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Summary
The importance of rhizomicrobiome in plant development, nutrition acquisition and stress

tolerance is unquestionable. Relevant plant genes corresponding to the above functions also

regulate rhizomicrobiome construction. Deciphering the molecular regulatory network of

plant-microbe interactions could substantially contribute to improving crop yield and quality.

Here, the plant gene-related nutrient uptake, biotic and abiotic stress resistance, which may

influence the composition and function of microbial communities, are discussed in this review.

In turn, the influence of microbes on the expression of functional plant genes, and thereby

plant growth and immunity, is also reviewed. Moreover, we have specifically paid attention to

techniques and methods used to link plant functional genes and rhizomicrobiome. Finally, we

propose to further explore the molecular mechanisms and signalling pathways of microbe-host

gene interactions, which could potentially be used for managing plant health in agricultural

systems.

Introduction

Environment-friendly production of crops is one of the challenges

in agricultural systems to feed growing population (Yashveer

et al., 2014). Increasing evidences indicate that the soil rhizomi-

crobiome benefit plant growth and health and therefore play an

important role in dealing with this challenge (Bai et al., 2022; Goh

et al., 2013; Mueller and Sachs, 2015; Pieterse et al., 2014; Raza

et al., 2021). The host-associated microbiota inhabits inside

various plant tissues and on root surface to access soil nutrients

(Bai et al., 2022). Microbial community structure is largely shaped

by the host plant and external environment (Dastogeer

et al., 2020; Friesen et al., 2011; Raza et al., 2021). When plants

are subjected to biotic or abiotic stresses, they can recruit

beneficial microorganisms to help them resist these stresses by

secreting a range of chemical factors, which is known as the ‘cry

for help’ strategy (Bai et al., 2022; Bakker et al., 2018; Carri�on

et al., 2019; Liu et al., 2020; Liu and Brettell, 2019). To

understand the comprehensive ‘cry for help’ strategy of plants,

it is vital to unravel the molecular mechanisms of microbiome

recruitment in the rhizosphere (Rolfe et al., 2019; Zancarini

et al., 2021).

The functions of the plant genes are crucial for understand the

signalling cascades that control plant development and stress

responses (Depuydt and Vandepoele, 2021). A large number of

genes functions have been identified in the model plant

Arabidopsis thaliana. Frequently, a single gene or several genes

can largely regulate traits such as nutrient uptake, disease

resistance, and resistance to abiotic stresses in plants (Liu

et al., 2009; Wei et al., 2022; Zhao et al., 2021). These genes

were further validated in different crops such as wheat, rice,

maize, soybean and sorghum (Li et al., 2018; Liu et al., 2016;

Maron et al., 2013; Wei et al., 2022; Yokosho et al., 2011). In

recent years, plant functional genes have also been found to play

important role in shaping the rhizomicrobiome (Cordovez

et al., 2019; Zhang et al., 2019). The discoveries of plant-

microbe interaction at the molecular level provide a new direction

for genetic breeding (Kroll et al., 2017; Nerva et al., 2022).

Further research on microbes mutually interacting with the host

genes is expected to cultivate new germplasm resources (Kroll

et al., 2017). Plant functional genes could regulate root pheno-

typic traits and the secretion of root exudates, such as organic

acids and hormones (Kaushal et al., 2021; Wang et al., 2013,

2020; Yu et al., 2021), which have been found to drive microbial

community assembly in rhizosphere (Zhalnina et al., 2018). For

example, the expression of plant organic acid channel protein

genes can promote the production of organic acid, which could

recruit beneficial rhizosphere microorganisms by forming stable

metal chelate complexes and increasing soil pH (Zhang

et al., 2017).

Rhizosphere microorganisms can also confer health advantages

to plants by inducing the expression of plant functional genes

(Berendsen et al., 2018; Liu et al., 2017). It has been proved that

the expression of genes related to nutrient uptake and stress

resistance is affected by structural and functional changes in the

rhizosphere microbiota. These microbes can regulate the expres-

sion of plant functional genes by secreting secondary metabolites,

producing volatile compounds and competing for nutrients,
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thereby directly or indirectly influencing plant growth and

development (Hacquard et al., 2017; Hou et al., 2021; Kwak

et al., 2018; Netzker et al., 2020; Yuan et al., 2018). Thus, there

exists a complex network of interactions between functional plant

genes and rhizomicrobiome and both of them play key roles for

plant survival and growth (Berendsen et al., 2018; Depuydt and

Vandepoele, 2021). However, whether plant genes or rhizobia

have a greater influence on plant development is currently being

debated, which necessitates particular plant-microbe contribution

algorithms. Exploring this relationship will help us to develop crop

varieties with strong adaptability and resistance to various

stresses. So far, such studies are only the tip of the iceberg due

to the complex mechanism of microbe-host gene interaction that

involve multidisciplinary intersections (Rolfe et al., 2019). There-

fore, understanding how plant-microbe communication is estab-

lished requires more experimental exploration using cutting-edge

technologies.

Unprecedented technologies facilitate the investigation on the

link of plant-specific genes to rhizosphere microorganisms (Fadiji

and Babalola, 2020; Kumar et al., 2019; Levy et al., 2018; Liu

et al., 2020; Schaarschmidt et al., 2020; Xu et al., 2018). These

technologies include plant-related CRISPR-Cas, transgenics and

transgenic hairy roots and microbial-related 16S rRNA sequenc-

ing, GeoChip, metagenomics and synthetic communities. Using

the ‘top-down’ and ‘bottom-up’ designed methods and relevant

techniques, great progress has been made in the mechanism of

plant functional gene-microbe interaction (Chi et al., 2018; Ke

et al., 2021; Lawson et al., 2019; Xu et al., 2021b). Here, we

summarized how plant-specific genes regulate rhizomicrobiome,

and in turn how rhizomicrobiome influence the host genes, as

well as the research methods used.

