veins, and when compared to a random forest classifier, the suggested technique 
achieved a better classification accuracy; Author (Hi ş am and Hi ş am, 2021; Patil & Golellu, 2021) increased classification accuracy 
using an Adaptive Neuro-Fuzzy Inference System (ANFIS) based on particle swarm optimization (Wang et al., 2020). Compared seven 
deep learning models utilizing the COVIDX-Net method, which obtained up to 90% accuracy using VGG19 and DenseNet201. How
ever, this study is limited by its tiny sample size. Additionally, Author (Yan et al., 2021) employed ResNet50 and support vector 
machine (SVM) classification to diagnose COVID-19 utilizing X-ray pictures, with a total of 50 chest X-ray images used in the 
experiment. The author employed transfer learning-based approaches and deep architectures such as ResNet50, Inception v3, and 
others to develop deep convolutional neural networks for the purpose of automatically detecting COVID-19 in X-ray pictures. 
Computer-aided diagnostic system is a machine approach that assists clients in making smart choice. Due to the small size of patients, 
the depth of the network model is excessive. The chance of being over fit increases. On the basis of the foregoing, this study proposes to 
employ CGAN technology to augment the restricted data set, integrate the residual block into the U-Net network, and combine 
multi-layer perception in order to construct new network architecture for COVID-19 detection using CT images. − 19. Given the 
scarcity of COVID-19 CT datasets, it is proposed that conditional generative adversarial networks be used to augment data in order to 
obtain CT datasets with more samples and therefore lower the danger of overfitting. A BIN residual block-based technique is also 
proposed in this paper. For picture segmentation, the enhanced U-Net network is utilized, followed by multi-layer perception for 
classification prediction. When compared to network models such as AlexNet and GoogleNet, the suggested BUF-Net network model is 
shown to have the best performance, with a 93 percent accuracy rate. In this research the important function of CT images in diag
nosing COVID-19 can be more easily illustrated by using Grad-CAM technology to depict the system’s output. 

Table 1 
Global epidemic data as of June 8, 2021  

Area The cumulative number of confirmed cases Cumulative death toll Case fatality rate/% 

China 11,4707 5 132 4.47 
America 33,377,632 597,946 1.79 
India 28,909,975 349,186 1.2 
Brazil 16,947,062 473,495 2.79 
Russia 5,135,866 124,117 2.41 
U.K 4,522,476 152,068 3.36 
Italy 4,232,428 126,523 2.98 
Germany 3,717,890 89,825 2.41  
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When compared to the assessment indicators of a variety of network models, the conditional generative adversarial network proves 
to be a great tool for data augmentation. Furthermore, with a classification accuracy of 93.1 percent, the improved model proposed in 
this study performs the best overall. 

Organization: The study is organised as follows section 1 is introduction of the problem statement followed by section 2 which is 
about Material (Data set). Section 3 elucidates about the Methods, followed by section 4 that states the results and the final section is 
conclusion. 

2. Material 

2.1. Dataset 

The experiment employed the publicly available COVID-19 CT dataset (https://github.com/UCSD-AI4H/COVID-CT), which 
comprises 349 COVID-19 pictures and 397 non-COVID-19 images from 216 patients. Nineteen photos supplement the dataset with 
additional samples and reduce over-fitting using a conditional generative adversarial network. Table 2 illustrates the data distribution. 
An example of a CT image dataset is provided in Fig. 1, with COVID-19 CT pictures on the left and non-COVID-19 CT images on the 
right. Classification and Segmentation system are employed for accomplishing COVID-19 CT chest assessments in real - time basis and 
with justifications. 

