
Assessing Daily Evapotranspiration Methodologies from One-
Time-of-Day sUAS and EC Information in the GRAPEX Project

Ayman Nassar1,2,*, Alfonso Torres-Rua1,2, William Kustas3, Joseph Alfieri3, Lawrence 
Hipps4, John Prueger5, Héctor Nieto6, Maria Mar Alsina7, William White3, Lynn McKee3, 
Calvin Coopmans8, Luis Sanchez7, Nick Dokoozlian7

1Department of Civil and Environmental Engineering, Utah State University, Logan, UT 84322, 
USA;

2Utah Water Research Laboratory, Utah State University, Logan, UT 84322, USA

3USDA, Agricultural Research Service, Hydrology and Remote Sensing Laboratory, 10300 
Baltimore Avenue, Beltsville, MD 20705, USA;

4Department of Plants, Soils and Climate, Utah State University, Logan, UT 84322, USA;

5USDA, Agricultural Research Service, National Laboratory for Agriculture and Environment, 
Ames, IA 50011, USA;

6Complutum Tecnologías de la Información Geográfica S.L. (COMPLUTIG), 28801 Madrid, 
Spain;

7E. & J. Gallo Winery, Viticulture, Chemistry and Enology, Modesto, CA 95354, USA;

8Department of Electrical and Computer Engineering, Utah State University, Logan, UT 84322, 
USA;

Abstract

Daily evapotranspiration (ETd) plays a key role in irrigation water management and is particularly 

important in drought-stricken areas, such as California and high-value crops. Remote sensing 

allows for the cost-effective estimation of spatial evapotranspiration (ET), and the advent of 

small unmanned aerial systems (sUAS) technology has made it possible to estimate instantaneous 

high-resolution ET at the plant, row, and subfield scales. sUAS estimates ET using “instantaneous” 

remote sensing measurements with half-hourly/hourly forcing micrometeorological data, yielding 

hourly fluxes in W/m2 that are then translated to a daily scale (mm/day) under two assumptions: 

(a) relative rates, such as the ratios of ET-to-net radiation (Rn) or ET-to-solar radiation (Rs), are 

assumed to be constant rather than absolute, and (b) nighttime evaporation (E) and transpiration 

(T) contributions are negligible. While assumption (a) may be reasonable for unstressed, full 
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cover crops (no exposed soil), the E and T rates may significantly vary over the course of 

the day for partially vegetated cover conditions due to diurnal variations of soil and crop 

temperatures and interactions between soil and vegetation elements in agricultural environments, 

such as vineyards and orchards. In this study, five existing extrapolation approaches that compute 

the daily ET from the “instantaneous” remotely sensed sUAS ET estimates and the eddy 

covariance (EC) flux tower measurements were evaluated under different weather, grapevine 

variety, and trellis designs. Per assumption (b), the nighttime ET contribution was ignored. 

Each extrapolation technique (evaporative fraction (EF), solar radiation (Rs), net radiation-to-solar 

radiation (Rn/Rs) ratio, Gaussian (GA), and Sine) makes use of clear skies and quasi-sinusoidal 

diurnal variations of hourly ET and other meteorological parameters. The sUAS ET estimates 

and EC ET measurements were collected over multiple years and times from different vineyard 

sites in California as part of the USDA Agricultural Research Service Grape Remote Sensing 

Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX). Optical and thermal sUAS 
imagery data at 10 cm and 60 cm, respectively, were collected by the Utah State University 

AggieAir sUAS Program and used in the Two-Source Energy Balance (TSEB) model to 

estimate the instantaneous or hourly sUAS ET at overpass time. The hourly ET from the EC 
measurements was also used to validate the extrapolation techniques. Overall, the analysis using 

EC measurements indicates that the Rs, EF, and GA approaches presented the best goodness-of-fit 

statistics for a window of time between 1030 and 1330 PST (Pacific Standard Time), with the Rs 

approach yielding better agreement with the EC measurements. Similar results were found using 

TSEB and sUAS data. The 1030–1330 time window also provided the greatest agreement between 

the actual daily EC ET and the extrapolated TSEB daily ET, with the Rs approach again yielding 

better agreement with the ground measurements. The expected accuracy of the upscaled TSEB 
daily ET estimates across all vineyard sites in California is below 0.5 mm/day, (EC extrapolation 

accuracy was found to be 0.34 mm/day), making the daily scale results from TSEB reliable and 

suitable for day-to-day water management applications.
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1. Introduction

Evapotranspiration (ET) is a key component in the hydro-ecological process, which couples 

water and energy budgets, links the land surface and the atmosphere [1], and represents 

water consumption for biomass production [2]. Routine monitoring of actual ET is important 

for a variety of applications, including water resource management, drought monitoring, 

climate change, and the efficiency of crop irrigation [3–6]. Numerous methods have been 

used over the past decades to measure ET, including lysimeters, Bowen ratio, and eddy 

covariance (EC) flux towers. However, these methods represent limited sampling areas 

[7], and the measurements are best interpreted for homogeneous surfaces [8]. Spatial 

techniques are needed to accurately quantify ET for improved irrigation scheduling and 

water management decision support, particularly in complex canopies such as vineyards, 

which have non-uniform and complex vertical canopy structure, wide and variable row 
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spacing, and deep and complex rooting systems [9]. This canopy structure produces large 

diurnal changes in solar radiation exposure to soil and plants [9] and requires sophisticated 

radiation extinction modeling [10,11]. Meanwhile, row spacing ranges between 2.4 m and 

3.6 m for vineyards [12], and between 3.6 m and 6 m for orchards trees [13]. Water-

limiting conditions across different vineyards in drought-stricken areas, such as California, 

necessitate the assessment of irrigation demand to set up agricultural water management 

strategies and decisions [14]. According to the USDA, California produces over 90% of 

US wine, with a steady growth reaching 635,000 acres [15] in 2019. The high evaporative 

demand with limited rainfall in the vineyard growing season (May–September), along with 

the need to achieve grapevine stress targets, constitutes a significant challenge for irrigation 

scheduling to ensure vineyard productivity [16].

Advances in methods for measuring and modeling the interactions of vineyards with the 

environment require a better understanding of the processes influencing energy, water, 

and carbon exchange for highly organized and complex structure perennial crops. Various 

remote sensing platforms, including satellites, manned aircraft, and small unmanned aerial 

systems (sUAS), improve the potential availability of surface information for estimating ET 
at different spatial scales [17]. However, spatial information from satellites has limitations 

for ET estimation, including spatial and temporal resolutions, the presence of clouds at 

overpass time, and imagery delivery time [18]. These issues make satellite data challenging 

to use for the continuous mapping of daily ET (ETd) and for real-time irrigation scheduling 

[19]. However, data fusion methodologies using multiple satellite platforms have improved 

capabilities for generating daily ET on a more routine basis [20,21] and for irrigation 

scheduling [22]. While manned aircraft have the ability to gather high-resolution data 

on demand at different times of the day, they are usually cost-prohibitive and, therefore, 

unlikely to be used to conduct multiple flights over an area of interest [23]. The advent of 

advanced sUAS remote sensing technology with lightweight sensors could overcome some 

of the previously mentioned remote sensing platform limitations. Compared to satellites, 

sUAS can be described as “flexible in timing”, in that they can be operated as needed at 

almost any time [7]. Additionally, sUAS can provide high spatial and temporal resolution 

data at sub-meter and multispectral resolutions, although data quality and data processing 

workflows must be enhanced before sUAS can become an efficient data collection platform 

[24]. Moreover, the areal coverage from sUAS is limited compared to satellites. For 

example, the Landsat 8 scene size is 185 km × 180 km, while an sUAS is nearly 1.6 km × 

1.6 km, depending on the sensor type and flight height.