Most microorganisms in nature are unculturable (Kaeberlein

et al., 2002). Yet minute and complicated experimental condi-

tions and media combinations have to be considered in the

culturable ones, greatly obstructing the development of micro-

biomics (van Teeseling and Jogler, 2021; Xing et al., 2017). To

overcome the shortcomings of pure culture, the microbiome

sequencing technology has been developed in recent years (Liu

et al., 2012). It became clear that the microbiome could not be

fully characterized at the genetic and transcriptional levels (Gao

and Chu, 2020). Thus, the development of metaproteomics and

metabolomics is particularly necessary for microbial functional

studies (White et al., 2016). The unprecedented development of

microbiome technologies mentioned above has enabled an in-

depth analysis and understand the composition and function of

host-associated microbiota (Shao et al., 2021).

Plant functional genes regulate rhizosphere
microorganisms

Plant-specific genes influence rhizomicrobiome based on molec-

ular signalling, which is essentially a ‘top-down’ process. Increas-

ing number of studies examine how plant functional genes affect

microbes at the molecular level, such as the structure of

rhizomicrobiome selected by cultivars with the same high nutrient

use efficiency and stress resistance (Chen et al., 2019; Qiao

et al., 2017; Shi et al., 2020). Although some genes explain only a

small part of the total variance in the rhizomicrobiome, the

microbiome is increasingly considered as an important predictor

of plant phenotype (Bai et al., 2022; Ravanbakhsh et al., 2019;

Zancarini et al., 2021). In this section, we will specifically address

rhizomicrobiome that are likely regulated by plant functional

genes regarding nutrient uptake genes, disease and abiotic stress

resistance genes.

Nutrient uptake-related genes affect rhizosphere
microbes

Plant growth and development heavily depend on the availability

of nutrients that the root system can access to, indicating that

plants have to face enormous challenges in extracting nutrients

for cellular activities, and any lack of nutrients may decrease the

productivity (Morgan and Connolly, 2013; Sukumar et al., 2013).

As a result, some plant species have ‘risen to the occasion’ and

attempted to recruit soil microorganisms by regulating nutrient

uptake genes to enhance defence capability against nutrient

deprivation (Millet et al., 2010; Teixeira et al., 2019; Zhang

et al., 2019). The main mechanism of nutrient-uptake-related-

genes regulating rhizosphere microbes is its capability to increase

root surface area, root hairs and lateral roots that are key factors

to alter the rhizosphere microbial community (Figure 1a; Contesto

et al., 2010; Ditengou et al., 2000; Felten et al., 2009; Hirsch

et al., 1997; Yu et al., 2021). For example, the maize (Zea mays)

mutant rootless meristem 1 (rum1) is defective in the initiation of

embryonic seminal roots and postembryonic lateral roots in

primary roots. Rum1 gene is an important checkpoint for auxin-

mediated initiation of lateral and seminal roots in maize, which

may participate in the molecular network of root formation by

regulating auxin transport in primary roots and auxin perception

in primary root pericytes and influencing lateral root formation

(Woll et al., 2005). Recently, it has been shown that the

rhizosphere bacterial diversity along the root development region

of the maize mutant rum1 is significantly reduced compared to

the wild type (Yu et al., 2021). This is because the mutant rum1

lacks lateral roots, limiting water and nutrient acquisition during

early developmental stages. This suggests that root development-

related genes can control the length and number of lateral roots

by mediating a number of keys signalling substances, which in

turn affect the microbial composition in the rhizosphere.

A number of genes related to nutrient uptake and transport

have been identified, such as ammonium nitrogen, nitrate

nitrogen and phosphate root transporters (Wei et al., 2010; Zhu

et al., 2016). For instance, several plasma membrane transporters

involved in NO3
� have been identified in Arabidopsis and other

crops (Hu et al., 2015; Wang et al., 2012). NRT1.1B was found

that largely explain the differences in nitrogen utilization

efficiency between indica and japonica, which are the two main

rice subspecies rice in Asian (Hu et al., 2015). Moreover, NRT1.1

not only transports nitrate but also promotes uptake of the

growth promotion hormone from the rhizosphere, which affects

lateral root development (Krouk et al., 2010; L�eran et al., 2013;

Teng et al., 2019). It has been found that wild-type rice has more

rhizosphere microbes involved in the nitrogen cycle compared to

the NRT1.1B mutant. NRT1.1B is associated with the relative

abundance of root bacteria that harbour key genes in the

ammonification process, and these microbes may catalyse the

formation of ammonium in the rhizosphere environment and

thus affect the acquisition of nitrogen in plants (Zhang

et al., 2019). Another example is that Adenosine triphosphate

binding cassette (ABC) transporter proteins include a large family

have been shown to be involved in membrane transport of

endogenous secondary metabolites in plants (Badri et al., 2008;

Yazaki, 2005). Some of these members in this family are
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important in the secretion of antifungal diterpenes and heavy

metal detoxification (Brunetti et al., 2015; Jasi�nski et al., 2001).

Studies have shown that Arabidopsismutants with damaged ABC

transporter abcg30 (Atpdr2) increase and decrease the secretion

of phenols and sugars, respectively, forming a specific microbial

community capable of resisting or degrading phenolic com-

pounds enriched in abcg30 plant secretions and thus reducing

rhizobacterial diversity (Badri et al., 2009; Cordovez et al., 2019).

Furthermore, karrikin (KAR)/KAR-like Signals (KLs)/D14L-ligand-

responsive genes were proved to promote the production of

strigolactones and flavonoids, which selectively modify the

composition of the rhizomicrobiome (Wang et al., 2020). These

studies suggest that some nutrient uptake and transport-related

genes can influence rhizomicrobiome composition by regulating

root cell transporter protein activity, secreting root exudates (e.g.,

secondary metabolites, organic acids, hormones) and thus

regulating plant nutrient utilization and altering root environ-

mental conditions (e.g., soil pH, O2 partial pressure, carbon

source; Figure 1b; Kaushal et al., 2021; Liu et al., 2022; Wang

et al., 2013, 2020; Wen et al., 2022; Yu et al., 2021). Moreover,

some root secretions can act as signals to initiate rhizosphere

chemical communication recognition processes, thereby influenc-

ing microbial-based crop growth-defence trade-off strategies

(Chen et al., 2020; Lareen et al., 2016; Vives-Peris et al., 2020).