2.2. Data preprocessing 

The preprocessing operations performed in the experiments included:  

(a) Thresholding the CT image to remove very bright pixels;  
(b) rotating the CT image by 15◦, flipping it horizontally (to handle pneumonia symptoms on both sides of the chest), Width offset, 

height offset, scaling and random cropping (to obtain deeper pixel relationships), etc.;  
(c) Standardize CT images to make pixel values uniform in the (0, 1) range to reduce computational complexity;  
(d) Median filtering of CT images to remove noise and preserve edges;  
(e) Data augmentation of the dataset through conditional generative adversarial networks to expand the dataset and reduce the risk 

of over fitting. Fig. 2 shows the effect of enhancing the data using the data augmentation method. 

3. Methods 

3.1. Data augmentation methods 

3.1.1. Generative adversarial networks 
GAN is implemented to generate multiple X-ray images and selected three deep transfer models with the highest possible accuracy 

for research. X-ray imaging revealed the infection. GANs (Generative Adversarial Networks) are convolutional infrastructure that can 
generate images with conceptual annotations that can be utilized to enrich data Different methods for controlling the effect of COVID- 
19 employing internet of things technology are proposed in this research (Mehbodniya et al., 2021). 

Generative adversarial network GAN (generative adversarial network), a network model that first appeared in 2014, is a deep 
learning model invented by author (Hu et al., 2020). The generator (Generator) and the discriminator (Discriminator) two parts make 
up the GAN. Extensive experiments have demonstrated that GANs can effectively deal with the problem of too few samples in datasets. 
For example, author (Gomathi et al., 2020) used GAN to generate synthetic medical images to improve the accuracy of classification 
performance; author (Guo et al., 2021) proposed a GAN-based architecture for limited training data scenarios, and the result was a 
model capable of Diversity is achieved in the generated samples. Author (Niu et al., 2021) also used GAN as a data augmentation 
method to show that it can improve performance in tumor segmentation. The construction of GAN is shown in Fig. 3. 

The GAN loss function V (D, G) consists of the discriminator maximizing the loss function maxD and the generator minimizing the 
loss function minG: 

min
c

max
d

V(d, g)= Epdata(x)

[

log
(

D
(
x
y

))]

+ Ep(z)

[

log
(

1 − D
(

g
(
z
y

)))]

In the formula, x denotes the actual image and z denotes the noise image; D(x) denotes the discriminator’s judgment value for the 

Table 2 
Dataset distribution of CT images.  

Dataset Train set Validation set Test set 

COVID-19 NonCOVID-19 COVID-19 NonCOVID-19 COVID-19 NonCOVID-19 

COVID19 244 278 71 80 34 39 
COVID19+ 1466 1667 419 476 209 239  
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exact image; D (G(z)) denotes the discriminator’s judgment value for the generated image G(z); Pdata (x) denotes the distribution of 
the actual image; Pz(z) denotes the distribution of the noise image. ExPdata(x) denotes the expectation that x is sampled from the real 
image’s distribution; EzPz(z) denotes the expectation that z is sampled from the noise image’s distribution. 

The generator accepts x as an input model, and the convolution operation on x can extract information about the image’s features. 
The generated z is consistent with the original image distribution image G. (z). The smaller the loss function of the generator V(G), the 
more similar G(z) is to x. The discriminator G(z) will simultaneously accept x as input and will need to determine whether G(z) is 
consistent with x. V(D) of the discriminator’s loss function is in the range [0, 1]. When V(D) equals 1, the generated picture G(z) is 

Fig. 1. Example of CT image dataset.  

Fig. 2. Example of the data enhancement effect.  