Whether using satellite or aerial imagery, the ability to reliably extrapolate from one-time-

of-day instantaneous ET (ETi) to daily ET (ETd) is most useful [25] and relevant for 

the water management of agricultural crops [3]. Although numerous daily ET datasets 

are available for different applications, these products are often calculated based on the 

Penman-Monteith approach, the Priestley-Taylor method, or the integration of multiple ET 
estimates at a coarse resolution (≥0.25°) [26]. EEFLUX (Earth Engine Evapotranspiration 

Flux) is another source for obtaining daily ET information at 30-m spatial resolution 

using Landsat data and an energy balance model. However, its temporal resolution of 16 

days [27] limits its capability for continuously monitoring ET and identifying the spatial 

variability in irrigation practices that can occur in less than one week. Many current research 
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efforts are being directed towards daily ET estimation using surface energy balance models, 

among them the Two-Source Energy Balance (TSEB) model. However, the TSEB model 

provides hourly surface energy fluxes, which requires a scaling/extrapolation approach for 

generating daily ET information. Several studies have compared different daily ET methods 

with an assumption that the ratio of latent heat flux (LE) to one energy balance term is 

constant throughout the day, yet no universal approach has been identified as suitable for 

all types of land surfaces. Previous studies have indicated that the accuracy of that approach 

(upscaling daily ET) is a function of land surface type. For example, the evaporative fraction 

(EF) approach produced the best agreement in bare soil [28] and soybean [19], while the 

incoming solar radiation (Rs) approach was deemed to be more efficient in estimating 

daily ET in grassland and woody savanna [29]. Another crucial issue for precise daily ET 
estimation is the proper selection of the time-of-day window. In the study conducted by 

Colaizzi et al. [28], the best time window for extrapolating the hourly ET to a daily scale 

was shown to be within 1 or 2 h of solar noon. This conclusion was also supported by 

Jackson et al. [30], who identified the time-of-day window for acquiring the ET for daily 

ET estimation as within 2 h of solar noon. Therefore, some concerns, such as actual and 

potential satellite overpass times and cloudiness vs. time of day, should be identified clearly 

to avoid any error propagation in the daily ET estimation.

The need for accurate daily ET (ETd) estimates raises two fundamental questions: (1) which 

daily ET extrapolation approach at grapevine row scales can provide reliable values under 

a variety of crop and environmental conditions and thermal-based ET models like TSEB? 

and (2) what time window for acquiring a remotely-sensed ET provides the most reliable 

daily ET using an extrapolation approach? Multiple efforts have been made to estimate 

ETd for different crops; however, computing ETd for complex canopies, such as vineyards 

and grapevine row scales, has not been adequately addressed. In this study, different 

extrapolation approaches from the literature were assessed for estimating daily ET from 

instantaneous sUAS ET estimates for several vineyard sites across California. Specifically, 

this paper (a) assessed the performance of several daily ET extrapolation approaches using 

EC observations and sUAS information, and (b) determined an optimal time window for ET 
upscaling from a single to a daily estimate.

1.1. Daily ET Upscaling Approaches

ET upscaling is commonly performed by assuming conservation of some ET metric over the 

daytime, generally known as a ratio between instantaneous ET and a reference variable at 

a specific time of day, and that nighttime E and T contributions (soil evaporation and plant 

transpiration) are negligible or represent some small percentage of the daytime ET (on the 

order of 10%). This hypothesis is commonly known as energy self-preservation [29,31,32] 

and includes EF, Rs, and Rn/Rs ratio approaches. The second assumption in flux upscaling 

procedures is that cloud-free conditions persist throughout the daytime [28,33]. However, 

the clear-sky condition cannot be assured necessarily throughout the season. Other ETd 

extrapolation approaches are characterized by a quasi-sinusoidal shape, such as Gaussian 

(GA) and Sine. These approaches assume that the diurnal variation of ET is similar to 

the solar irradiance, with the peak value at solar noon. A description of each approach is 

presented below.
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1.1.1. Evaporative Fraction (EF) Approach—One of the most common schemes to 

extrapolate instantaneous evapotranspiration to a daily value is the evaporative fraction (EF) 

[34]. EF is defined as the ratio of latent heat flux (LE) to the available energy (the difference 

between net radiation, Rn, and soil heat flux, G), assumed to be constant throughout daytime 

hours. The EF approach is presented in Equation (1), as follows:

ETd = LE
Rn − G

c
ρwλ Rn − G d (1)

where ETd is the daily ET (mm/day), LE is the instantaneous latent heat flux (W/m2), Rn is 

the instantaneous net radiation (W/m2), G is the instantaneous soil heat flux (W/m2), ρw is 

the water density (kg/m3), λ is the latent heat of vaporization for water (MJ/kg), (Rn – G)d 

is the total daily available energy (MJ/m2/day), and c is a factor equal to 1000 to convert 

meters to millimeters.

Numerous studies have considered the tendency of the EF to be nearly constant during the 

daytime [35]; however, the combination of soil moisture, weather conditions, topography, 

and biophysical conditions has an impact on the conservation (or variability) of the EF in 

the daytime [31]. According to Hoedjes et al. [36], self-preservation of the EF approach 

is applicable under dry conditions, while under wet conditions, the EF is no longer valid. 

Nonetheless, a previous study by Crago [32], which used Bowen ratio stations over natural 

grassland, indicated that, for clear days, the midday EF is a good indicator of the daytime 

average value of the EF compared with cloudy days, but the values are still underestimated 

from the daytime average EF due to the concave-up shape of the diurnal variation of the EF. 

This finding is also supported by Li et al. [37], who found that the EF is relatively close to 

the daily average EF in the 1000 to 1500 timeframe, and could be used to guide vineyard 

irrigation practices in arid regions. However, the study by Zhang and Lemeur [38], which 

used 12 surface network stations called Système Automatique de Mesure de l’Evaporation 

Rèelle (SAMER) over an area composed of forest (40%) and mixed agriculture (60%), 

indicated that the EF varies during the daytime and could not be used as a guide for ETd 

estimates due to factors such as available energy, soil moisture, and other environmental 

variables. According to the study by Gentine et al. [39], which examined the influence 

of environmental factors (incoming solar radiation, wind speed, air temperature, soil water 

content, and leaf area index) on the diurnal behavior of the EF over wheat and olive, 

indicated that EF is strongly linked to soil moisture availability and canopy cover. As 

such, the EF increases with increasing the soil moisture and/or fractional cover. On the 

other hand, they found that the phase difference between net radiation (Rn) and the soil 

heat flux (G) must be well-characterized in application models that invoke the EF daytime 

self-preservation.

1.1.2. Solar Radiation (Rs) Approach—Another approach for extrapolating ETi to 

ETd is the Rs approach, which is similar to the EF but replaces the available energy ((Rn 

− G), instantaneous or daily) term with the incoming solar radiation (Rs) as a reference 

variable. This approach, developed by Jackson et al. [30], assumes that the diurnal ET 
variation is similar to the solar radiation (ET~Rs), that is, the ET is highly correlated and 
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proportional to the Rs. Equation (2) demonstrates the expressions for calculating ETd using 

the Rs approach.

ETd = LE
RS

c
ρwλ RSd (2)

where Rsd is the daily solar radiation (MJ/m2/day), and Rs is the instantaneous solar 

radiation (W/m2). Other parameters are similar to the EF approach.

According to Van Neil et al. [40], the Rs approach is robust when upscaling ETi to multiple 

timeframes (e.g., daily, 8-day, and monthly). Moreover, many studies have indicated that 

solar radiation (Rs) is the most robust scalar approach that explains the ratio between the 

ETd and ETi [41].

1.1.3. Ratio of Net Radiation-to-Solar Radiation (Rn/Rs) Approach—The Rn/Rs 

approach is another approach to scale up ETi to ETd using the evaporative fraction (EF) and 

the ratio of net radiation-to-solar radiation (Rn/Rs) [42]. The Rn/Rs approach is presented in 

Equation (3).

ETd = LE
Rn − G

Rn
Rs

c
ρwλ Rsd (3)

The parameters of this approach are explained in the EF and Rs approaches.

1.1.4. Sine Approach—The Sine approach, developed by Jackson et al. [30], showed 

that the generic trend of the ETi during the daylight period is similar to the solar irradiance 

and could be approximated by a Sine function, where the maximum irradiance occurs at 

solar noon (~12 p.m.). For cloudy days, the daily ET estimates using the Sine approach are 

less reliable or may be invalid. This implies that the ETi responds strongly to solar radiation 

[38]. The approach has been investigated by Zhang and Lemeur [38], who found the Sine 

approach to be preferable to others for upscaling instantaneous ET values.

ETd = ET i
2N

πsin(πt/N) (4)

where ETi represents the instantaneous ET (mm/hr), N is the total time from sunrise to 

sunset (h) and can be calculated using Equation (5), and t is the time elapsed since sunrise 

(h).

N = 0.945 a + bsin2[π(D + 10)/365] (5)

In Equation (5), a and b are latitude-dependent constants, while D is the day of the year. For 

parameters a and b, Jackson et al. [30] developed a regression model that is a function of the 

latitude of the location, as shown in Equations (6) and (7), respectively.
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a = 12.0 − 5.69 × 10−2L − 2.02 × 10−4L2 + 8.25 × 10−6L3 − 3.15 × 10−7L4 (6)

and

b = 0.123L − 3.10 × 10−4L2 + 8.0 × 10−7L3 + 4.99 × 10−7L4 (7)

where L is the latitude in decimal degrees.