There exist some specific mechanisms in legumes by which

nutrient uptake-related genes (e.g., genes that control nodulation

and thus increase nitrogen uptake) regulate rhizomicrobiome.

This is because symbiotic nitrogen fixation by rhizobia is a

mutually beneficial symbiotic process established between

legumes and rhizobia through the activation of rhizobia-

induced signalling pathways and the expression of functional

genes required for nodule primordium formation (Gao

et al., 2021; Yang et al., 2022). Many important genes, including

nodule initiation (NIN), nodule requirement (ERN1), Nod factor

receptor 5, lotus root histidine kinase 1 and some micro(mi)RNAs,

such asMtmiR169a-MtNFYA1, have been reported to be involved

affect nodulation by regulating nodulation signalling pathways or

mediating secreting of flavonoid and nitrate (affecting legume

rhizobia infection; Combier et al., 2006; Han et al., 2020; Laloum

et al., 2014; Lorite et al., 2018; Tsikou et al., 2018). A recent

study showed that overexpression of miR169c inhibited nodula-

tion via targeting 30-UTR of GmNFYA-C, while it promoted

nodulation when miR169c lost its function (Xu et al., 2021c). In

the rhizosphere of prospective host legumes, rhizobia have a

close cooperative or competitive relationship with soil microor-

ganisms (Han et al., 2020; Lorite et al., 2018). For instance,

exogenous rhizobia can increase the relative abundance of

potentially beneficial microorganisms, thus altering the microbial

Figure 1 Plant functional genes regulate rhizosphere microbial diversity and function. (a) The development of root morphology (e.g., root length, number

of lateral roots) is determined by the relevant plant genes, which usually regulate the synthesis of substances required for root morphology at the genetic

and transcriptional levels. Changes in root structure imply differences in the ability of roots to supply nutrients, which affect the assembly of the rhizosphere

microbial community to some extent; (b) Plant functional genes influence rhizosphere microbial diversity and structure through the control of root exudates

(e.g., phenolics, flavonoids, hormones). (c) The expression of host-specific genes has a regulatory effect on soil enzyme activity, which in turn is closely

related to microorganisms. However, whether plant functional genes can affect microbial diversity, and function by regulating soil enzyme activity remains

to be further demonstrated by relevant studies. In short, plant genes can alter the diversity and assembly of rhizosphere microbes. Nevertheless, during

these alterations of rhizosphere microorganisms, the functions of the original microbial community may be changed with the newly recruited

microorganisms.
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community structure and composition (White et al., 2015; Xu

et al., 2020; Zgadzaj et al., 2016; Zhong et al., 2019). Moreover,

Bacillus cereus group specifically promotes and suppresses the

growth and colonization of Sinorhizobia and Bradyrhizobia,

respectively (Han et al., 2020). Therefore, legumes genes can

also influence the establishment and modification of the rhizomi-

crobiome community by mediating rhizobial colonization and

nodulation.

Overall, these studies suggest that nutrient-related genes can

directly or indirectly influence the structure of rhizosphere

microbial communities by altering root structure morphology,

influencing plant nutrient use efficiency, regulating nodule

colonization, and thus altering the rhizosphere microenviron-

ment. These mechanisms can provide information for molecular

breeding strategies to improve nutrient utilization and thus

productivity in crops.

Disease resistance genes affect rhizosphere microbes

Plant growth in variable environment is threatened by various

biotic stresses such as pathogen, and gradually domesticate the

corresponding resistance mechanisms (Bakker et al., 2018;

Chen et al., 2020; Li et al., 2021; Liu et al., 2020, 2021; Song

et al., 2021). When plants are invaded by pathogens, disease

resistance genes will be activated, which in turn trigger plant-

specific molecular immune recognition systems (Teixeira

et al., 2019). Previous studies have shown that the cell

membrane receptor protein kinase FERONIA (FER) can regulate

microbe-associated molecular patterns (MAMP)-induced reac-

tive oxygen species (ROS) burst and basal ROS levels in roots

through the small G protein (ROP2), which is a positive

regulator of plasma membrane NADPH oxidase (Duan

et al., 2010; Stegmann et al., 2017). After genetic analysis

of different gene mutants, researchers found that ROP2-

mediated basal level ROS regulation was essential for growth

regulation of Pseudomonas interrogans (Bergonci et al., 2014;

Haruta et al., 2014; Li et al., 2016; Wang et al., 2020; Zhu

et al., 2020). Researchers found that the fer-8 mutant reduced

basal levels of ROS in the root system after pathogen invasion

and lacked NADPH oxidase mutants showed elevated rhizo-

sphere Pseudomonas (Song et al., 2021), suggesting that

plants may mediate the plant immune system through the

RALF-FER signalling pathway or affect the release of specific

secretions that increase Pseudomonas populations to resist

pathogen invasion (Figure 1b; Berendsen et al., 2018; Liu

et al., 2017; Rudrappa et al., 2008). As the most represen-

tative plant secondary metabolites, coumarins, benzoxazinoids

and triterpenes play a pivotal role in improving plant disease

resistance (Koprivova and Kopriva, 2022). Recently, it was

found that two Multidrug and Toxic Compound Extrusion

(MATE) transporter proteins (CmMATE1 and ClMATE1) involved

in the transport of their respective cucurbitacins (a triterpenoid

unique to Cucurbitaceae). They further showed that the

transport of cucurbitacin B from melon roots into the soil

regulates the rhizosphere microbiome by selectively enriching

two bacterial genera, Enterobacter and Bacillus, leading to

strong resistance to the soil-borne wilt fungus Fusarium

oxysporum (Zhong et al., 2022; Zhou et al., 2016). Together,

these studies demonstrate that plants’ disease resistance genes

can recruit beneficial microorganisms or alter microbial com-

munity structure by activating the plant immune system or

regulating the synthesis of several key metabolite in plants.

These research efforts pave the way for the use of the

rhizosphere microbiome to improve resistance to soil-borne

diseases.

