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Background Major challenges in large scale genetic association studies include not only the identification of causa-
tive single nucleotide polymorphisms (SNPs), but also accounting for SNP-SNP interactions. This study thus pro-
poses a novel feature engineering approach integrating potentially functional coding haplotypes (pfcHap) with
machine-learning (ML) feature selection to identify biologically meaningful, possibly causative genetic factors, that
take into consideration potential SNP-SNP interactions within the pfcHap, to best predict for methotrexate (MTX)
response in rheumatoid arthritis (RA) patients.

Methods Exome sequencing from 349 RA patients were analysed, of which they were split into training and unseen
test set. Inferred pfcHaps were combined with 30 non-genetic features to undergo ML recursive feature elimination
with cross-validation using the training set. Predictive capacity and robustness of the selected features were assessed
using six popular machine learning models through a train set cross-validation and evaluated in an unseen test set.

Findings Significantly, 100 features (95 pfcHaps, 5 non-genetic factors) were identified to have good predictive per-
formance (AUC: 0.776-0.828; Sensitivity: 0.656-0.813; Specificity: 0.684-0.868) across all six ML models in an
unseen test dataset for the prediction of MTX response in RA patients.

Interpretation Majority of the predictive pfcHap SNPs were predicted to be potentially functional and some of the
genes in which the pfcHap resides in were identified to be associated with previously reported MTX/RA pathways.
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Research in Context

Evidence before this study

Methotrexate (MTX) is a first-line medication for rheu-
matoid arthritis (RA) patients despite low monotherapy
response of only 25 to 45 percent. Identification of non-
responders is necessary to help mitigate disease pro-
gression. However, evaluation of treatment response
often takes three to six months following MTX adminis-
tration. Current research on MTX response in RA are pri-
marily focused on genetic variation in specific genes
involved in MTX-related pathways and RA susceptibility
with few interrogating the entire genome using
genome-wide association studies (GWAS). Nonetheless,
several challenges are associated with current GWAS
including high data dimensionality and the identifica-
tion of causative variations.

Added value of this study

In this study, we employed a cost-effective exome
sequencing approach to interrogate haplotype of single
nucleotide polymorphisms (SNPs) in the coding region
of genes which is deemed as one of the most informa-
tive functional regions of the genome. To reduce the
high dimensionality data, and capitalize on the property
that SNPs within a functional unit (e.g. coding region)
interact to modulate structure/function of the target
protein, we inferred SNP haplotypes in the coding
region and employed machine-learning (ML) to identify
potentially functional coding haplotypes (pfcHaps) that
best predicts MTX response in RA patients. Notably, the
predictive pfcHap SNPs and genes were predicted to be
functional and associated with previously reported
MTX/RA pathways, respectively, highlighting the prom-
ise of this approach.

Implications of all the available evidence

Taken together, we envision that the best predictors
identified will be effective in aiding decision-making for
the treatment of RA patients after further validation in
larger multi-institutional studies. Furthermore, we
believe that our analysis pipeline for handling and inter-
pretation of genetic data will also be applicable in other
contexts beyond MTX response in RA patients.
Introduction
Of the diverse factors influencing drug response, eluci-
dating the genetic basis that underlie differences in
drug response may facilitate the development of tools to
predict drug response even before the drug is adminis-
tered. Although there is growing interest in pharmaco-
genomics, the focus has thus far been primarily on the
identification of common gene variants with large effect
size on known pharmacokinetic, pharmacodynamics
and/or immuno-pharmacogenomics candidate gen-
es.1�3 However, polymorphisms in other genes or rare
gene variants, either alone or in combination, may, also
modulate drug response but have yet to be thoroughly
investigated.3 With the advent of high throughput geno-
mic tools, it is now possible to explore the association of
other genes with drug response using GWAS (Genome
Wide Association Study), exome sequencing or even
WGS (Whole Genome Sequencing).3 Current genomic
approaches which mainly focused on tag-SNPs in
GWAS only represent a very small proportion of all
potentially functional SNPs (pfSNPs) in the human
genome with likelihood to be causative. While WGS
would be the most ideal approach to examine all SNPs
including pfSNPs, exome sequencing is a cost-effective
way to facilitate the interrogation of all pfSNPs in the
most informative functional region of the genome,
namely, the coding region.