1.1.5. Gaussian (GA) Approach—The Gaussian (GA) approach has been used 

recently by Liu et al. [43] to retrieve the ETd from remotely sensed instantaneous ET. 

The study used ETi observations from an EC system and found that the ET diurnal 

variation follows a Gaussian-fitting curve. When comparing this approach to the Sine and 

EF approaches, results from the study of Liu et al. [43] indicated that GA is more accurate 

using the eddy covariance (EC) system.

ETd = w π
2 × ET i × e2 ti − tc

2/w2
(8)

where w is the width that equals 2δ, δ is the standard deviation of ETi values, ti is the time 

of the instantaneous ET (ETi), and tc is the time when ETi arrives at maximum value in the 

diurnal variation.

1.2. Two-Source Energy Balance (TSEB) Model

The TSEB model was developed by Norman et al. [44] to explicitly accommodate the 

difference between radiometric and aerodynamic surface temperatures that affect the energy 

exchange between soil and canopy systems and the lower atmosphere at instantaneous time 

scales. In the TSEB model, turbulent energy fluxes are partitioned between canopy and 

soil, with different versions applied to separate between those components. These versions 

include the TSEB-PT (Priestly-Taylor), the TSEB-DTD (Dual Time Difference), TSEB-2T-
DMS (Data-Mining Sharpening of temperature), and TSEB-2T (Dual Temperature). The 

TSEB-PT version assumes a composite radiometric temperature (Trad) that contains 

temperature contributions from the soil/substrate and canopy and is decomposed based on 

the vegetation fractional cover (fc). The TSEB-DTD version, developed by Norman et al. 

[45], uses two observations of Trad: the first observation obtained 1.5 h after the sunrise 

(Trad,0), and the second one during the daytime (Trad,1). The TSEB-DTD version uses the 

same approach as TSEB-PT to divide the composite Trad between the soil/substrate and 

canopy temperatures. Using TSEB-DTD could reduce the error in flux estimations when 

uncertainty exists in local air temperature observations and absolute Trad [46]. TSEB-2T-
DMS uses a data-mining fusion algorithm to sharpen the land surface temperature (LST), 

which allows better discrimination between the soil/substrate and canopy temperatures [47]. 

The TSEB-2T approach was originally developed by Kustas and Norman [48] and was 

further refined and tested by Nieto et al. [49]. The main concept underpinning the TSEB-2T 
approach is to estimate the Ts and Tc from composite LST imagery using the relationship 

between the vegetation index (VI) and the LST to extract the Ts and Tc within a spatial 

domain. An early attempt at estimating vineyard water use at a field scale using aerial 
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imagery with TSEB and a simple thermal-based contextual scheme suggests the TSEB is a 

robust approach for vineyard ET estimation [50]. In this study, the TSEB model was used 

to calculate the instantaneous ET at the time of the sUAS overpass, and the various schemes 

were used to extrapolate this one-time-of-day ET to a daily value. The TSEB-2T model was 

used for the Sierra Loma vineyard analysis, while the TSEB-PT was used for Ripperdan 

and Barrelli due to limitations in applying the TSEB-2T model to those two sites. The 

average value of the LAI was used for these sites, but the TSEB-2T requires the LAI spatial 

information to identify the threshold values of NDVI of soil, which is based on the empirical 

relationship between the NDVI and LAI. More details about the TSEB-2T can be found in 

Nieto et al. [49]. Applying the energy conservation and balance principles, the energy budget 

in the TSEB model can be described in the following equations:

Rn = LE + H + G, (9)

Rnc = Hc + LEc, (10)

Rns = HS + LES + G, (11)

where Rn is the net radiation, and G is the soil heat flux. H and LE are heat fluxes, where H 
is the sensible heat flux and LE is the latent heat flux. All flux units are expressed in W/m2. 

Subscripts of c and s represent the canopy and soil components, respectively. To estimate the 

sensible heat flux for soil and canopy, Norman et al. [44] proposed a series of soil vegetation 

resistive schemes (following an analogy with Ohm’s law), as illustrated in Figure 1.

H = HC + HS = ρairCp
TAC − TA

RA
= ρairCp

TC − TAC
Rx

+ TS − TAC
RS

(12)

where ρair is the air density (kg/m3), Cp is the heat capacity of the air at constant pressure 

(J/kg/K), TA is the air temperature (Kelvins), Tc and Ts are the canopy and soil temperatures 

(Kelvins), respectively, and TAC is the temperature of the canopy air space (Kelvins), which 

is calculated with Equation (13).

TAC =

TA
Ra

+ TC
Rx

+ TS
RS

1
RA

+ 1
Rx

+ 1
RS

(13)

where RA is the aerodynamic resistance to heat transport from the soil/canopy system, Rx is 

the boundary layer resistance of the canopy leaves, and Rs is the aerodynamic resistance to 

heat transport in the boundary layer close to the soil surface. All resistances are expressed in 

(s/m). The mathematical expressions used to compute the resistance network are detailed in 

Equations (14)–(16).

RA =
ln zT − d0

z0M
− Ψℎ

zT − d0
L + Ψℎ

z0M
L

κ′u*
(14)
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Rx = C′
LAI

lw
Ud0 + z0M

(15)

RS = 1
c TS − TA

1/3 + buS
(16)

where u* is the friction velocity, calculated as the following:

u* = κ′u
ln zu − d0

z0M
− Ψm

zu − d0
L + Ψm

z0M
L

(17)

In Equation (17), zu and zT are the measurement heights for wind speed (u) and air 

temperature (TA), respectively, d0 is the zero-plane displacement height, and z0M is the 

roughness length for momentum. The unit of z0M is expressed in m. In the TSEB model 

versions, the roughness length of momentum (z0M) is assumed to equal the roughness 

length for heat transport (z0H), as the aerodynamic resistance of the canopy elements (Rx) 

already takes into account the different efficiencies between momentum and heat transport. 

κ′ represents the von Karman’s constant, which is equal to 0.4. Ψh and Ψm are the adiabatic 

correction factors for heat and momentum, respectively. The details of these two factors 

are described in Brutsaert [51]. In Equation (15), C′ is assumed to be 90 s1/2/m and lw 

represents the average width of leaf (m). The coefficients (b and c) in Equation (16) depend 

on the turbulent length scale in the canopy, the soil-surface roughness, and the turbulence 

intensity in the canopy. More details can be found in the work by Nieto et al. (2019a), Nieto 

et al. (2019b), Kustas et al., and Kondo and Ishida [11,49,52,53].

2. Methodology

2.1. Study Area

The experiment was conducted within three different climate regions located in California, 

as shown in Figure 2. All of these sites are part of the Grape Remote Sensing Atmospheric 

Profile and Evapotranspiration eXperiment (GRAPEX) project [54], led by the USDA 

ARS in collaboration with E&J Gallo Winery, University of California in Davis, Utah 

State University, NASA, and others. The overall objective of the GRAPEX project is 

to provide the vineyard manager and grower with spatially distributed, remotely sensed 

ET information for improving irrigation water use efficiency and detecting crop stress in 

multiple vineyard blocks. This would facilitate water conservation efforts in California’s 

Central Valley, which has been experiencing frequent and severe drought conditions. The 

project began in 2013 at two pinot noir blocks located within the Sierra Loma Vineyard near 

Lodi, California (38.29°N, 121.12°W) in Sacramento County (see Figure 2) [7]. The two 

vineyard blocks, north and south, differed in maturity and age, having been implemented 

in 2009 and 2011, respectively. The configuration of the trellising system in both fields 

is the same, with vine trellises 3.35 m apart and an east–west orientation. In 2017, the 

GRAPEX project extended the observations to include two additional vineyards: Barrelli 
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vineyard (38.75°N, 122.98°W), located near Cloverdale, California, and Ripperdan vineyard 

(36.84°N, 120.21°W), located near Madera, California. With the expansion of the GRAPEX 
project from Sierra Loma to the Barrelli site to the north and Ripperdan to the south, a 

large range in trellis designs, climate regions, vine varieties, canopy structure, and vine 

physiology are represented. The Ripperdan vineyard was planted in 2009, whereas the 

Barrelli vineyard was implemented in 2010. Both the Barrelli and Ripperdan vineyards 

employ different plantation structures and vine varieties. The vine rows in Barrelli have 

a northeast–southwest row orientation, with a row spacing of 3.35 m and predominately 

Cabernet Sauvignon vine variety, while in Ripperdan, the row direction is east–west, with 

a row spacing of 2.74 m growing Chardonnay and Merlot. Data collection campaigns/

intensive observation periods (IOPs) in these sites were conducted in the veraison period 

(from mid-July to early August), when the crop evaporative demand increases.