Abiotic stress resistance genes affect rhizosphere
microbes

In addition to biotic stresses, plant-microbial symbiotic organisms

are also subjected to many abiotic stresses (Zhang et al., 2020;

Zhu, 2016), such as nutrient deficiency (i.e., nitrogen, iron and

phosphorus) and high heavy metal (e.g., aluminium, cadmium

and lead) stresses (Castrillo et al., 2017; Fang et al., 2020; Finkel

et al., 2019; Harbort et al., 2020; L�opez-Arredondo et al., 2014;

Ma, 2007; von Uexk€ull and Mutert, 1995). The Arabidopsis root-

specific R2R3-type MYB transcription factor MYB72 has become

an important component of the induced systemic resistance (ISR)

episode (Van der Ent et al., 2008). In addition to its role in ISR,

MYB72 is also induced in Arabidopsis roots under growth

conditions of iron limitation and distorted iron uptake (Buckhout

et al., 2009; Colangelo and Guerinot, 2004; van de Mortel

et al., 2008). It was strongly demonstrated that the transcription

factor MYB72 and MYB72-controlled b-glucosidase BGLU42 act

key roles in regulating the beneficial rhizobacteria-ISR and iron-

uptake responses, by regulating coumarin exudation to inhibit

soil-borne fungal pathogens and promote the growth of growth-

promoting and ISR-inducing rhizobacteria (Stringlis et al., 2018).

Rhizomicrobiome therefore have become a ‘secret weapon’ for

plants to seize scarce soil iron resources, providing new ideas to

regulate soil iron mobilization and activation, and promoting the

widespread application of the plant functional gene-rhizosphere

microorganism model in crop resistance to abiotic stresses

(Stringlis et al., 2018).

The plant MATE family transports a wide range of substrates

such as organic acids, phytohormones and secondary metabolites

(Magalhaes et al., 2007; Seo et al., 2012). The functions of many

MATE transporter proteins have been illustrated in plants

(Takanashi et al., 2014), including the transport of secondary

metabolites such as alkaloids (Shoji et al., 2009), disease

resistance regulation (Nawrath et al., 2002; Sun et al., 2011),

iron translocation (Durrett et al., 2007; Yokosho et al., 2009) and

Al detoxification (Wu et al., 2014). MATE transporter proteins are

also present and involved in Aluminium (Al) resistance and

tolerance in crops such as rice, maize, soybean and sorghum (Liu

et al., 2016; Maron et al., 2013; Yokosho et al., 2011). When

soybean was exposed to high Al stress, the expression of

GmMATE58 and GmMATE1 genes increased, promoting the

secretion of substances such as malic acid, oxalic acid and

phenolic compounds (Chen and Liao, 2016; Li et al., 2018; Liu

et al., 2016; Zhou et al., 2018), which can recruit beneficial

microorganisms to enhance soybean to resist Al toxicity. In

particular, the recruited microorganisms, such as Burkholderia,

can improve the solubility of phosphorus in the soil and undergo

denitrification, thus improving soybean tolerance to Al toxicity

(Lian et al., 2019). Noteworthy, not only the normal or overex-

pression of genes but also the loss of plant functional gene can

affect the host resistance to various stresses. Our recent research

found that the rice could influence rhizosphere microorganisms

by changing plant metabolites, such as salicin, arbutin, glycolic

acid phosphate, after loss of the function of sst (seedling salt

tolerant) gene and then assist host to resist salt stress (Lian

et al., 2020). These studies illustrated that, like nutrient-related

genes, abiotic stress resistance genes can regulate rhizobia by

inducing systemic stress resistance and regulating specific

metabolites.
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The expression of host-specific genes also has a regulatory

effect on soil enzyme activities (Figure 1c; Chen et al., 2011;

Fließbach et al., 2012). This mainly attributes to that soil enzymes

are mainly derived from exudates of plant root (Guan et al., 1986)

and metabolites of microorganisms (Zimmermann and

Frey, 2002). The amount and functions of microorganisms were

closely related to the activities of soil enzymes (Dur�an et al., 2018;

Velmourougane and Blaise, 2017), including urease, sucrase and

cellulase. The transgenic AFPCHI disease-resistant sugar beet was

found to have increased urease, dehydrogenase, protease,

catalase, pronase, acid and alkaline phosphatase activities

through greenhouse trials (Bezirganoglu and Uysal, 2017). How-

ever, it has been reported that tobacco planted with trans-

antimicrobial protein gene and trans-null plasmid gene had some

inhibitory effects on peroxidase and urease activities in purple soil

at specific periods (Wang et al., 2013). It remains to be further

verified that plant disease resistance genes may affect the

assembly of rhizosphere microorganisms by regulating the activity

of soil enzymes.

Mechanisms of genes regulating the rhizosphere
microbes

According to the description above, plant functional genes

affect rhizomicrobiome mainly by regulating root structure

morphology, plant nutrient use efficiency, rhizobial colonization,

secondary metabolites and hormones, and activating the plant

immune system, which in turn affect the rhizosphere microen-

vironment or directly signal to microorganisms (Egamberdieva

et al., 2017; Eichmann et al., 2021; L�opez-R�aez et al., 2017).