Fig. 3. Generative adversarial network structures.  
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compatible with the original image x; when V(D) equals 0, G(z) is completely discordant with x. The greater V(D), the closer G(z) is to 
x. G(z) is made as identical to x as possible by the discriminator, resulting in D. (x). The generator and discriminator play a game until 
the generator generates G(z) that is endlessly close to x 

3.1.2. Conditional generative adversarial networks 
The CGAN is made up of two distinct types of networks, the generator network and the discriminator network, the structure of 

which is seen in Fig. 4. The conventional adversarial generative network model can only learn one class of input at a time. Because it 
must be comprehended layer by layer for sample sets containing numerous courses, the model bears the flaw of inefficiency. In 
comparison, the CGAN model adds the same requirements to the generator, and GAN can create multi-class data in the discriminator. 
The generating network utilized in this article is composed of six transposed convolutional layers, five ReLU layers, five batch 
normalization layers, and a Tanh layer at the output. Six convolutional layers, five leaky ReLUs, and four batch normalizations 
comprise the discriminator network. Table 3 illustrates the CGAN structure used in this paper. In comparison to conventional GAN, 
CGAN alters the total loss function, including the formula (2) 

minHminEW(E,H)=minHminE(Fx− Qdata(In E(x|Y))+ FZ− QZ(Z)(In(1 − E(x|Y)))) (2) 

Due to the limited publicly available COVID-19 CT image dataset; this paper uses a CGAN network to overcome the over fitting 
problem caused by the limited number of CT images in the COVID-19 dataset, which increases the dataset images to 6 times the 
original sample. Data augmentation helps achieve better segmentation accuracy and performance matrix, and the completed per
formance measures are discussed in the experimental results section. 

3.2. Improved U-Net network 

3.2.1. U-Net network 
U-Net is a fully connected image segmentation network based on CNN that is commonly used in medical picture segmentation. The 

U-Net model is a nearly symmetrical U-shaped structure. The left side of U represents a procedure known as down sampling, while the 
right side represents a method known as up sampling. Fig. 5 illustrates its structure. Numerous investigations have demonstrated that 
U-Net is an excellent candidate for semantic segmentation of medical images. Author (Rohmah & Bustamam, 2020) combined 
self-supervised learning and supervised segmentation to accomplish hybrid led learning for breast ultrasound images using an 
enhanced U-Net algorithm. To increase image segmentation accuracy, the author used the Resnet module with convolutional attention 
in the encoding part of the U-Net network to organize the output features and thus improve blood vessel segmentation accuracy 
(Pratiwi et al., 2021). Accuracy; developed a fusion neural network for ultrasound foetal head edge identification using the U-Net 
network and the last layer of U-Net++ features. The encoding portion is comparable to a compression procedure in that it obtains 
deeper features (i.e. low resolution and low-resolution features). The decoding section returns the deeply encoded elements to the final 
output image at its original size (Enshaei et al., 2021, pp. 1–6). 

The construction of the U-Net network is primarily made of convolutional layers, maximum pooling layers, DE convolutional 
layers, and a ReLU activation function. Given the fuzzy boundaries and complicated gradients present in medical images, the un
derlying information is critical for effective segmentation. As a result, the U-Net network model incorporates both high- and shallow- 
level semantic and geographical information. 

3.2.2. Improved U-Net network 

3.2.2.1. Residual block. To solve the problem that the more profound the deep neural network is, the higher the error rate and the 
longer the training time will be. In 2016, author proposed the residual network (ResNet) model in the ImageNet image recognition 
competition adding the input result directly to the bottom layer by adding a direct channel to the network. The idea is shown in 
formula (3): 

D(x)= x+ G(x) (3) 

Fig. 4. Conditional generative adversarial network structures.  
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Among them, x is the input, G(x) is the output of the hidden layer, and D(x) is the underlying map. The structure of the residual 
block is shown in Fig. 6. 

3.2.2.2. Improved U-Net network. The residual block in the residual network is integrated into U-Net, which largely avoids the 
occurrence of over fitting and can effectively reduce the gradient disappearance problem caused by the deepening of the network 
structure, thereby improving the segmentation performance of the model. . This paper adopts a modified BIN residual block for batch 
normalization after each convolution. As a result, the BN layer can improve the generalization ability of the network and accelerate the 
training of the network model, as shown in formula (4): 

CN(x)= γ
x − w(x)
σ(x) + β (4) 

Table 3 
Conditional generative adversarial network the system used in this article.  