2.2. Procedure

Figure 3 illustrates the procedure used for this study. First, available eddy covariance 

(EC) flux tower data was filtered to select cloud-free days only. Then, five different 

ETd approaches were applied to the LE fluxes from the EC measurements for upscaling 

the ET to the daily timescale. The analysis was performed using EC observations at 

different vine phenological stages (April–May, June–August, and September–October). 

Finally, daily sUAS ET information, produced using the TSEB model, and results from 

the five approaches for upscaling/extrapolating the daily ET were compared against the 

measured ETd from the EC tower data. Two time windows were selected for the daily ET 
estimation: the first was near solar noon (1030–1330), and the second was in the afternoon 

(1430–1630). The reasons for these selections were (a) satellite overpass time, (b) sUAS 
flexibility, which allows for flights at different hours, including mid to late afternoon, and 

(c) an opportunity to assess the suitability of using later (2+ hours after solar noon) sUAS 
flights for the estimation of daily ET.

2.2.1. sUAS Data Processing—The AggieAir sUAS Program at Utah State University 

(https://uwrl.usu.edu/aggieair/ accessed on 10 December 2020) [55] acquired high-

resolution imagery at 450 m above ground level (agl), resulting in visible and near-infrared 

data at a 0.10 m spatial resolution, and a thermal spatial resolution at 0.6 m. The spectral 

range of the visible and near-infrared data was similar to Landsat; however, the thermal band 

range was wider, with a bandwidth spanning from 7 to 14 μm. Thermal data was acquired 

using a radiometrically calibrated micro-bolometer camera. Table 1 lists the information 

concerning the different AggieAir sUAS flights. In this study, the obtained sUAS images 

were georectified using ground control points (GCPs). Details of the optical and thermal 

information are presented below.

Thermal Data: Changes in the transmissivity and atmospheric radiance can adversely affect 

the sUAS thermal data [56]. Details about thermal data calibration can be found in the work 

by Torres-Rua [56], while the work by Torres-Rua et al. [57] shows that the TSEB model 

is insensitive to surface emissivity. The AggieAir sUAS Program has a thermal protocol to 

use over 90% of overlap for thermal raw imagery collected after sUAS launching but before 

mission data collection upon internal lens temperature stabilization of the microbolometer 
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camera. These two steps address potential vignetting as well as the temperature drifting 

effect observed in other sUAS applications.

Optical Data: Radiometric agreement between different remote sensing platforms is 

important for further integration. An internal evaluation of the optical data obtained from 

different sUAS flights was performed by aggregating the high-resolution imagery up to 

Landsat scale using a point-spread function (PSF). The resulting 30-m pixels were found to 

agree with Landsat reflectance information. This is due to the use of different sensors than 

the ones used by Hassan-Esfahani et al. [58].

2.2.2. Eddy Covariance (EC) Fluxes—Surface energy fluxes (LE and H) were 

calculated from the EC measurements of the sonic temperature, water vapor, and vertical 

wind speed. In this study, the measurements obtained from the EC were averaged over a 

60-min time interval to ensure appropriate averaging time for calculating the H and LE. The 

sensible heat flux was calculated from the product of the air density, the specific heat of air, 

and the covariance between the vertical wind speed and sonic temperature. The expression 

used to calculate H is shown in Equation (18).

H = ρaCp Uz′Ts′ (18)

where ρa is the air density (kg/m3), Cp is the heat capacity of the air at constant pressure 

(J/kg/K), Uz′ is the vertical wind speed (m/s), and Ts′ is the sonic temperature (Kelvins).

The latent heat flux (LE) was calculated from the product of the latent heat of vaporization 

(λ) and the covariance between the vertical wind speed (Uz′) and the water vapor density 

(ρv′). The formula used to calculate the LE is illustrated in Equation (19).

LE = λ Uz′ρv′ (19)

where ρv′ is the water vapor density (kg/m3).

Table 2 describes the EC towers installed at the different vineyard sites to monitor ET. 

The EC measurements (April to October) obtained are the surface energy fluxes (Rn, H, 

and LE) and micrometeorological data. More details about the in situ micrometeorological 

measurements can be found in the work by Nassar et al. [7].

In Sierra Loma, each EC tower monitors grapevines of different ages, while 4 flux towers in 

Ripperdan 720 measure different water management approaches at 4 different blocks. In this 

study, the footprint analysis of each EC tower was performed to validate the results obtained 

from the TSEB model. The Kljun et al. [59] model was used for describing the fetch of the 

EC contribution area for the hourly period encompassing the sUAS flight times. The shape 

and orientation of the EC footprint depend on multiple micro-meteorological conditions that 

are observed by the EC towers installed at the sites, which include the friction velocity, wind 

speed, wind direction, roughness length, standard deviation of the crosswind velocity, and 

Monin–Obukhov length as well as the EC tower height. In this study, the authors did not 

include any energy balance closure to the EC information to minimize biases.
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2.3. Goodness-of-Fit Statistics

2.3.1. Quantitative Statistics—The performance indices to evaluate the daily ET 
approaches in this study involved comparisons of the modeled ET from the five different 

approaches against daily ET measurements from the EC towers. Computed statistical 

metrics included the root mean square error (RMSE), mean absolute error (MAE), mean 

absolute percentage error (MAPE), Nash–Sutcliffe efficiency coefficient (NSE), and the 

coefficient of determination (R2). The NSE coefficient checks the capability of the model to 

reproduce the following statistical components: correlation coefficient of (r), mean (μ), and 

variance (s). NSE values range between −∞ and 1, where 1 represents a perfect agreement, 

while a value of 0 means that the model results are not better than the average of the variable 

of interest, and values < 0 indicate unacceptable model performance [60].

RMSE =
∑i = 1

N Oi − Pi
2

N
(20)

MAE =
∑i = 1

N Oi − Pi
N

(21)

MAPE =
∑i = 1

N Oi − Pi
Oi

× 100
N

(22)

NSE = 1 −
∑i = 1

N Oi − Pi
2

∑i = 1
N Oi − O 2 (23)

R2 =
∑i = 1

N Oi − O Pi − P

∑i = 1
N Oi − O 2 ∑i = 1

N Pi − P 2

2

(24)

where Oi denotes the observed value, Pi denotes the modeled value, O denotes the mean 

observed value, P  denotes the mean modeled value, and N represents the number of 

observations.

2.3.2. Graphical Representations—Different graphical representations were used 

to visualize and evaluate the datasets from the EC towers and the performance of the 

extrapolation techniques. Boxplots were created to describe the variance of surface energy 

fluxes (Rn, H, LE, and G) at each hour in the dataset. Boxplots were also used to evaluate 

the performance of the five daily ET extrapolation schemes by presenting the distribution 

of relative error at each individual hour during the daytime, as shown in the Appendix. 

Moreover, scatterplots were used to compare the modeled fluxes from TSEB and the 

measurements from EC systems to evaluate model performance.
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3. Results and Discussion

3.1. Diurnal Variation of Energy Fluxes from EC Measurements

An example of the diurnal variation of surface energy fluxes (Rn, H, LE, and G) is shown 

in Figure 4 for the Sierra Loma vineyard. Diurnal variation plots for the other vineyard 

study sites (Ripperdan 760, Ripperdan 720, and Barrelli) are shown in Appendices B.1, 

C.1 and D.1 The boxplot at each individual hour represents the seasonal variation (April 

to October) of surface fluxes due to changes in the irrigation scheduling and variations in 

weather conditions (wind speed, air temperature, vapor pressure deficit, and soil moisture) 

[61]. Overall, the behavior of Rn diurnal variation is similar among the different sites, as 

the solar radiation is relatively consistent. As shown in Figure 4, Rn values are negative 

in the nighttime and late evening. In the daytime, Rn values vary, with maximum values 

of nearly 700 W/m2 at solar noon depending on the daily solar radiation. The diurnal 

pattern of Rn is almost systematic with a peak value appearing during midday, around 1200 

standard time. The diurnal distribution of both H and LE exhibits a typical concave-down 

shape, with minimums in the early morning and late afternoon. The peak value appears 

near solar noon, between 1030 and 1330. Overnight, the H is almost negative, while the 

LE is approximately equal to zero, as the incoming solar radiation (Rs) value is 0 at night. 