However, these mechanisms often act interactively in plants. For

example, phytohormones can influence root structural morphol-

ogy, plant-dependent defence processes and root exudate

secretion (Eichmann et al., 2021; Fu et al., 2021). Growth

hormone regulates Arabidopsis root development mainly

through the growth hormone synthesis pathway and the polar

transport carrier pathway. Deletion of the growth hormone

synthesis genes rty (rooty) and sur (super root) can lead to

excessive endogenous IAA synthesis, resulting in a high number

of lateral roots (Boerjan et al., 1995). Ethylene promotes

Arabidopsis root hair growth by regulating the activity of

EIN3/EIL1 and RHD6/RSL1 transcriptional complexes (Feng

et al., 2017). Moreover, plant immune system can be divided

into two layers, and hormonal signals are essential for both

layers (Aerts et al., 2021). In the first layer, plants are damaged,

recognize microorganisms/pathogens and release small molecule

damage-associated molecular patterns that trigger immune

signals leading to pattern-triggered immunity (PTI; Dangl

et al., 2013; Erb and Reymond, 2019). Gene expression in PTI

immunity is almost always influenced by interactions between

sectors (Hillmer et al., 2017). In the second layer, pathogens

secrete variable effectors that hinder PTI by inhibiting defence

hormones, and resistant plants recognize the effectors, trigger-

ing effector immunity (ETI; Han and Kahmann, 2019). In ETI, all

divisions can (partially) take over the response if one of them is

inactive (Tsuda et al., 2009). However, in the actual defence

process, there is a complex crosstalk between molecular

pathways of different hormones and this crosstalk is critical

and complex for adjusting plant growth and development and

thus affecting microorganisms (Aerts et al., 2021). Furthermore,

hormones can mediate the secretion of root exudates. It has

been shown that disruption of ET signalling pathways leads to

differences in the composition of root exudates, including

smaller amounts of esculetin, gallic acid, L-fucose, eicosapen-

taenoic acid, and higher amounts of b-aldehyde, and that these

root exudate metabolites can affect the assembly and function

of bacterial taxa (Fu et al., 2021).

Effects of rhizosphere microbes on plant
functional genes

Rhizosphere microorganisms can decompose soil organic matter

into inorganic nutrients for plants and their physiological

metabolic activities can also improve soil quality (Bhatti

et al., 2017; Li et al., 2022; Li and Gong, 2021; Mishra

et al., 2017; Wang et al., 2018). Rhizosphere microorganisms

increase nutrient availability to plants, promote plant develop-

ment and achieve the microbial ecological service function in

farmland ecosystems. However, obtaining genetic varieties with

high nutrient utilization and cross-stress resistance is the funda-

mental way to improve the yield and quality of farmland crops (Ali

et al., 2018; Anwar and Kim, 2020). Therefore, uncovering the

mechanisms of ‘bottom-up’ regulation of plant functional genes

by rhizosphere microbes is of great importance for agricultural

production. In this section, the microbial effects on the expression

of functional genes related to plant growth promotion, flowering,

immune regulation and stress tolerance were reviewed.

Effects of rhizosphere microbes on plant growth and
development genes

For decades, researches on beneficial plant-microbe interactions

have formed a strong molecular framework (Lugtenberg and

Kamilova, 2009; Saleem et al., 2019). Microbes can up- or down-

regulate the genes related to plant nutrient absorption by

immobilizing nitrogen and to secondary metabolites, thus

promoting or inhibiting plant growth (Figure 2). The main

microorganisms associated with nitrogen fixation in the rhizo-

sphere of specific plants include Klebsiella, Paenibacillus and

Azospirillum (Grady et al., 2016; Mehnaz et al., 2007; Ryu

et al., 2020). Wang et al. (2021) pointed out that specific

relationships exist between given host genetics and associated

microbes. This is further supported by the results from synthetic

communities (SynComs) application that can systemically regulate

the transcription of genes involved in multiple facets of growth

and nutrient metabolism, especially auxin responses and nutrient

signalling pathways. The expression of nitrate transporter genes

and nitrate reductase genes were down-regulated in plants

treated with SynComs, which improved the biological fixation of

N2, thereby inhibiting the direct absorption of nitrogen by roots

and related metabolic pathways (Wang et al., 2021). Many

phosphorus starvation (PSR) genes, phosphate transport and

metabolism genes are also activated by SynComs (Wang

et al., 2021; Wu et al., 2013). This indicates that microorganisms

not only contribute to phosphorus release from insoluble forms

but also activate the PSR signalling system, thereby enhancing the

absorption of environmental phosphorus and promoting inter-

tissue phosphorus recycling (Desbrosses and Stougaard, 2011; Li

et al., 2019; Wu et al., 2013; Zhong et al., 2019). Additionally,

GO analysis showed that auxin responsive genes were abundant

among differentially expressed genes affected by SynComs

application (Hinsinger et al., 2011; Wang et al., 2021). Recruited

rhizosphere microbes can produce phytohormones to regulate

plant flowering signalling pathways (Rodriguez et al., 2019). A

current focus is to decipher the link between rhizosphere

microorganisms and plant functional genes on flowering time
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(Figure 2). For one thing, microorganisms can produce IAA from

tryptophan (Trp; Duca et al., 2014; Molina et al., 2018; Patten

et al., 2013; Treesubsuntorn et al., 2018). One of the abundant

rhizosphere microorganisms, Arthrobacter, has been reported to

have the ability to produce IAA, which is beneficial for plant

growth (Li et al., 2018). IAA was the direct driver that down-

regulated the expression of genes involved in flowering, which

delays the flowering time (Lu et al., 2018; Mai et al., 2011). It was

also found that the selectively enriched rhizosphere microorgan-

ism regulated the flowering time by affecting the available

nitrogen content in autoclaved potting-mix soils (Ishioka

et al., 1991; Panke-Buisse et al., 2015). Notably, microbes also

synthesize and emit many volatile organic compounds (VOCs) to

perturb host flowering time (Hung et al., 2013; S�anchez-L�opez

et al., 2016b). VOCs are low molecular weight (<300 Dalton)

molecules that are easily dispersed by air and water due to high

vapour pressure and low boiling point (Bitas et al., 2013; Schmidt

et al., 2016; Schulz and Dickschat, 2007). The appearance of

floral buds in VOCs treated ahk2/4 and ahk3/4 plants occurred 3–
4 days before non-treated Arabidopsis. In contrast, VOCs did not

exert any significant effect on the time of floral bud appearance

in both ahk2/3 and 35S:CKX1 plants (ahk2/4, ahk3/4 and ahk2/3

are CK signalling mutants; 35S:CKX1 plants are CK oxidase/

dehydrogenase1 over-expressing plants). These findings provide

strong evidence that VOCs-promoted early flowering involves

suppression of NO action through the scavenging of NO

molecules by CKs (Riefler et al., 2006; S�anchez-L�opez

et al., 2016a; Werner et al., 2008). Together, microbes synthesize

a multitude of nutrients and hormones, that affect the expression

of plant flowering-related genes, and may directly or indirectly

regulate plant flowering time (De-la-Pe~na and Loyola-

Vargas, 2014).