Thus far, traditional statistical methods have been
the primary tool to associate genetic and other features
with drug response and/or disease susceptibility. How-
ever, these statistical approaches have some limi-
tations.4�6 This includes the requirement for large
sample sizes, which can potentially be mitigated by
machine learning (ML) which are suited for high
dimensionality complex problems, including the con-
sideration for non-linear interactions between
features.7,8 Nonetheless, a major limitation of biomedi-
cal datasets, even for ML, is that their high dimensional-
ity is often coupled with limited labelled sample size,
which pose a challenge for learning models to predict
individualized response to drugs. ML-based dimension-
ality reduction and feature selection strategies can help
reduce the feature space and select the most informative
features that can accurately predict an outcome. None-
theless, to achieve acceptable accuracy in pharmacoge-
nomics, careful data pre-processing and feature
handcrafting with strong domain knowledge9 is neces-
sary.

Here, we introduce a novel biologically meaningful,
feature pre-processing/engineering strategy focused on
haplotypes of SNPs in the coding regions of genes with
the potential to be functional (pfcHap). By integrating
www.thelancet.com Vol 75 Month January, 2022
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pfcHap together with ML feature elimination and selec-
tion, the strategy identifies a signature of potentially
causative genetic and non-genetic factors that can
robustly predict response to the methotrexate (MTX)
drug in Rheumatoid Arthritis (RA) patients across
diverse ML models.

RA was proposed to be particularly appropriate for
personalized therapy because of the costly therapy due
to prolonged disease duration, low response to the con-
ventional therapy, trial-and-error nature of therapy pre-
scription, and the risk of serious drug-induced side
effects.10 The disability brought on by comorbidities
such as coronary artery disease and hyperlipidaemia11 in
combination with poorly controlled RA adds to the
healthcare costs and further strains the health care sys-
tem.

RA is a chronic inflammatory disease involving pri-
marily the joints with a prevalence of an average of »5
per 1000 people12 that varies across different popula-
tions.13 It imposes huge socioeconomic burden on both
the patient and society as it commonly affects middle-
aged adults at their economic peak.14�22 Inadequate
treatment of RA leads to irreversible joint damage
resulting in potential disabilities that affects the
patient’s quality of life and work productivity, and even
premature death.23�25 Hence, timely and appropriate
control of this condition is critical to minimize the mor-
bidity and mortality.24 Amongst the disease-modifying
antirheumatic drugs (DMARDs) in RA, MTX is the
anchor agent and the recommended first-line choice for
the majority of RA cases.26,27 Approximately 25 to 40
percent of patients improve with MTX monotherapy,
which is further increased to 50 percent for patients
receiving combination therapy with glucocorticoids.28

Patients with inadequate response to MTX monother-
apy are offered alternative biologic and targeted syn-
thetic DMARDs.12 The current state-of-the-art
management of RA is still primarily based on trial-and-
error with recommendations from the European League
Against Rheumatism (EULAR) being to assess the effec-
tiveness of MTX therapy between three to six months of
administering the drug and re-evaluating the treatment
approach of poor responders thereafter.29 This suggests
that rheumatologists only know the effectiveness of
MTX after the patient is already on the drug for 3-6
months. Earlier identification of poor responders of
MTX, preferably even before drug administration, will
enable prompt initiation of alternative treatment which
could help mitigate disease progression.

To date, the study of MTX response in RA have been
focused on the genetic variability in specific genes, often
involving those in MTX-related pathways or RA suscep-
tibility or Genome wide association study (GWAS) inter-
rogating individual SNPs.30 A recent review
summarised 125 SNPs from 34 genes involved with
MTX metabolism, transport or RA progression/patho-
genesis were previously evaluated for associations with
www.thelancet.com Vol 75 Month January, 2022
MTX response.31 However, some of these studies have
reported contradictory results, including conflicting
reports of associations of polymorphism rs1045642
(3435C > T) in the ATP-binding cassette B1 (ABCB1)
transporter gene, with MTX efficacy in two separate Jap-
anese cohort studies.32,33

While there is recent increasing interest to employ
ML for electronic diagnosis, prediction of disease pro-
gression and drug response of RA patients,34 these
methods remain at its infancy, with few studies explor-
ing predictive models to evaluate MTX drug response.34

They mainly focus on specific subsets of SNPs with
non-genetic factors35,36 or other molecular signatures
(e.g. transcription/epigenetic-based signatures).37 Most
of the methotrexate predictive models employed simple
machine learning models such as logistic regression
and mainly focused on electronic medical records, or
juvenile RA. Thus far, more complex ML models with
careful domain-based, biologically meaningful feature
handcrafting have yet to be applied comprehensively to
improve predictive performance of response to RA
drugs.