Generator Network Discriminator Network 

Enter Enter 
Transpose Convolution 1 Convolution 1 
Batch Normalization 1 Leaky ReLU1 
ReLU1 Convolution 2 
Batch Normalization 2 Batch Normalization 1 
Transpose Convolution 2 Leaky ReLU2 
ReLU2 Convolution 3 
Transpose Convolution 3 Batch Normalization 2 
Batch Normalization 3 Leaky ReLU3 
ReLU3 Convolution 4 
Transpose Convolution 4 Batch Normalization 3 
ReLU4 Leaky ReLU4 
Transpose Convolution 5 Convolution 5 
Batch Normalization 4 Batch Normalization 4 
Batch Normalization 5 Leaky ReLU5 
ReLU5 Convolution 6 
Transpose Convolution 6  
Tanh   

Fig. 5. U-Net network structures.  

Fig. 6. Residual block structure.  
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where x ∈ℝM × C × H × W is the input of the CN layer, γ ∈ℝC and β ∈ℝC are the mapping parameters learned from the data, and u(x) ∈ℝC 

and σ(x) ∈ℝC are the input mean and standard deviation. 

μd(x)=
1

MHW
∑M

m=1

∑H

h=1

∑W

w=1
xmchw (5)  

σd(x)=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
MHW

∑M

m=1

∑H

h=1

∑W

w=1
(xmchw − μd(x))

2
+ ε

√
√
√
√ (6) 

Author proposed that the JN layer (instance-normalization) model faster train. The calculation formula of the JN layer is formula 
(7)~(9): 

JN(x)= γ
x − w(x)
σ(x) + β (7)  

μd(x)=
1

HW
∑M

m=1

∑W

w=1
xmchw (8)  

σd(x)=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
MHW

∑M

m=1

∑W

w=1
(xmchw − μd(x))

2
+ ε

√
√
√
√ (9) 

Author proved that adding a CN layer can significantly accelerate the convergence of the model by explaining the specific operation 
process of CN. As shown in formulas (10) and (11): 

xˆi =
xi − μC̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ C2 + ε

√ (10)  

yi = γ xˆi + β (11)  

Where μC and σ2C represent the mean and variance of the dataset, respectively, the normalized data xˆi is input to the network, and 
there is no need to adjust the network learning to adapt to the change of data distribution in the subsequent process. 

The CN layer and the JN layer with the same number of channels are simultaneously introduced to the residual block’s two-layer 
network in this research. All CN-based residual blocks in the original model are replaced by the BIN-based residual block, which 
simultaneously satisfies the JN layer. And the characteristics of the CN layer will increase the model’s convergence speed, as the model 
will no longer rely on the delicate parameter initialization process; secondly, a more significant learning rate can be chosen to avoid 
gradient explosion during the back propagation process; additionally, it will reduce the frequency of use of the dropout layer and 
improve the model’s generalisation ability to a certain extent. Fig. 7 illustrates the comparison of the two leftover block structures. The 
residual block structure based on the CN layer is depicted in Fig. 7(a), whereas the residual block structure based on the BIN layer is 

Fig. 7. Comparison of residual block structure.  
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depicted in Fig. 7(b). The BIN layer is composed of a CN layer with 32 channels and a JN layer with 32 tracks, followed by the addition 
of the CN layer. Additionally, JN layers can accelerate the loss’s convergence while preserving the semantic information associated 
with the learned features. 

The activation function used by the improved U-Net network is the sigmoid function, and the loss function Loss is based on the 
Dice_coef coefficient, as shown in formulas (12) and (13): 

DiceCoef =
2*(Y ∩ X) + smooth
|Y| + |X| + smooth

(12)  

Loss= − DiceCoef (13)  

3.3. Model of this paper 

The algorithm used in this paper mainly includes three steps:  

1) Preprocessing. First, basic preprocessing operations are performed on the collected COVID-19 CT dataset, especially flipping, 
rotating, offsetting, scaling, etc. The dataset is then augmented with conditional generative adversarial networks to increase the 
number of samples.  