Although this is not always the case, the approximation may be acceptable for night [62]. 

In summertime, the LE value overnight is very small and rarely exceeds 5–10% of the 

daily total [63]. The study by Shapland et al. [64], which was conducted to estimate the ET 
over vineyards in California, assumed that the turbulent fluxes are zero during the night to 

avoid the uncertainty associated with the flux measurement. Another study by Tolk et al. 

[65], which aimed to quantify the nighttime evapotranspiration ETN-to-24-h ET (ET24) of 

irrigated and dryland cotton in a semiarid climate, indicated that the ratio of ETN-to-ET24 

ranged from an average of 3% for a dryland cotton crop to around 7% for irrigated alfalfa. 

The contribution of ETN-to-ET24 was the result of a relatively high nighttime vapor pressure 

deficit (VPD) and wind speed.

Flux observations indicated that the LE values were higher than the H across the different 

vineyards, as shown in Figure 4 and Appendices B.1, C.1 and D.1. These results stem from 

the fact that the vineyards are drip irrigated and, during most of the growing season, the 

cover crop is senescent, so ET is largely controlled by the vine canopy and, hence, mainly 

affected by the vine leaf stomatal conductance. The diurnal variation of soil heat flux (G) 

does not follow symmetric behavior, having a right skewness. As demonstrated in Figure 4 

and Appendices B.1, C.1 and D.1, the G value is much lower than other energy fluxes (Rn, 

H, and LE), where the peak does not persist across different vineyard sites. For overnight 

and later evening, G is negative and could yield values around −100 W/m2, as shown in 

Figure 4d at Sierra Loma vineyard, with similar results obtained at the other vineyard sites 

included in this study. In the energy balance, usually, the G value is estimated as a portion of 

Rn (~0.35 Rn) for remote sensing ET models. Meanwhile, the G value is highly affected by 

the LAI, canopy architecture, row direction, and trellis design, as well as the incoming solar 

radiation. Reducing the canopy fractional cover results in an increased daytime soil heat flux 

(G), while increasing the areal coverage of vegetation leads to decreased soil heat flux and 

Nassar et al. Page 13

Remote Sens (Basel). Author manuscript; available in PMC 2022 August 01.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



greater above-canopy latent heat fluxes, as long as there is ample root zone soil moisture to 

meet the atmospheric demand.

Figure 5 shows the LE diurnal variation at each individual EC tower included in this study. 

The boxplot at every hour represents the seasonal variation from April to October due to 

weather changes and irrigation scheduling. Overall, the general temporal trend of the LE 
has a shape that resembles solar radiation at different vineyard sites, with a peak value near 

solar noon, between 1030 and 1330. In early morning and overnight, the LE values were 

close to zero. Comparing the diurnal variation of LE at different vineyards, the Barrelli site 

had the lowest LE values. The Barrelli vineyard is located near the Pacific Coast shoreline, 

which brings cool maritime air that cools the warm interior valleys. The cool and moist air 

over Barrelli is associated with a decrease in the vapor pressure deficit (VPD) and more 

cloudiness, which causes a decrease in ET demand. In Sierra Loma and Ripperdan, the 

VPD and air temperature were higher than Barrelli, as both sites are exposed to a warm 

Mediterranean climate, which is characterized by abundant sunshine and a large day-to-night 

temperature difference and, therefore, increases the ET demand [66].

To compare the contribution of the ET at different hours to the daily ET, additional 

statistics were included, such as the ratio of hourly ET (ETh)-to-daily ET (ETh/ETd) and 

the ratio of ETh-to-maximum hourly ET (ETh(max)) (ETh/ETh(max)). An example of the 

diurnal variation of both ratios (ETh/ETd and ETh/ETh(max)) at different phenological vine 

stages (bloom, April–May; veraison, June–August; and post-harvest, September–October) 

is shown in Figure 6 for the Sierra Loma vineyard, while the figures of other sites are 

shown in Appendices B.2, B.3, C.2, C.3, D.2 and D.3. The general trends of ETh/ETd 

and ETh/ETh(max) resemble a Gaussian behavior, with peak values at solar noon. The 

results also indicate that the vine phenological stage could affect both ratios in terms 

of the variation at each individual hour during the daytime. In the veraison stage, low 

variation was observed in the ETh/ETd and ETh/ETh(max) compared with the bloom and 

post-harvest stages. In the early growing season (April), the inter-row cover crop was 

at peak greenness, which was senesced by early June as the vines’ leaves were fully 

developed (see the phenocam data at different study sites showing the different vine 

phenological stages: https://hrsl.ba.ars.usda.gov/awhite/CAM/ accessed 10 December 2020). 

This transition resulted in the main source of transpiration from the inter-rows, where 

the turbulent exchange was relatively suppressed to the vines with high potential coupled 

with the atmosphere [67]. On the other hand, the high variability observed in ETh/ETd 

and ETh/ETh(max) ratios in the time period between September and October were due to 

vines senescence and stress in the post-harvest stage due to a lack of irrigation and low 

atmospheric demand, where the daily ET decreased significantly. Moreover, as shown in 

Figure 6, the results of the ETh/ETd indicate that the major contribution of the daily ET 
came from the midday time between 1030 to 1530, which represents at least 65% of the 

daily total. However, in early morning (~0630 to 0930) and evening (~1630 to 1930), the 

value of ETh/ETd was low, which together represents 25–35% of the daily ET.
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3.2. Comparison between Different ETd Extrapolation Approaches Using the EC 
Measurements

Table 3 lists the goodness-of-fit statistics comparing the five different extrapolation 

approaches used to compute daily ET from the hourly EC at two different time windows: 

near solar noon (1030–1330) and afternoon (1430–1630) PST. The detailed statistics 

for RMSE and Er at each individual hour at the different vineyard sites are shown in 

Appendices A.1, A.2, B.4, B.5, C.4, C.5, D.4 and D.5 The analysis also considered all 

months segregated into three vine stages/periods (April–May, June–August, and September–

October) to investigate how vine phenology could affect the accuracy of estimated daily 

ET due to the timing of both water uptake and growth. In general, the results indicate that 

the performance of the methods had different utility in computing an accurate daily ET 
at different vine canopy development and grapevine phenological stages (bloom, veraison, 

and post-harvest). As shown in Table 3, the MAPE was lower during the summer months 

(June–August) compared with the early growing season (April–May) of the vine crop and 

after harvesting time. Meanwhile, the results indicate that the extrapolated EC-derived ETd 

could be affected by the time during the day, as a better agreement was observed using 

instantaneous (hourly) EC ET between 1030 and 1330 PST than within the second time 

window (1430–1630 PST). Across multiple ETd upscaling approaches during the veraison 

stage and in the 1030–1330 time window, the MAPE yielded values ranging between 8% 

and 22%, while in the 1430–1630 time window, the MAPE range increased and yielded 

values between 15% and 35%.

The results indicate that three methods (Rs, GA, and EF) among the five daily ET models 

have the best performance (low RMSE and MAPE values and a high NSE value). The 

Rs showed better agreement with the ground measurements among the other extrapolation 

approaches and was less sensitive to LE variation due to seasonal and climate differences, 

and particularly when using the one-time-of-day ET in the time window between 1030 and 

1330. Using the Rs approach, RMSE values were less than 0.4 mm/day, while the NSE 
value was higher than 0.9 for all vine stages (season). These results are also supported by 

a previous study conducted by Cammalleri et al. [29], which compared several upscaling 

daily ET methods using observations from flux towers within the United States and were 

evaluated over multiple seasonal cycles. They reported that using solar radiation (Rs) for 

converting the instantaneous to a daily ET value is more robust. Comparing the less accurate 

daily ET extrapolation techniques, the Sine method marginally outperformed the Rn/Rs 

approach in terms of moderate to high error within the time window (1030–1330) in the 

bloom and veraison stages, while in the post-harvest stage, the Rn/Rs method gave better 

results than the Sine approach. Using these approaches increased the RMSE, which yielded 

values above 0.65 mm/day, while the MAPE values were greater than 20% in the time 

window between 1030 and 1330 for all vine stages (season). This implies that the Sine and 

Rn/Rs techniques do not work properly for a daily ET estimate in vineyards.