Previous haplotype-based studies for other diseases
mainly examined haplotype of SNPs within specific
window sizes38 or employed to account for familial cor-
relation for association between rare haplotypes and
complex disease.39 Here, we report a novel, cost-effec-
tive approach through exome sequencing to interrogate
haplotypes of SNPs in the coding regions of genes
(pfcHap) of the entire human genome, since coding
regions, which are translated into proteins represent
one of the most functional regions of genes. As complex
phenotypes are likely due to the interaction of multiple
SNPs in a functional unit (e.g. coding region) rather
than single SNP acting in isolation, and SNPs altering
amino acids in the same protein may interact with each
other to alter the folding or function of protein (e.g.
binding to substrates, etc), this approach of focusing on
pfcHap has the potential for identifying signatures of
pfcHap that not only account for SNP-SNP interactions
but also a higher likelihood of being the causative com-
bination of variants.
Methods
Fig. 1 illustrates our strategy to identify biologically
meaningful features with good prediction performance
for MTX response in RA patients.
Study cohort
This study examined 349 subjects of Chinese ethnicity
receiving MTX treatment for RA. Patients were at least
18 years old and satisfy the 1987 American College of
Rheumatology revised criteria or the 2010 American
College of Rheumatology/European League Against
Rheumatism criteria for RA. This study was endorsed
3



Figure 1. Pipeline employed to identify the predictors of MTX response.
349 patient samples were first divided into training (n=279, 70%) and test (n=70, 30%) sets using a stratified split, such that data-

sets consist of the proportion of responders and non-responders that is representative of the original dataset. The training set was
then further split into eight subsets consisting of different sample size ranging from 30% to 100% of the samples in the training set.
Within each subset, the important features (coding haplotypes or integration of coding haplotypes with non-genetic features) were
selected using recursive feature elimination with cross-validation (RFECV), applied with Random Forest Classifier as the estimator of
choice. The important features that were commonly identified in all eight subsets were then shortlisted and identified as the set of
important features that are predictive of MTX response. The predictive performance of these features was assessed in six different
machine learning models, using cross-validation within the training set and the unseen test dataset.
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by the National Healthcare Group Domain Specific
Review Board (DSRB 2015/00582). All protocols were
carried out according to the Declaration of Helsinki and
informed consent was collected from all patients. All
patients received at least 3 months of MTX treatment at
15 mg per week and >90% of the patients completed
2 years of treatment. MTX drug response is defined as
remission within/at two years post-treatment, which is
determined by evaluation of Disease Activity Score in
28 joints (DAS28). DAS28 is a composite score repre-
sentative of RA activity that includes the number of ten-
der joints and swollen joints, erythrocyte sedimentation
rate, and a global assessment of health.40 Responders to
MTX were classified as patients with DAS28<2.6 fol-
lowing MTX treatment. Various non-genetic features
(including demographic/clinical characteristics and
medication status) of patients were also recorded and
summarised in Table S1.
Exome sequencing, sequence alignment, and single
variant analysis
Enrichment of the exome region of genomic DNA was
performed with the Nimblegen SeqCap EZ kit (Roche)
and with Agilent SureSelect Human All Exon kit (Agi-
lent Technologies, CA). Products were then purified
using AMPure XP system (Beckman Coulter, Beverly,
USA) and quantified using the Agilent high sensitivity
DNA assay on the Agilent Bioanalyzer 2100 system.
The exome sequencing was performed by commercial
providers using the IlluminaHiSeq2000 100PE plat-
form.

Using the BWA-MEM algorithm,41 the sequenced
data was aligned to the hs37d5 human reference
genome. Following, PICARD was used to remove dupli-
cated reads. Each sample was processed separately
using the base recalibration and haplotypecaller mod-
ules of GATK v3. Thereafter, using genotypeGVCF,
www.thelancet.com Vol 75 Month January, 2022
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variants were called on all the samples together.42 As
per GATK best practice for hard filtering,43 SNP filter-
ing was performed with "QD < 2.0 || FS > 60.0 || MQ
< 40.0 || MQRankSum < -12.5 || ReadPosRankSum <