2) Model creation. This article presents a model that is a combination of segmentation and classification. To be more precise, lung 
lesions were obtained using a segmentation model and then classified to determine whether each lesion was a COVID-19 symptom. 
Segmentation is represented mathematically using an upgraded U-Net network. By alternating between convolutions and pooling 
procedures, the encoder component lowers the spatial dimension. Convolutional operations are utilized to substitute totally 
connected layers in the encoding and decoding layers, which can be more efficient—achieves good hierarchical characteristic 
extraction. Two 33 convolutions, a 33 BIN residual block, and a 22 pooling operation are used. Convolution is used to perform a 
pre-processing method on the image. The first layer of convolution reduces the number of channels and sends the data to the second 
layer of convolution for processing in order to recover the media of the feature map. The residual block mixes the input features 
with the result of the two-layer convolution, significantly reducing the vanishing gradient. Pooling is used to reduce parameters and 
avoid over fitting. The decoder part is symmetrical to the encoder section in order to recover spatial dimension and detail lost 
during the pooling phase on the target. It is composed of two 33-convolutional layers, a 33-BIN residual block, and finally a single 
convolutional layer for classification. The deconvolution operation can reduce the number of channels in half while doubling the 
resolution of the feature map. The improved U-Net network generates a 32321024 tensor, which is subsequently flattened for 
classification purposes. The multi-layer perceptron (MLP) is activated by ReLU and is made of two thick layers of 128 and 64 
neurons, respectively. Finally, the activation function is a sigmoid; for image classification, a dense layer with one neuron is 
utilized. The wrong type was determined by averaging 1.79 s for CT image admission into the network.  

3) Performance evaluation: evaluate the pros and cons of the proposed algorithm through a series of evaluation indicators. And use 
Grad-CAM technology. 

3.4. Experimental design 

3.4.1. Experimental environment 
This experiment chooses to implement on the Windows10 operating system. It uses the Kersaf library on Tensor flow backend to 

develop and run a deep learning network for experimental verification, supporting CUDA10.0 and the CUDNN8 acceleration package. 
The environment for the experiment running is python3.7, i5-8265U2.30 GHz CPU, and memory is 8 GB. 

3.4.2. Experimental setup 
The COVID-19 CT images were retrieved and categorized in the experiment using an upgraded U-Net network model in conjunction 

with a multilayer perceptron. During the training process, the model set the initial learning rate to 0.001 and the momentum to 0.9. 
Additionally, the early stopping approach is applied. To avoid the network over fitting, the training can be halted in advance when the 
outcome consistently reaches a predefined, accurate value. The model is trained for 100 epochs with a setting of 40. Then, choose a 
Stochastic Gradient Descent (SGD) optimizer whose learning rate decays at a rate equal to the initial learning rate divided by the 
number of training epochs. The following hyperparameters of the model are then optimized using a stochastic grid search method: (1) 
momentum; and (2) the SGD optimizer’s initial learning rate. 

3.4.3. Evaluation indicators 
Five separate evaluation indicators are employed to validate the method suggested in this work for detecting new coronary 

pneumonia using CT images: Accuracy, Precision, Sensitivity, F1-score, and Specificity. The right rate quantifies the proportion of 
correctly identified samples across all samples. As defined in formula (14); precision as defined in formula (15), which relates to the 
ratio of correctly identified samples to the total number of correctly identified pieces; The sensitivity, or recall rate, is used to 
determine how many positive examples are accurate discrimination, as shown in equation (16); both sensitivity and precision can be 
calculated from the confusion matrix, and the F1-score is a comprehensive evaluation factor for both accuracy and sensitivity, as 
shown in equation (17); specificity is expressed in all of these equations. The proportion of paired parts in negative examples of, as 
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stated in Equation (18); AUC denotes the “area beneath the receiver operating characteristic curve,” and is less susceptible to class 
imbalance than ACC. 