VOCs released from rhizomicrobiome can also improve multi-

ple functions in ecosystems, such as plant growth and develop-

ment (Guti�errez-Luna et al., 2010; Kanchiswamy et al., 2015;

Ort�ız-Castro et al., 2009; Schulz-Bohm et al., 2018). A variety of

bacteria or fungi have been identified to produce VOCs, such as

Bacillus, Pseudomonas and Serratia spp. (Hassani et al., 2018;

Plyuta et al., 2016; Xie et al., 2020). Sun et al. (2020) found that

treatment with F.luteovirens VOCs reduces primary root growth

by aggravating auxin accumulation through the repression of the

abundance of auxin efflux carrier PIN-FORMED 2 (PIN2) protein,

whereas it increases the lateral root number of A. thaliana

seedlings. In addition to modulating root system architecture,

treatment with F. luteovirens VOCs markedly increased above-

ground growth. The transcriptomic and metabolomic analyses

further supported the idea that F. luteovirens VOCs regulate plant

growth and development by inducing up- or down-regulation of

genes related to carbon/nitrogen metabolism and antioxidant

defence (Sun et al., 2020). Overall, these findings suggest that

rhizosphere microbes can regulate plant growth-related gene

expression by mobilizing nutrients, altering plant nutrient use

efficiency and producing hormones such as IAA and volatile

compounds.

Effects of rhizosphere microorganisms on plant
resistance genes

As sessile organisms, plants have to cope with various biotic and

abiotic stress for long-term domestication (Zhu, 2016). In this

process, corresponding resistance genes and mechanisms have

evolved continuously to resist adverse environmental conditions

(Chong et al., 2019; Frantzeskakis et al., 2020). Recently, a

paradigm shift in the life sciences has emerged, in which

microbial communities are viewed as core drivers of tolerance

mechanisms (Cordovez et al., 2019). Beneficial microbes were

recruited to build defence signalling pathways (Figure 2), which

are based on the interaction of plants, pathogenic bacteria and

rhizomicrobiome in response to biotic stress, that is likely a

survival strategy conserved across the plant kingdom (Liu

et al., 2019; Liu and Brettell, 2019). Durum wheat infected by

the fungal pathogen Fusarium pseudograminearum (Fp) leads to

an enrichment of the beneficial bacterium Stenotrophomonas

rhizophila (SR80) in the rhizosphere. As an early warning factor,

the assembled SR80 was able to promote the large-scale

expression of pathogenesis-related (PR) genes involved in the

salicylic acid and jasmonic acid signalling pathways, enhancing

host immunity against crown rot disease (Liu et al., 2016, 2021).

Another case is that VOCs produced by Fusarium culmorum

stimulated the production of flavonoid sodorifen VOCs of

bacterium Serratia plymuthica, which induced the expression of

associated defence genes in Arabidopsis (Raza et al., 2021;

Schmidt et al., 2017).

Under abiotic stresses, the effect of rhizomicrobiome on plant

genes might be more comprehensible. As for low phosphorus

availability, the phosphorous starvation response induced by

microbial invasion can promote the expression of master tran-

scriptional regulator PhR1 to alter orthophosphate (Pi) metabolism

in plants. PHR1 directly activates microbiome-enhanced response

to phosphate limitation while repressing microbially driven plant

immune system. It suggests that microbes have changed the

transcription level of defence genes to enhance the immunity of

plants (Castrillo et al., 2017). Furthermore, rhizomicrobiome may

change more defensive pathways to mitigate abiotic stress.

Inoculation of Arbuscular Mycorrhizal Fungi (AMF) under drought

stress condition has been found to be able to induce the

expression of 1-pyrrolin-5-carboxylic acid synthase (P5CS) gene.

P5CS is a key enzyme involved in the proline synthesis, which can

promote cell water retention, thus improving the ability of plants

to resist osmotic stress (Hu et al., 1992; Ruiz-Lozano et al., 2006).

At the same time, the AMF also enhance plant resistance to

drought stress by regulating 9-cis-epoxycarotenoid dioxygenase

(NCED) gene expression. NCED is an important enzyme in

controlling abscisic acid (ABA) metabolism which catalyses the

oxidative cleavage of epoxy carotenoids into xanthoxins (Chauf-

four et al., 2019; Taylor et al., 2000). As a whole, the evidence

above suggests that microbes can regulate the expression of plant

genes through multiple pathways, such as secreting hormones,

producing VOCs, enhancing the plant immune system, and

building defence signalling pathways, to help the host adapt to

various stresses. These studies shed light on the important role of

plant-associated rhizosphere microbiota for plant functions and

broaden multiple ideas for manipulating host growth through

microbial intervention.

Research methods of linking plant functional
genes to rhizosphere microorganisms

The link of plant functional gene to rhizomicrobiome is compli-

cated. Not only the ‘functional genes-downstream, genes-

metabolite or other signalling substances-microbe’ pathway need

to be considered but also factors such as inter-microbe, environ-

ments and plant residues (Chen et al., 2019; Edwards et al., 2018;

Gao, Han, et al., 2019; Gao, Karlsson, et al., 2019; Geddes

et al., 2019; Pascale et al., 2020; Trivedi et al., 2021; Trubl
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et al., 2018). These signalling substances, such as hormones and

small RNA, are frequently exchanged between the host and the

microorganism, triggering structural and functional changes on

both sides (Huang et al., 2019; Middleton et al., 2021; Yang

et al., 2016). The desired substantive function of microorganisms

leads to healthy plant growth. The new findings suggest that the

ultimate outcome of host health may depend on not only the

exchange of substance between host and microbes but also the

signalling and metabolic interactions among microbiome mem-

bers (Dur�an et al., 2018; Finkel et al., 2019; Harbort et al., 2020;

Xu et al., 2021b). Thus, understanding plant gene-microbe

interactions may require examining these relationships at the

level of host and microbial functional capacity, activity, and

molecular exchange (Xu et al., 2021b). However, a larger reason

for the slow progress in our understanding of the functionality of

plant gene-microbe interactions may lie on our choice of methods

and tools. How to integratively combine host-centric molecular

technologies, such as CRISPR/Cas system (e.g., Cas9 and Cas12a),

gene silencing (e.g., RNA interference) and gene overexpression,

with microbial-centric histological sequencing technologies, such

as amplicon sequencing, shotgun metagenomics, metatranscrip-

tomics and metabolomics, are important to unlock complex

mechanisms of plant gene-microbe interactions (Figure 3; Fitz-

patrick et al., 2020).