-8.0" as the criteria and indel using "QD < 2.0 || FS >

200.0 || ReadPosRankSum < -20.0".
Training and test data
The total dataset from 349 subjects were split into a
training (80%, N = 279) and an unseen test set (20%,
N = 70) in a stratified manner to maintain the ratio
between MTX responders and non-responders. Splitting
of dataset was performed within the Python (3.8.3) envi-
ronment using the Scikit-learn module.44 To avoid data
leakage, subsequent processing steps were performed
on the training and test datasets separately. The training
dataset (80%) is further processed into 8 subsets of vari-
able sample sizes through stratified random sampling
with replacement.
Genetic/Biological-based feature engineering: Data
processing and defining haplotypes
Biallelic variants with >10% genotype missingness or
deviate from Hardy-Weinberg equilibrium (p-value >

0.001) were removed before downstream analyses.
Thereafter, using the UCSC table browser45 as refer-
ence, remaining variants within coding regions were
further selected using BEDTools Suite.46 These variants
were annotated using ANNOVAR based on the hg19
reference genome.47 Genotype phasing was then per-
formed using the BEAGLE 5.1 software together with
HapMap Phase II recombination maps for each respec-
tive chromosome48,49 Using PLINK v1.07 software,50

all variants within coding regions of a gene were used
for haplotype construction. Only haplotypes with a
minor haplotype frequency > 0.01 were further ana-
lysed. Haplotypes carrying all reference SNPs were
removed. The final total of »39,000 haplotypes were
combined with 30 non-genetic features for downstream
analyses.
Selecting features/predictors that are predictive for
MTX responses in RA patients
Within each training subset, features with near zero var-
iance (i.e., features which are almost constant across all
samples) or display > 95% correlation with other fea-
tures were excluded. To identify a signature of robust
features that are important for prediction, we utilised
recursive feature elimination with cross-validation
(RFECV), as implemented in the Scikit-learn module,44

incorporating a Random Forest classifier as the estima-
tor. The process was performed using a 5-fold cross-vali-
dation until an optimal number of features was
selected. To obtain features with high stability of impor-
tance,51 features that are common across all 8 training
www.thelancet.com Vol 75 Month January, 2022
subsets were selected for further evaluation of their pre-
dictive performance.
Evaluating predictive performances of selected
features
Selected features were evaluated across six ML diverse
algorithms: Neural Networks, Support Vector
Machines, two regression-based algorithms (Logistic
regression and Elastic nets), two tree-based algorithms
(Random Forests and Boosted Trees) for a broad repre-
sentation, as there is currently no consensus as to which
ML algorithm is the most appropriate for genomic data.
Predictions were performed using the Python Scikit-
learn44 module with default parameters. Performance
evaluation of each classifier was conducted using a 5-
fold cross-validation of the training set (n=279), and the
area under the curve (AUC) of a receiver operating char-
acteristic (ROC) curve was generated. Since a smaller
number of features is generally preferable for facilitat-
ing clinical implementation,35 the minimum number of
features that achieve good predictive performance in the
training set was selected as the best predictors. These
predictors were then tested in the unseen test set using
the six ML models, and the AUC of a ROC curve was
generated.
Analysis for potential functions of SNPs within
selected haplotypes
To explore for possible functional mechanisms underly-
ing the differences in MTX responses associated with
selected haplotypes, SNPs within selected haplotypes
were evaluated for their potential or predicted function-
ality, through interrogation of an updated potentially
functional SNP (pfSNP) resource developed by our labo-
ratory52 which has included data from more recently
published prediction databases53 including expression-
associated SNPs or (expression quantitative trait loci
(eQTLs)).54,55 The functionality of SNPs was assessed
for their potential to alter important functional regions
(e.g., transcription factor binding sites, miRNA binding
sites, exonic splice enhancer/silencer (ESE/ESS), etc) or
induce nonsense-mediated decay (NMD). Additionally,
non-synonymous SNPs were also evaluated for their
potential deleterious effects while synonymous SNPs
were identified for possible codon usage bias.52

To further explore the functions of these haplotypes,
pathway enrichment analyses were performed on the
genes corresponding to the most predictive haplotypes
using ConsensusPathDB resource.56
Ethics
This study was endorsed by the National Healthcare
Group Domain Specific Review Board (DSRB 2015/
00582). All protocols were carried out according to the
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Declaration of Helsinki and informed consent was col-
lected from all patients.
Role of funders
The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the
manuscript. Any opinions, findings, or recommenda-
tions expressed in this material are those of the authors
and do not reflect the views of the funders.
Results