3.3. Assessing the Instantaneous TSEB ET versus EC Measurements

As a first step toward evaluating the performance of the TSEB model, a comparison between 

the field observations from the EC and modeled fluxes using the TSEB and the sUAS 
(Table 1) at four different study sites are presented in Figure 7. A more detailed model 

Nassar et al. Page 15

Remote Sens (Basel). Author manuscript; available in PMC 2022 August 01.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



performance assessment for each energy flux term is shown in Table 4. Surface fluxes were 

estimated from the sUAS based on the TSEB model, averaged over the EC footprint, and 

then compared against the measured fluxes. As shown in Figure 7, the estimated fluxes 

derived from the TSEB model generally align along the 1:1 line at the different vineyard 

sites, indicating good agreement between the modeled and measured fluxes. Net radiation 

(Rn) demonstrates a close agreement with the in situ measurement, as indicated by lower 

RMSE, MAE, and MAPE values, and a high NSE value. The MAE and MAPE for Rn 

estimates at the different vineyard sites were less than 40 W/m2 and 10%, respectively, 

while the RMSE ranged between 26 W/m2 and 43 W/m2. The NSE yielded high values 

at the Sierra Loma and Ripperdan 760 sites, accounting for more than 0.85; however, at 

the Ripperdan 720 and Barrelli vineyards, the values decreased to less than 0.2 and 0.6, 

respectively. The results for H agreed well with the EC observations at the Sierra Loma and 

Ripperdan sites, with the MAE and MAPE values less than 43 W/m2 and 28%, respectively, 

while the RMSE values were less than 55 W/m2. However, at the Barrelli vineyard, the 

RMSE and MAE increased to 62 W/m2 and 46 W/m2, respectively, while the MAPE value 

was 22%. However, this site had only 2 samples to compute the difference statistics, making 

it difficult to reach any conclusions concerning the model performance in relation to the 

other sites. The results for LE indicate a slight increase in the RMSE compared to the 

H, varying between 51 W/m2 and 58 W/m2 at the Sierra Loma and Ripperdan vineyards. 

However, the Barrelli site results indicate that the RMSE of the LE was less than the 

H. Overall, the higher values of the RMSE obtained for the LE are attributed mainly to 

the TSEB method for calculating the LE, which is solved as the residual component of 

the surface energy balance, LE = Rn-H-G. Therefore, the uncertainties associated with the 

calculation of energy fluxes (Rn, H, and G) within the TSEB method can adversely affect 

the estimation of the LE. Another potential uncertainty could be related to the no use of flux 

closure in the eddy covariance (EC) data. According to previous studies (e.g., Neale et al. 

2012) [68], heat fluxes (H and LE) are acceptable when the RMSE ranged between 20 W/m2 

and 60 W/m2. This implies that the results of the H and LE obtained from the TSEB model 

across different vineyards were within an acceptable range and similar to prior studies [50]. 

The results for G indicate poor performance across the different vineyard sites, except for 

Ripperdan 720 vineyard, which had a MAPE of less than 25%. Part of these discrepancies 

between the modeled and observed G can be attributed to the assumption used in this study 

for calculating G, which is that as a portion of the soil net radiation (Rns), G = 0.35 Rns. 

This value was obtained based on a proposed method by Nieto et al. [49], which takes 

into consideration the diurnal variation of the G/Rns and found high scattering/uncertainty 

in the relationship, with an average value of 0.35 near solar noon. In this study, most of 

the flights were between 1000 and 1500, and at these time intervals around solar noon, the 

G/Rns fraction remained rather constant at ~0.35 (see Figure 4 in Nieto et al. (2019)) [49]. 

Therefore, for the sake of simplicity, and considering that the sinusoidal approach might be 

site-dependent, the constant fraction at 0.35 was used. This value is also broadly applied 

over a wide range of crops and environments. Meanwhile, vineyards are characterized by 

strong heterogeneity, which causes spatial and temporal variability in G values. According 

to Kustas et al. [69], the simple remote sensing methods for estimating G as a portion of Rn 

have significant uncertainty due to temporal variability in the G/Rn ratio.
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3.4. Assessment of the Daily ET Extrapolation Approaches Using TSEB sUAS Results

The accuracy of the daily high-resolution ET from the TSEB depends largely on an accurate 

instantaneous ET estimate at the time of acquisition of the sUAS imagery, as well as the 

reliability of the approach used to scale up the TSEB-derived ET to a daily value. The 

five daily ET methods (EF, Rs, Rn/Rs, GA, and Sine) were applied using the modeled 

energy fluxes derived from the TSEB and compared against the EC-derived daily value, 

ETd, calculated by integrating the daytime LE fluxes measured by EC towers. Table 5 lists 

the goodness-of-fit statistics between the modeled daily ET using sUAS data sets and the 

ground-based EC daily measurements at two time windows during the day: 1030–1330 and 

1430–1630. Figure 8 shows the relationship between the modeled and measured fluxes. 

Overall, the results indicate that the modeled ETd values have better agreement across 

different upscaling methods using the time window of 1030–1330 PST, while a significant 

deterioration was observed in the performance of all methods using the 1430–1630 period 

for upscaling. The RMSE and MAPE statistics yielded values greater than 1.2 mm/day and 

25%, respectively, in the 1430–1630 time window; however, these values decreased to less 

than 1 mm/day and 20% across different methods using the TSEB output in the 1030–1330 

timeframe, with one exception. In the case of the Sine approach, the RMSE and MAPE 
yielded values of 1.32 mm/day and 26%, respectively. These findings align with the results 

obtained when comparing different ETd methods using measurements from the EC tower 

(see Section 3.2), where RMSE and MAPE yielded values greater than 0.5 mm/day and 

14% in the time window 1430–1630. However, using the time window of 1030–1330, the 

values of RMSE and MAPE decreased to less than 0.7 mm/day and 23%, respectively. The 

larger RMSE and MAPE values obtained in the sUAS ETd compared to the EC ETd are 

due to the bias in the TSEB-derived ET compared to the EC measurements. These results 

are also supported by previous studies conducted by Jackson et al. [30] and Colaizzi et al. 

[28], where scaling instantaneous ET to daily values showed better agreement when the 

measurement was taken within about 1–2 h of solar noon.

Although the results indicate that three (GA, EF, and Rs) out of the five methods for daily 

ET upscaling agree reasonably well with the ground-based measurements, the Rs technique 

yielded better agreement at all three sites (Sierra Loma, Ripperdan 720, and Barrelli). This 

approach generated a robust ETd when a single remote sensing-based ET estimate was 

taken within 1–2 h of solar noon and provided a close agreement with the ground truth 

ET measurement. This result also aligns with the EC ETd analysis, which indicates that the 

Rs approach has better statistical performance (see Table 3). Using the Rs approach for all 

vineyards, the RMSE values were 0.45 mm/day, and the MAPE was 10%, while the R2 was 

0.88 for the time window of 1030–1330 (see Table 5, All Vineyards section).

These results agree with a previous study conducted by Wandera et al. [41], which showed 

that the Rs-based approach was better for upscaling compared with the EF method. That 

study was carried out over 41 FLUXNET validation sites for two different times of day, 

including 1100 and 1330. Furthermore, the found results are also supported by Cammalleri 

et al. [29], when comparing different daily extrapolation methods. Cammalleri et al. [29] 

found that the incoming solar radiation (Rs) was the most robust method with the least error 

when using EC data collected at different flux tower sites within the United States and over 
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multiple seasons. The Rs approach for ET upscaling is highly recommended in situations 

where obtaining the daily net radiation is not possible [19] or, in some cases, where the 

modeled Rn is overestimated/underestimated, which will adversely affect the EF ratio. On 

the other hand, the G is more difficult to estimate than the Rs and Rn, which could limit 

the accuracy of the EF method. This might explain why the Rs method has a slightly higher 

agreement than the EF. Comparing the approaches with the lowest performance, the Sine 

method demonstrated the worst performance, with the largest RMSE and MAPE values and 

the lowest NSE value in the time window between 1030 and 1330. However, between 1430 

and 1630, the results indicate that Sine performed slightly better than Rn/Rs. Still, the RMSE 
and MAPE values were high and the NSE and R2 values were very low. The hypothesis is 

that the heterogeneity in the field, due to vine biomass, cover crop, and bare soil, has a larger 

impact on the Rn/Rs and Sine approaches than other methods.