Genome-Wide Association Studies (GWAS) well attach phy-

tomics to microbiomics and demonstrate that host genomics does

influence the composition of the microbiome (Trivedi

et al., 2021). GWAS were previously used to study the phyllo-

sphere microbiome with quantitative methods to map micro-

biomes as phenotypes (Horton et al., 2014; Oyserman

et al., 2022; Roman-Reyna et al., 2019; Wallace et al., 2018)

and are increasingly focusing on the rhizosphere microbiomes of

plants such as Arabidopsis, sorghum, barley, maize and tomato

(Bergelson et al., 2019; Escudero-Martinez et al., 2022; Oyserman

et al., 2018, 2022; Wagner et al., 2020). Compared to phyllo-

sphere, the rhizosphere has proven to be the most promising part

for unravelling the genetic power of the host microbiome (Deng

et al., 2021). This may be owing to the high complexity of the

rhizosphere microbiome and its strong colonization ability (Bano

et al., 2021; Rico et al., 2014; Schlechter et al., 2019). GWAS

break down the wall of the tripartite relationship between plant

genotype phenotype-microbiome, thus identifying the link

between plant phenotype and microbiome function (Horton

et al., 2014; Vorholt et al., 2017). Therefore, the abundance and

community structure of the rhizosphere microbiome can be used

to infer the relevant genetic loci and plant genes (Deng

et al., 2021; Escudero-Martinez et al., 2022). The inferred plant

genes can be validated by artificially modified mutants to

elucidate the potential host genetic causes of microbiome

changes (Sch€afer et al., 2022; Wagner et al., 2020). Even if

candidate genes for microbial recruitment are identified, there are

difficulties in reproducing and validating them (Zancarini

Figure 2 Rhizosphere microbes affect the plant functional genes related to growth and development, flowering time and stress resistance. (a) Microbes

improved the biological fixation of N2. Microorganisms alter the content of various material components of the nitrogen cycle by stimulating the nitrogen

cycle genes in the host, which in turn compensates for the material elements that the host is deprived of. In this way, microorganisms promote the nutrient

uptake of the host and enable it to thrive. In addition to perceiving root secretions from plants, microbes themselves are capable of secondary metabolism

to secrete specific substances, such as volatile compounds and hormones. Among them, volatile compounds have been shown to be direct drivers of plant

growth hormone synthesis genes and photosynthesis genes. With the addition of plant growth hormone and photosynthesis, the growth of plants is

affected. (b) Rhizosphere microorganisms directly or indirectly regulate the flowering time of plants. On the one hand, microbes secrete IAA to directly

regulate flowering genes to influence flowering time; on the other hand, microbes indirectly influence flowering time by constraining plant nutrient

requirements and secreting volatile compounds. (c) Under biotic and abiotic stresses, microorganisms influence the expression of defence genes (e.g.,

climate, pathogens, and nutrient deprivation), which in turn activate defence signalling pathways.
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et al., 2021). Conversely, host genotype data can also predict the

composition of microorganisms, which determines whether there

is inter- and intra-species variation in the microbiome in the host

being tested (Deng et al., 2021; Fitzpatrick et al., 2018; Walters

et al., 2018). GWAS of plant microbiome associations promote a

comprehensive understanding of the host molecular mechanisms

of microbiome assembly and lay the foundation for microbiome

characterization to be implemented into breeding programs.

Notably, heritable rhizosphere microbes showed strong overlap in

different host genotypes (Deng et al., 2021). This fraction may be

the few pivotal microorganisms that have stabilized on the

species domestication and temporal evolutionary scales and

subsequently regulate the proliferation of other members of the

community (Brachi et al., 2022). Furthermore, since environmen-

tal conditions are a major component of variability and plant

genotypes can explain only a few microbial variations, GWAS

need to develop more comprehensive models to reveal the effects

of genotype, microbiome, environment and their interactions on

plant phenotypes (Zancarini et al., 2021).

For the microbial sequencing, the widely used technology is still

second-generation sequencing, which has undoubtedly enabled

researchers to gain a broad understanding of the structure of

microbial community (Metzker, 2010; Niedringhaus et al., 2011).

Increasingly, studies are also focusing on the activity and function

of microbes by incorporating metatranscriptomics and macroge-

nomics, gene chips and viral omics, with the potential for more

advanced approaches to be developed later (McDonald

et al., 2022; Wang et al., 2019; Xu et al., 2021a; Zaramela

et al., 2021). Each of the technology mentioned above has its

own advantages and disadvantages (Table 1), and researchers can

choose the appropriate method according to the needs as well as

the funding budget. It is worth noting that the gene impact on

rhizomicrobiome is often accomplished through metabolism or

small molecule signalling substances. Therefore, metabolomics

and the detection of the transfer of small molecule signalling

substances (i.e., miRNAs) becomes particularly important in this

reciprocal process (Middleton et al., 2021; Pang et al., 2021).

Therefore, data integration approaches are essential to unravel

the relationship between plant functional gene and microbes.

Pang et al. (2021) reviewed the statistical approaches developed

for integration of plant metabolites and microbiome data, and

Zancarini et al. (2021) reviewed statistical approaches for

integrating plant omics with microbiome data. It is certain that

rapidly developing multi-omics combinatorial analyses may fur-

ther elucidate mechanisms of interaction between genes and

microbiomes.