Combination of biological and ML approaches reduces
complexity of dataset and identifies a small set of
features predictive for MTX responses
A total of 114,000 SNPs were identified from exome
sequencing of blood DNA. With such high-dimensional
data where the potential predictors far outnumber the
number of samples, the identification of features with
good predictive performance in unseen datasets becomes
very challenging. Here, two consecutive steps were
employed to mitigate this ‘curse of dimensionality’. The
first step was a biologically meaningful, feature handcraft-
ing, serving as a genetic approach of dimensionality reduc-
tion. This involved the derivation of haplotypes from SNPs
in the coding regions of genes (pfcSNPs) as these are func-
tional regions and are more likely to be causative, poten-
tially altering protein structure and/or function. A total of
52,331 pfcHaps were derived from »13,000 genes, which
represented a »54.1% reduction in the number of poten-
tial predictors. The exclusion of pfcHaps that comprises
only reference alleles further reduced the number to
39,160 leading to a »65.6% reduction in potential predic-
tors. The second step utilised ML recursive feature elimi-
nation with cross validation (RFECV) with Random Forest
classifiers. Repeated eight times, RFECV on each training
subset reduced the set of 39,160 pfcHaps, and identified
between 411 to 2602 important pfcHaps, of which 120
were commonly identified in all eight subsets and used
for training with cross-validation of the six ML models.
These 120 pfcSHaps displayed reasonable cross-validation
AUCs of between 0.794 and 0.901 with sensitivity of
between 0.705 and 0.890 and specificity of 0.667 and
0.900 (Fig. 2).
Integrating coding haplotypes with non-genetic
factors identifies a smaller set of features with similar
predictive capacity for MTX response
To determine whether the integration of pfcHaps with
non-genetic features from medical records can improve
classifier accuracy and/or reduce the number of features
required for accurate prediction, we combined the
39,160 pfcHaps with 30 non-genetic factors (Table S1)
and re-performed the same RFECV with Random Forest
classifier in the eight training subsets. Between 363 to
3612 important features were identified in the eight
training subsets (Fig. 3), of which 100 (95 pcfHaps and
5 non-genetic features) were common across all eight
training subsets. features. The 5 non-genetic features
were platelet count, haemoglobin levels, duration of
morning stiffness, age, and presence of anti-cyclic cit-
rullinated peptides antibody (anti-CCP). These 100 fea-
tures were then trained on the six ML models, and
exhibited improved predictive performance as com-
pared to using haplotypes alone, with cross-validation
AUCs between 0.822 and 0.906, sensitivity between
0.744 and 0.837 and specificity between 0.766 and
0.866 (Fig. 4). In addition to the improvements in pre-
dictive performances, there was a 16.7% reduction in
the number of features, from 120 to 100, compared to
the analyses focused on pfcHaps only. As such, these
100 features were noted to be the best predictors and
were tested in an unseen test set. Significantly, the
robustness of these 100 features to predict MTX in the
unseen dataset was evident from the good predictive
performance with AUCs between 0.775 and 0.828, sen-
sitivity between 0.656 and 0.813 and specificity between
0.684 and 0.868 (Fig. 5) across all six ML models.
Majority of SNPs within selected haplotypes are
associated with changes in gene expression
Of the 100 features determined to be the best predic-
tors, 95 were pfcHaps derived from 142 unique SNPs.
93.0% [132] of these SNPs are eQTL SNPs[54,55]
(Table 1, black box). Approximately 40.8% (58) are non-
synonymous while 59.2%(84) are synonymous SNPs.
Majority(45) of the non-synonymous SNPs are predicted
to be benign, while 5 and 8 SNPs are predicted to be
possibly damaging and deleterious, respectively. 18.3%
(26) of the 142 SNPs are also predicted to potentially
alter transcription factor binding sites while 2.1%(3) can
potentially affect miRNA binding sites and 52.1%(74)
can potentially modify ESE/ESS sites. The SNPs and
their potential functions are summarised in Table 1.
Genes of the 95 predictive haplotypes are involved in a
variety of pathways
To gain mechanistic insights into these 95 predictive
pfcHaps, a pathway enrichment analysis was per-
formed. Genes of these pfcHaps are enriched in diverse
pathways, including Rho activation of PAKs, ROCKs,
and CITs, complement and coagulation cascade, beta-2
cell surface interactions, ion channel transport, tran-
scriptional activation of mitochondrial biogenesis and
rheumatoid arthritis (Figure S1).
Discussion
The current study aims to identify biologically meaning-
ful features that are predictive for MTX response in RA
patients. Functional coding haplotypes (pfcHaps)
www.thelancet.com Vol 75 Month January, 2022