Accuracy ​ = ​
UP ​ + ​ UN

Up + Un + Gp + GN
(14)  

Precision ​ = ​
UP ​

UP ​ + ​ GP
(15)  

Sensitivity=
UP ​

UP ​ + ​ GP
(16)  

G1 ​ − ​ score ​ = ​ 2 ​ ×
Precision ​ * ​ Sensitivity ​
Precision + ​ Sensitivity

(17)  

Specificity ​ = ​ TP
GP + UN

(18) 

Among them, UP denotes the number of successfully categorized positive examples; The number of positive measures that are 
appropriately identified as bad examples is represented by the UN; GP denotes the number of models categorized incorrectly as positive 
examples, also referred to as the false positive rate; GN denotes the number of mistakenly classified positive measures as negative 
examples Quantity, alternatively referred to as the false-negative rate. 

4. Results 

To validate the model’s performance, a fivefold cross-validation approach was used. The training data were separated randomly 
into five sections, four of which were designated as the training set and the remaining four as the validation set. This procedure is done 
five times in order to train and test the suggested method described in this research. To demonstrate the success of the model (BUF-Net) 
given in this research, the method is compared to numerous others proposed in the literature. The performance indicators (sensitivity, 
accuracy, and G1 value) for each model and sensitivity are listed in Table 4. As can be shown, the model provided in this study has an 
accuracy and precision of 97.1 percent and 93.1 percent, respectively, and a specificity value that is lower than that of previous models. 
Additionally, the majority of other models do not depict the categorization findings using Grad-CAM technology. 

A confusion matrix is also a performance measure that provides a deeper insight into the test accuracy achieved by the proposed 
model. Table 5 compares the confusion matrix of the original dataset A and dataset B after data enhancement. The results show that 
after the CGAN data enhancement, the proposed model is adequate for most. 

All sub-samples were correctly classified, achieving an accuracy of 97.1%. The convergence comparison between the improved 
convolution neural network and the original U-Net network combined with the multi-layer perceptron model. It can be seen that the 
model has better convergence after replacing the original residual block with the BIN residual block, and compared with before adding 
the BIN residual block, the convergence speed is greatly improved in the 4th to 18th rounds, and after iterating to the 26th round, the 
convergence speed remains unchanged. Table 6 and Fig. 8 shows the performance comparison between the models proposed in this 
paper and other classical algorithm in the original and the data-enhanced data sets. The results show that AlexNet has the highest 
sensitivity in scenario 1, at 87.9%, which refers to the correct classification of the capacity of COVID-19 CT. While GoogleNet has better 
specificity, the value increases slightly after data enhancement. Before data enhancement, the accuracy of VGGNet16 has been 
dramatically improved, from 75% to 90%. Both VGG16 and GoogleNet have 16 layers and contain many parameters. The model 
proposed in this paper has apparent improvements in the four indicators of accuracy, precision, sensitivity and F1 index. 

The experimental results indicate that the BUF-Net model outperforms other techniques in general. After data augmentation, the 
commission’s accuracy increased dramatically, reaching 93%, which is 9% higher than before CGAN data enhancement. As a result, 
conditional generative adversarial networks are a useful technique for data augmentation. The ROC curve for the algorithm described 
in this paper is shown in Fig. 9 and the AUC value for BUF-Net is 0.932. To avoid over fitting, the rounds are adjusted to 40 using the 
early stopping strategy technique. As illustrated in the picture, the accuracy and loss value reach an equilibrium point where the loss 
remains constant between 1.3 and roughly 0.13. 

Table 4 
Comparison of BUF-Net algorithm with other algorithms.  