A large amount of data is available based on the above

methods to support the linkage between plant genes and

microbial structure and function, but the validations of micro-

bial functions are still lacking. Recently, artificial recombination

has been increasingly used to validate microbial functions

(Dur�an et al., 2018; Zhuang et al., 2021). We believe that the

rapid development of technologies such as the high-throughput

partitioning methods developed by Zhang et al. (2021) and

computer-guided synthesis of artificial colonies could assist to

explore the plant gene and microbe interaction. Specifically,

there was a significant difference in root bacterial community

composition between root diffusion barrier genotypes of

Arabidopsis and wild type after inoculation with artificial

bacterial communities (Salas-Gonz�alez et al., 2021). These

results suggest that the endothelial diffusion component of

the Arabidopsis root system regulates the conformation of the

microbial community (Zhou et al., 2020). Furthermore, the

synthetic population repressed the transcriptional response to

ABA (cluster C2) by comparing differentially expressed genes in

wild-type plants and mutant myb36-2 roots, leading to the

speculation that the microbiome regulates suberization and

lignification through ABA-dependent pathways (Barberon

et al., 2016; Salas-Gonz�alez et al., 2021). It is clear that

synthetic biology is establishing transboundary links, as well as

establishing molecular links between plant nutrition and

defence (Berendsen et al., 2018; Castrillo et al., 2017; Liu

et al., 2020; Zhou et al., 2012). However, recent developments

in synthetic communities have ignored fundamental issues in

microbiome studies, namely standardization and reproducibility

(Zengler et al., 2019). Little standardization in the culture

systems is used to study complex microbial communities.

Researchers typically use single strains or simple co-cultures,

which are often poor models for complex and metabolically

diverse microbial communities in nature (Ruby, 2008). While

Figure 3 Connecting plant and microbes

relegated technologies. Plant genomic data

obtained from plant tissues and microbial

sequence data obtained by various

microbial sequencing techniques were used

for plant functional gene and rhizosphere

microbial function probes. The integration

of plant gene-centred and rhizosphere

microbial function-centred technologies is

the key to promote the study of plant gene

and rhizosphere microbial interactions.
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these methods can provide a better understanding of the

native microbiome, they lack reproducibility (even within a

single laboratory) in the absence of microbial inoculate that are

stable over time.

The care needs to be taken when using metagenomes to

detect endophytes in leaves, stems and roots, as cross-

contamination of host genes and microbial genes can occur

(Liu et al., 2021). To solve this problem, the host genome needs

to be identified to remove the host gene contamination in

subsequent analyses (Marotz et al., 2018; Song and Xie, 2020).

This has certainly limited much of the research from being

carried out in some crops. In addition, choosing the appropriate

time to sample is a challenge as there is often little or no a priori

knowledge of when host and microbiome responses occur and

how their interactions change as the plant grows (Xiong

et al., 2021). As some of the techniques involved above are

expensive, we therefore recommend that researchers select

multiple sampling time points and use suitable techniques to

explore the dynamic processes of plant gene and microbial

interactions in focal periods using a multi-omics approach. In

addition, as soil type strongly influences microorganisms (Bai

et al., 2017; Girvan et al., 2003; Pershina et al., 2018), we

suggest that experiments should be verified in different soil

types, so as to find general patterns of gene regulation of

microorganisms.

Summary and outlook

Microbial communities with manipulated plant functional gene

expression have great potential for bioengineering, agricultural

and environmental remediation. There is clear evidence that

functional plant genes and rhizomicrobiome can interact with

each other. However, more fundamental studies are needed to

decrypt the ‘on or off’ of functional genes in plant-microbe

communication. There is no shortage of emerging technologies

and methodological approaches that can be used to further

explore the molecular mechanisms and signalling pathways of

microbe-host gene interactions. However, it is still a long way

to construct a complete network of plant functional genes and

rhizosphere microbes, with a plethora of outstanding questions:

(i) How to find plant genes that can regulate rhizomicrobiome

on a large scale? GWAS may be a very good approach,

considering that GWAS could be used to identify specific gene-

regulated microorganisms; (ii) To what extent and how long

can plant genes play a role in shaping the rhizospheric

microbiota and its associated functions? Conversely, microor-

ganisms to specific genes? (iii) Are there other signals, such as

Table 1 Commonly used technologies on plant functional gene and microbiome sequencing technologies

Techniques Advantages Disadvantages References

Gene

overexpression

Amplify gene function

Commonly used for resistance to stress

Lethal effects Dalman et al. (2017), Huo et al. (2021),

Prabhu et al. (2017), Shalmani

et al. (2021), Truong et al. (2021),

Yang et al. (2017)

Gene knockout High knockdown efficiency

simple operation

multiple targets can be edited

simultaneously

Severe off-target property

Prone to mutations

Ding et al. (2013), Gao et al. (2021), Irie

et al. (2015)

Gene silencing TGS:Genetic stability

PTGS:High specificity

Reproducibility

easily manipulated

TGS:Mutants may have defects

PTGS:positional effects

transient

incomplete gene knockouts

Ashfaq et al. (2020), Huang

et al. (2021), Matzke and

Mosher (2014), Sigman and

Slotkin (2016), Tan et al. (2020)

Next-generation

sequencing

High throughput

low cost

high efficiency

Low resolution

difficult to detect low-abundance

microorganisms at the genus level

PCR preference

Metzker (2010), Niedringhaus

et al. (2011), Shendure and Ji (2008)

Full-length

sequencing

No PCR amplification required with

ultra-long sequencing read length

high precision

no GC preference

High cost

high error rate (15%–40%)

low throughput

Gui-Feng and Hai-Yan (2020), Singer

et al. (2016), Xu et al. (2019)

Gene chips High density

Rapid

real-time detection

automation

Too much information on hybridization

slow processing and analysis of hybridization

data

specificity and sensitivity of hybridization need to

be improved

preparation of high-quality nucleic acid samples

needs to be improved

Gabig and Wegrzyn (2001), Yang and

Chen (2000)

Metagenomic Allows access to large numbers of

assembled genomes (MAGs)

improves resolution of microbial community

analysis

Allows access to more diverse compositional

and functional data

Expensive and host genes are vulnerable to

contamination

Liu et al. (2021), New and Brito (2020)
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miRNA, for the plant and microbe interaction besides metabo-

lites? This knowledge will enable us to reshape the microbiome

through genetic engineering, or to regulate the functional

genes of plants through microbes, ultimately optimizing plant

growth.
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