Figure 2. Predictive performance of 120 haplotypes (from Haplotype-only analysis) in the training set using 5-fold cross-validation.
ROC curves of 120 haplotypes using (a) Random Forest, (b) Logistic Regression, (c) Support Vector Machine, (d) Boosted Trees, (e) Elastic Net, and (f) Neural Network.
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Figure 3. Number of important features (coding haplotypes and non-genetic factors) identified in eight training subsets of variable
sample sizes.

Columns represent the different training subsets and each row represent the features. Intensity of red represent the importance
of the feature in each subset (i.e., Greater intensity represent features of greater importance and vice versa); Black represents fea-
tures that are not found to be important in the respective subset.
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present as biologically meaningful predictors and pro-
vide us with an opportunity to better understand the
combined role that multiple SNPs within a single func-
tional unit have in influencing the function of genes to
explain the variation in phenotypes between individuals.
Interrogation at a haplotype level has the potential to
alleviate problems commonly faced in current genome
wide association studies (GWAS) involving large num-
ber of SNPs which probe tag-SNPs that are in linkage
disequilibrium with the causal SNP but are not neces-
sarily the causal SNPs.57 More importantly, by focusing
on haplotypes we have greatly reduced the complexity of
the study and partially mitigated the curse of
dimensionality. As such, this approach of feature hand-
crafting can be viewed as a biologically meaningful,
genetic dimensionality reduction strategy. We supple-
mented the genetic dimensionality reduction strategy
with ML feature elimination/selection using RFECV
with Random Forest classifiers. Random Forest classi-
fiers were chosen for our study due to its robustness to
over-fitting, its computational efficiency, and the provi-
sion of feature importance scores.58 When coupled with
RFECV, Random Forest is able to identify a small sub-
set of features that produces the highest accuracy in the
specific classifier model.58,59 To ensure that the selected
features are stable and robust to differences in sample
size,51,60 RFECV feature selection was performed on
eight random subsets of training data with variable sam-
ple sizes. Only features that are common across all eight
random, variable sized training subsets were selected
for further evaluation of their predictive performance.

Overall, our proposed strategy allowed us to over-
come issues of redundancy and irrelevancy of informa-
tion that are commonly faced when handling high
dimensional data which would have led to reduced effi-
ciency and accuracy of ML models trained.61

Our strategy and the incorporation of non-genetic
factors identified 95 coding haplotypes and 5 non-
genetic factors for training. Notably, the identified fea-
tures displayed good predictive performance classifying
the MTX response of 70 patients whose data had been
placed aside as the unseen test dataset. The overall per-
formance (AUC, sensitivity, specificity) of the unseen
test set suggested that the performance obtained during
www.thelancet.com Vol 75 Month January, 2022



Figure 4. Predictive performance of 95 haplotypes and 5 non-genetic factors in the training set using 5-fold cross-validation.
ROC curves of 95 haplotypes and 5 non-genetic factors using (a) Random Forest, (b) Logistic Regression, (c) Support Vector Machine, (d) Boosted Trees, (e) Elastic Net, and (f) Neural

Network.
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Figure 5. Predictive performance of 95 haplotypes and 5 non-genetic factors in the unseen test set.
ROC curves of 95 haplotypes and 5 non-genetic factors using (a) Random Forest, (b) Logistic Regression, (c) Support Vector Machine, (d) Boosted Trees, (e) Elastic Net, and (f) Neural

Network.
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Table 1 (Continued)
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Table 1 (Continued)
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Table 1: Potential function of 142 SNPs in 95 coding haplotypes which are identified as potential predictors of methotrexate response.
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classifier training was not simply a case of overfitting
and must have had some genuine ability to distinguish
MTX response. Furthermore, the observed robustness
of our features across diverse ML models indicated a
non-dependency of ML strategy for effective classifica-
tion prediction.