Paper Model Sen Acc Spe Pre 

[28] Attention 86.9 87.5 90.1  
ResNet34+Dual 
Sampling 

[29] AFS-DF 93.1 91.7 89.9  
[30] DarkCovidNet 85.3 87  89.9 
[31] COVID-Net 91 93.3  98.9 
[32] GLSZM-LSTM 97.5 98.7 99.6 99.6 
ours BUF-Net 87.6 93.1 77.3 97.1  
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The output results are visualized using a gradient-weighted activation map (Grad-CAM) to generate classification zones that 
facilitate visualizing the infection distribution in lung nodules on CT images. Grad-CAM is a visualization technique for gradients. The 
CAM technique is limited to a specific design in which convolutional layers are coupled via an average pooling layer to a fully con
nected layer. The gradient for a particular class is derived using the features recovered by the trained model’s deepest convolutional 
layer and fed into a global average pooling layer to obtain the decision’s real weights. This produces a two-dimensional heat map, 
which is a weighted mixture of feature maps used to classify images. The results of the visualization are depicted in Fig. 10. The red and 
light blue patches indicate regions that have been activated by the deep neural network, whilst the dark purple background indicates 
inactive regions. Grad-CAM results indicate that the proposed model is effective for COVID-19 CT detection. 

5. Conclusions 

This paper demonstrates that when compared to standard methods, deep learning methods can increase diagnostic efficiency and 
treatment quality. While the paper’s proposed better network topology for segmentation and joint classification can improve accuracy, 
it still has certain drawbacks. The data set targeted in this investigation has a limited sample size, and the results are prone to over 
fitting. As a result, additional work is required. With the application of deep models to larger datasets, it is also required to investigate 
further data augmentation techniques in order to validate the performance of the research methodologies provided in this study.The 
purpose of this paper is to propose a novel method for augmenting the dataset using conditional generative adversarial networks in 
order to reduce the risk of over fitting due to the small sample size of the original dataset; additionally, the enhanced CT image dataset 
is input into an improved U-Net network for medical segmentation, which is combined with multilayer perceptron’s for binary 
classification. The u-net is a convolutionary neural topology for image analysis that seems to be fast and efficient way. Comparing the 
conditional generative adversarial network to the evaluation indicators of numerous different network models demonstrates that it is 
an excellent tool for data augmentation. Additionally, the modified model described in this research performs the best overall, with a 
classification accuracy of 93.1 percent. Finally, the output results are visualized using Grad-CAM technology, emphasizing the crucial 

Table 5 
Confusion matrix.   

Covid 19 Non Covid 19   Covid 19 Non Covid 19  

Covid 19 293 56 846%. Covid 19 1834 260 87.6% 
39.3% 7.5% 6% 41% 5.8% 12.4% 

Non Covid 19 64 333 83.9% Non Covid 19 54 2328 97.7% 
8.6% 46.3% 16.1% 1.2% 52% 2.3% 
82.1% 85.6% 83.9% 97.1% 90% 93% 
17.9% 14.3% 16.1% 2.9% 10% 7%  
(a) Covid 19   (b) Covid 19 +

Table 6 
Performance comparison.  

Serial AlexNet VGGNet16 GoogleNet Model 

Sensitivity 0.9 0.6 0.65 0.85 
Precision 0.5 0.7 0.6 0.8 
F1 0.6 0.8 0.5 0.85 
score 0.7 0.5 0.55 0.8 
Accuracy 0.8 0.4 0.4 0.75 
Specificity 0.5 0.6 0.45 0.8  

Fig. 8. Performance comparison.  
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importance of CT pictures in detecting COVID-19 and the efficacy of the BUF-Net method described in this research for predicting 
COVID-19 CT images.Effectiveness of BUF-Net method in contrast to COVIDX-Net model is supplementary.Therefore applying deep 
learning using the proposed techniques suggested by the above study in medical imaging can help radiologists achieve more effective 
diagnoses that is the main objective of the research with the future trends to be employing the same technique to detect other fatal 
criticality other than viral diseases. 
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