4. Conclusions

The objective of this study was to assess existing methodologies for upscaling ET from 

single time-of-day information to daily estimates over commercial vineyards in California’s 

Central Valley using EC flux measurements and the TSEB model with sUAS imagery. The 

extrapolation approaches included the evaporative fraction (EF), solar radiation (Rs), net 

radiation to incoming solar radiation (Rn/Rs), the Gaussian (GA), and Sine technique. First, 

analysis was performed using flux observations collected at eight EC towers located at three 

vineyards in California’s Central Valley: Sierra Loma, Ripperdan, and Barrelli. These sites 

are characterized by different climates, soils, vine variety, and trellis designs. The analysis 

also considered months of the growing season to coincide with three vine phenological 

stages (April–May (rapid vine growth, bloom/berry establishment), June–August (berry 

development/veraison), and September–October (harvest/post-harvest/vine senescence)) to 

investigate how vine phenology could affect the accuracy of the modeled daily ET due to 

timing of both water uptake and growth.

The EC analysis results indicate that three daily ET approaches (EF, Rs, and GA) out of five 

have a reasonable agreement with the EC-based measurements, with the Rs approach being 

preferred for daytime upscaling of ET across different stages of vine phenology, as it yielded 

the highest accuracy among the tested methods. Moreover, the results demonstrate that 

the methods could perform differently at different vine canopy development and grapevine 

phenology stages and at different time windows during the day. In the time window between 

1030 and 1330, MAPE yielded values of 8% when using the Rs approach in the veraison 

stage, whereas this value increased to 17% between 1430 and 1630 h. In the bloom and 

post-harvest vine stages, the MAPE yielded values of 10% and 11%, respectively, when 

using Rs within the 1030–1330 time window, which then increased to 19% and 23%, 

respectively, between 1430 and 1630.

A similar result was obtained when applying the five ET upscaling methods using 

instantaneous TSEB-derived ET. The results reported that the Rs, out of the other methods, 

has better agreement with the ground measurements to extrapolate the instantaneous ET 
at the time of the sUAS acquisition to daily values, with an RMSE of 0.45 mm/day and 

an MAPE of 10% in the time window between 1030 and 1330 PST. The EF and GA 
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methods performed relatively well, with a MAPE of 10% and 13%, respectively, in the 

same time window. However, between 1430 and 1630, the results indicate a significant 

deterioration in the performance of all methods, with the RMSE and MAPE values greater 

than 1.2 mm/day and 25%, respectively. The range in climate, vine variety, soils, trellis 

designs, and times when sUAS imagery was collected support the general results that the Rs 

extrapolation method can provide reliable daily ET estimates, particularly if the modeled ET 
is extrapolated from imagery collected 1–2 h before/after solar noon.
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Appendix A.: Daily ET Analysis at Sierra Loma Vineyard Near Lodi, 

California

Appendix A.1. Relative Error (Er) at Hourly Scale for EC Measurements

Figure A1. 
Er of daily EC ET (April–May).
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Figure A2. 
Er of daily EC ET (June–August).
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Figure A3. 
Er of daily EC ET (September–October). Note: Red dash line represents a 10% relative error 

(Er).
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Appendix A.2. Daily RMSE Performance Using Hourly EC ET Values

Figure A4. 
Daily RMSE performance using hourly EC ET values.
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Appendix B.: Daily ET Analysis at Ripperdan 760 Vineyard, California

Appendix B.1. Diurnal Variation of Surface Energy Fluxes (Rn, H, LE, and 

G)

Figure A5. 
Diurnal variation of surface energy fluxes (Rn, H, LE, and G).
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Appendix B.2. Hourly ET to Maximum Hourly ET Ratio (ETh/ETh(max)) 

Variation Using EC Measurements

Figure A6. 
Hourly ET-to-maximum hourly ET ratio (ETh/ETh(max)) variation using EC measurements.
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Appendix B.3. Hourly ET-to-Daily ET Ratio (ETh/ETd) variation Using EC 

Measurements

Figure A7. 
Hourly ET to daily ET ratio (ETh/ETd) variation using EC measurements.
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Appendix B.4. Relative Error (Er) at Hourly Scale for EC Measurements

Figure A8. 
Er of daily EC ET (April–May).
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Figure A9. 
Er of daily EC ET (June–August).
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Figure A10. 
Er of daily EC ET (September–October). Note: Red dash line represents a 10% relative error 

(Er).
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Appendix B.5. Daily RMSE Performance Using Hourly EC ET Values

Figure A11. 
Daily RMSE performance using hourly EC ET values.
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Appendix C.: Daily ET Analysis at Ripperdan 720 Vineyard, California

Appendix C.1. Diurnal Variation of Surface Energy Fluxes (Rn, H, LE, and 

G)

Figure A12. 
Diurnal variation of surface energy fluxes (Rn, H, LE, and G).
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Appendix C.2. Hourly ET-to-Maximum Hourly ET Ratio (ETh/ETh(max)) 

Variation Using EC Measurements

Figure A13. 
Hourly ET-to-maximum hourly ET ratio (ETh/ETh(max)) variation using EC measurements.
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Appendix C.3. Hourly ET-to-Daily ET Ratio (ETh/ETd) Variation Using EC 

Measurements

Figure A14. 
Hourly ET-to-daily ET ratio (ETh/ETd) variation using EC measurements.
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Appendix C.4. Relative Error (Er) at Hourly Scale for EC Measurements

Figure A15. 
Er of daily EC ET (April–May).
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Figure A16. 
Er of daily EC ET (June–August).
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Figure A17. 
Er of daily EC ET (September–October). Note: Red dash line represents a 10% relative error 

(Er).
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Appendix C.5. Daily RMSE Performance Using Hourly EC ET Values

Figure A18. 
Daily RMSE performance using hourly EC ET values.
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Appendix D.: Daily ET Analysis at Barrelli Vineyard, California

Appendix D.1. Diurnal Variation of Surface Energy Fluxes (Rn, H, LE, and 

G)

Figure A19. 
Diurnal variation of surface energy fluxes (Rn, H, LE, and G).
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Appendix D.2. Hourly ET-to-Maximum Hourly ET Ratio (ETh/ETh(max)) 

Variation Using EC Measurements

Figure A20. 
Hourly ET-to-maximum hourly ET ratio (ETh/ETh(max)) variation using EC measurements.
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Appendix D.3. Hourly ET-to-Daily ET Ratio (ETh/ETd) Variation Using EC 

Measurements

Figure A21. 
Hourly ET-to-daily ET ratio (ETh/ETd) variation using EC measurements.
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Appendix D.4. Relative Error (Er) at Hourly Scale for EC Measurements

Figure A22. 
Er of daily EC ET (April–May).
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Figure A23. 
Er of daily EC ET (June–August).
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Figure A24. 
Er of daily EC ET (September–October). Note: Red dash line represents a 10% relative error 

(Er).
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Appendix D.5. Daily RMSE Performance Using Hourly EC ET Values

Figure A25. 
Daily RMSE performance using hourly EC ET values.
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Figure 1. 
Schematic representation of the Two-Source Energy Balance (TSEB) model.
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Figure 2. 
Layout of study vineyards in Central Valley, California with estimated typical flux footprint/

source area for the EC towers.
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Figure 3. 
Study methodology for assessing different upscaling daily ET methods in sUAS.
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Figure 4. 
Diurnal variations of energy fluxes at Sierra Loma Sites 1 and 2 for the years 2014 to 2018, 

from the April to October irrigation season. (a) Net radiation (Rn), (b) sensible heat flux (H), 

(c) latent heat flux (LE), (d) soil heat flux (G).
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Figure 5. 
Diurnal variations of LE for each EC included in this study for the years 2014 to 2018, from 

the April to October irrigation season.
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Figure 6. 
An example of the diurnal variations of (a) and ETh/ETh(max) and (b) ETh/ETd at different 

phenological vine stages for Sierra Loma Sites 1 and 2 between 2014 and 2018.
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Figure 7. 
Comparison of instantaneous TSEB sUAS energy fluxes against EC measurements (without 

flux closure). The presented subplots include the available sUAS imagery, as described in 

Table 1.
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Figure 8. 
Comparison between daily ET from TSEB sUAS and EC at two different time windows 

(1030–1330 and 1430–1630).
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Table 1.

Dates and times of AggieAir sUAS flights used in this study.