The 5 non-genetic predictive features were previously
reported to be linked to RA/MTX. Platelet count, hae-
moglobin value, duration of morning stiffness and pres-
ence of anti-CCP are well-known markers for both the
diagnosis of RA and the evaluation of disease
activity.62�65 Conversely, a patient’s age is also generally
www.thelancet.com Vol 75 Month January, 2022
an underlying factors influencing their response to
drugs due to changes in pharmacokinetics and pharma-
codynamics with age.66

We further investigated the significance of the 142
non-reference SNPs within these 95 predictive coding
haplotypes (Table 1). Curiously, although coding regions
of the genes, which should affect structure and func-
tion, were interrogated, majority (93.0%) of these SNPs
were previously predicted as eQTLs (i.e., associated with
changes in gene expression) suggesting that perhaps
even polymorphisms within coding regions may influ-
ence gene expression. Of note, among the non-
13
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synonymous SNPs, most are predicted to be benign
with only a few predicted to be possibly damaging or
have deleterious effect. Several SNPs were also pre-
dicted to alter consensus binding sites including tran-
scription factor/miRNA binding sites as well as ESE/
ESS. Taken together, these SNPs in the predictive
pfcHap may alter the expression, structure and/or activ-
ity/function of the gene/gene product, either individu-
ally or through interaction with other SNPs within the
same coding haplotype. Overall, the enrichment of
potentially functional SNPs within the predictive
pfcHaps highlights the ability of our approach to select
haplotype of SNPs that are likely to be functional.

Identifying predictive pfcHap as haplotype of SNPs
in functional coding region offers us an opportunity to
examine how multiple SNPs altering amino acids in the
same protein may alter the structure or function (e.g.
binding to substrates) of the protein differently from
isolated SNPs. An example is the predictive pfcHap
STING1_1.0 (HAQ) (Table 1) which comprises 3 non-
synonymous SNPs (rs7380824 (R71H), rs78233829
(G230A), rs11554776 (R293Q)) within the STING1
(Stimulator of Interferon Gene 1) gene that was involved
in both MTX and RA (Figure S2). Specifically, STING1
is implicated in the cGAS-STING pathway that contrib-
utes to inflammatory response in RA,67 and MTX has
been reported to inhibit the activation of STING and
downstream effects.68 Individuals harbouring the HAQ
haplotype of the predictive pfcHap STING1_1.0 were
previously reported to be more susceptible to viral infec-
tion and less responsive to DNA vaccines.69 An incom-
plete STING1 crystal structure70 (4KSY) encompassing
the region of only two of the 3 polymorphisms, namely
G230A (rs78233829) and R293Q (rs11554776) is avail-
able on RCSB PDB71 (www.rcsb.org) and the PyMol72

software (www.pymol.org/pymol) was employed to pre-
dict the potential changes in STING1 protein structure
associated with these 2 aa changes (G230A and
R293Q), either alone or together. As shown in Figure
S3 and Video S1 the G230A polymorphism not only
potentially altered the beta strand at the site of the poly-
morphism (Region i) but it was also predicted to alter
the alpha helix structure at a distant site (»aa263;
Region ii) that is closer to the R293Q (Region ii). As
these 2 polymorphisms reside within the cyclic dinucle-
otide binding region (aa153-aa340) of the STING1 pro-
tein,73 it is thus likely that the AQ haplotype will
modulate the binding to cyclic dinucleotide differently
from either of the single polymorphisms (either G230A
or R293Q). Apart from this, the positive charge contrib-
uted by R293 has additionally been proposed to be
important for disulfide bond formation or related modi-
fications in relation to the neighbouring conserved
C292.69 Thus, the absence of a positive charge from
Q293 may possibly hinder functions or interactions
associated with C292 that are needed for gene function.
Hence, identifying predictive pfcHaps rather than
isolated SNPs provides opportunities to explore interac-
tions between SNPs within the gene (pfcHaps) and
whether these interactions may modulate protein fold-
ing/structure and/or function.

To our knowledge, none of the SNPs within the
pfcHaps were previously reported to be associated with
MTX response in RA patients. Hence, we probed for
previously reported associations with the genes of these
predictive pfcHaps. Using the Python PyMed library,
we performed a batch query interrogating the PubMed
database using names of genes of these predictive hap-
lotypes together with key terms including “Rheumatoid
Arthritis”, “Methotrexate, and “MTX”. Our search iden-
tified several publications where these genes were men-
tioned together with the key terms (Figure S2). Ten
genes have been reported to be associated with either
MTX or RA with 4 of them (CR1, ICAM1, MMP3, MTR)
being mentioned in numerous publications (28 � 63
publications) (Figure S2). Although majority (84) of the
genes of the predictive pfcHaps had not been previously
reported to be associated with RA and/or MTX, our
pathway enrichment analyses (Figure S1) highlighted
the relevance of the predicted pfcHaps to those path-
ways reported to be associated with MTX and/or RA
(summarized in Table S2).