Site Date Time PST
1

Spectral Bands
2 Satellite’s Overpass

Sierra Loma 9 August 2014 1041 RGBNIR
3 Landsat

Sierra Loma 2 June 2015 1043 RGBNIR Landsat

Sierra Loma 2 June 2015 1407 RGBRE NA

Sierra Loma 11 July 2015 1035 RGBNIR Landsat

Sierra Loma 11 July 2015 1414 RGB NA

Sierra Loma 2 May 2016 1205 REDNIR NA

Sierra Loma 2 May 2016 1504 REDNIR NA

Sierra Loma 3 May 2016 1248 REDNIR NA

Barrelli 8 August 2017 1052 RGBNIR Landsat

Barrelli 9 August 2017 1043 RGBNIR Landsat

Ripperdan 760 24 July 2017 1035 RGBNIR Sentinel 3

Ripperdan 760 25 July 2017 1035 RGBNIR Landsat

Ripperdan 760 25 July 2017 1357 RGBNIR NA

Ripperdan 760 25 July 2017 1634 RGBNIR NA

Ripperdan 760 26 July 2017 1426 RGBNIR NA

Ripperdan 760 5 August 2018 1044 RGBNIR Landsat

Ripperdan 760 5 August 2018 1234 RGBNIR NA

Ripperdan 720 5 August 2018 1044 RGBNIR Landsat

Ripperdan 720 5 August 2018 1234 RGBNIR NA

1
PST: Pacific Standard Time.

2
Spectral Bands explanation: R/RED = red, G = green, B = blue, RE = red edge, NIR = near infrared.

3
All sUAS flights included thermal information.
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Table 2.

Description of EC towers in vineyards that were part of this study.

Vineyard Number of EC 
Towers Elevation (agl) EC Tower Name Latitude

1
Longitude

1 Period of Data 
(Years)

Sierra Loma 2 5
1 38°16′49.76″ −121°7′3.35″ 5

2 38°17′21.62″ −121°7′3.95″ 5

Ripperdan 760 1 3.5 1 36°50′20.52″ −120°12′36.60″ 2

Ripperdan 720 4 3.5

1 36° 50′57.27″ −120°10′26.50″ 1

2 36°50′51.40″ −120°10′26.69″ 1

3 36°50′57.26″ −120° 10′33.83″ 1

4 36°50′51.39″ −120°10′34.02″ 1

Barrelli 1 3.5 1 38°45′4.91″ −122°58′28.77″ 2

1
coordinates are in WGS1984.
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Table 3.

Goodness-of-fit statistics of daily ET extrapolation methods at two different time windows (1030–1330 and 

1430–1630 PST) using only EC tower information in California.

Vine Stage Method

1030–1330 1430–1630

RMSE 
(mm/
day)

MAE 
(mm/
day)

MAPE 
(%) NSE R2

RMSE 
(mm/
day)

MAE 
(mm/
day)

MAPE 
(%) NSE R2

Bloom (April-May)

EF 0.36 0.28 10 0.83 0.85 1.02 0.71 29 −0.75 0.55

R s 0.35 0.26 10 0.85 0.87 0.64 0.50 19 0.31 0.81

R n /R s 1.33 0.82 29 −1.25 0.15 1.49 1.13 43 −2.68 0.06

GA 0.38 0.30 11 0.81 0.87 0.87 0.72 28 −0.26 0.77

Sine 0.56 0.47 18 0.60 0.86 0.50 0.39 15 0.59 0.82

Veraison (June-
August)

EF 0.47 0.32 9 0.81 0.85 0.97 0.70 21 0.07 0.63

R s 0.38 0.29 8 0.88 0.89 0.70 0.57 17 0.51 0.83

R n /R s 1.67 0.90 22 −1.41 0.17 1.78 1.26 35 −2.14 0.08

GA 0.43 0.33 9 0.84 0.87 1.12 0.96 29 −0.23 0.72

Sine 0.65 0.53 14 0.64 0.86 0.63 0.51 15 0.61 0.84

Post-harvest 
(September-

October)

EF 0.28 0.21 13 0.93 0.95 2.53 0.68 55 −6.76 0.10

R s 0.25 0.19 11 0.94 0.95 0.49 0.37 23 0.71 0.92

R n /R s 0.47 0.31 16 0.80 0.88 1.02 0.63 42 −0.27 0.62

GA 0.40 0.31 17 0.86 0.95 0.53 0.41 25 0.66 0.93

Sine 0.77 0.64 36 0.45 0.92 0.31 0.24 16 0.88 0.92

All stages (Season)

EF 0.41 0.29 10 0.91 0.92 1.50 0.70 31 −0.57 0.43

R s 0.34 0.26 9 0.93 0.94 0.64 0.51 19 0.71 0.90

R n /R s 1.38 0.73 22 −0.08 0.37 1.56 1.08 38 −0.71 0.23

GA 0.41 0.32 12 0.90 0.93 0.95 0.77 28 0.37 0.86

Sine 0.67 0.55 21 0.75 0.91 0.54 0.42 15 0.80 0.91

Numbers in bold are the best statistical results for each timeframe and vine stage.
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Table 4.

Goodness-of-fit statistics between the eddy covariance (EC) and the instantaneous TSEB sUAS fluxes at the 

different vineyard sites of this project.

Site Fluxes RMSE (W/m2) MAE (W/m2) MAPE (%) NSE R2

Sierra Loma

R n 43 36 7 0.85 0.90

H 37 31 27 0.61 0.70

LE 51 38 15 0.40 0.40

G 55 50 96 0.08 0.30

Ripperdan 760

R n 36 31 5 0.91 0.96

H 37 27 19 0.86 0.96

LE 58 50 19 0.28 0.52

G 27 20 66 0.11 0.21

Ripperdan 720

R n 35 28 4 0.17 0.53

H 54 42 20 0.73 0.90

LE 52 49 15 0.81 0.94

G 14 14 23 −0.01 0.31

Barrelli

R n 26 23 4 0.58 NA
1

H 62 46 22 −0.92 NA

LE 40 38 26 0.11 NA

G 71 71 196 0.01 NA

All vineyards

R n 39 32 6 0.90 0.90

H 43 34 23 0.80 0.80

LE 52 43 17 0.70 0.80

G 45 36 78 0.20 0.40

1
NA because we had only two sUAS flights.
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Table 5.

Goodness-of-fit statistics comparing multiple daily ET methods at two different time windows (1030–1330 

and 1430–1630).

Sites Method

1030–1330 1430–1630

RMSE 
(mm/
day)

MAE 
(mm/
day)

MAPE 
(%) NSE R2 RMSE 

(mm/day)

MAE 
(mm/
day)

MAPE 
(%) NSE R2

Sierra Loma

EF 0.44 0.32 10 0.57 0.63 1.02 0.89 27 −7 0.00

Rs 0.38 0.32 10 0.67 0.78 0.95 0.72 22 −6 0.00

Rn/Rs 0.95 0.77 23 −0.96 0.67 1.30 1.05 31 −12.08 0.05

GA 0.44 0.39 13 0.58 0.82 1.02 0.79 24 −7.02 0.01

Sine 0.80 0.63 18 −0.41 0.79 1.01 0.76 24 −6.93 0.00

Ripperdan 760

EF 0.39 0.34 8 0.24 0.93 1.85 1.5 36 −33.52 0.55

Rs 0.62 0.55 13 −0.82 0.45 1.65 1.34 33 −26.54 0.69

Rn/Rs 0.73 0.62 14 −3.43 0.70 2.12 1.77 43 −44.70 0.67

GA 0.63 0.61 14 −2.26 0.55 2.39 1.99 48 −56.82 0.28

Sine 1.60 1.34 31 −20.18 0.19 1.83 1.63 38 −33 0.04

Ripperdan 720

EF 0.49 0.44 11 0.80 0.92

No flights

Rs 0.44 0.36 9 0.85 0.93

Rn/Rs 0.83 0.73 16 0.44 0.92

GA 0.59 0.47 11 0.72 0.91

Sine 1.68 1.47 31 −1.26 0.94

Barrelli

EF 0.41 0.41 19 NA NA
1

Rs 0.19 0.19 9 NA NA

Rn/Rs 0.78 0.78 36 NA NA

GA 0.67 0.67 31 NA NA

Sine 0.86 0.86 40 NA NA

All vineyards

EF 0.45 0.37 10 0.81 0.82 1.35 1.1 30 −14.29 0.11

Rs 0.45 0.37 10 0.80 0.88 1.23 0.93 25 −11.65 0.19

Rn/Rs 0.87 0.73 20 0.29 0.82 1.62 1.29 35 −21.06 0.22

GA 0.54 0.47 13 0.71 0.87 1.61 1.19 32 −20.72 0.25

Sine 1.32 1.05 26 −0.68 0.87 1.34 1.05 28 −14.10 0.37

1
NA because we have only two observations. Numbers in bold are the best statistical results for each timeframe and vine stage.
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