Thus far, studies that examined MTX response in
RA patients mainly focussed on statistical association of
non-genetic factors74 and/or genetic variants employing
either the very popular genome-wide association studies
(GWAS)30 or gene specific association analyses interro-
gating specific genes in the MTX/RA pathways31,32 with
MTX response. This popular classical statistical
approach employs Raw P-Value Thresholding (RPVT),75

where a P-value is assigned to each SNP; and the
inferred confidence of a variant in accounting for the
phenotype in the dataset is assessed by its statistical sig-
nificance via comparison to a predefined threshold that
considers a balance between Type I and Type 2 errors.
However, since statistics merely derive population infer-
ence of a relationship between the data and the outcome
variable from a sample76; and its main purpose is not to
make prediction of a future dataset, statistically signifi-
cant association in one dataset are not necessarily pre-
dictive of the outcome in a future dataset.4�6

Furthermore, as statistical approach evaluates individ-
ual SNP independently and in parallel, it does not con-
sider potential higher order interactions amongst
SNPs77,78 and is less able to identify variants with small
effects because of statistical power constraints due to
excessive multiple testing.75 Additionally, as classical
statistical approach was originally designed for data-
sets with limited dependent and independent varia-
bles, statistical inferences are less precise with large
number of variables as observed in GWAS studies
since the possible associations among the many vari-
ables also increase drastically leading to more com-
plex relationships.76
www.thelancet.com Vol 75 Month January, 2022
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On the other hand, the Machine Learning (ML)
approach employed in this study is particularly suited
for dealing with rich, unwieldy, ‘wide’ data where the
independent variables (e.g. SNPs) exceeds the number
of samples,76 since it ‘makes minimal assumptions
about the data-generating systems’ and is effective even
with data from less well-controlled experimental design
or with ‘complicated nonlinear interactions’.76 Being a
‘statistic-free’79 approach, type 1 error no longer poses
an issue as there is no necessity to determine the popu-
lation distribution or evaluate the P-value / confidence
intervals or test the null hypothesis.79 As such, ML
approach was reported to be more robust in identifying
SNPs with small effects80 or SNP sets with more com-
plex epistasis.81�83 While statistical approach concen-
trates on inference of relationship, ML focuses on
making generalizable predictions using general algo-
rithms to identify patterns in complex data76 based on
its empirical capabilities. It does so by training different
models to achieve the best predictive performance on
an unseen test set which is required to minimize overfit-
ting to the training dataset.

Nonetheless, ML approaches suffer from 2 major
limitations. Similar to the statistical approach, the first
limitation of the ML approach is the ‘curse of
dimensionality’ where there are too many features in
the dataset complicating the training of ML models.84,85

When models are trained with too many variables, they
may not capture all possible combinations leading to
high-variance and overfitting of the training model,
resulting in the model being unable to predict accu-
rately when less frequently occurring combinations in
the test set are fed into the model. Another aspect of the
‘curse of dimensionality’, which greatly affects cluster-
ing or nearest neighbours-based ML methods, is
‘distance concentration’ with convergence of all pair-
wise distances between different samples/points as the
number of variables increases, leading to difficulty in
clustering high dimension data. Several machine learn-
ing tools of feature selection / reduction / extraction
have been developed to mitigate this ‘curse of
dimensionality’. In this study, we included a genetic
approach to dimensionality reduction by focusing on
haplotypes of coding SNPs, which greatly reduced the
complexity from 114,000 SNPs to 52,331 pfcHaps, par-
tially mitigating the curse of dimensionality, before ML
feature selection approach was employed to further
reduce the dimensionality and identify features for
model training. Furthermore, focusing on haplotypes of
coding SNPs (pfcHaps) partially addresses the cluster-
ing issue of ML by clustering SNPs in the coding
regions of genes in a biologically meaningful way. The
second limitation of the ML approach is its low
interpretability where the underlying mechanism is less
clear, since ML sacrifice interpretability for predictive
power, leading to less acceptance of these approaches by
many biomedical scientists.79 In this study, by focusing
www.thelancet.com Vol 75 Month January, 2022
on pfcHaps, the interpretability issue is also partially
addressed, since the coding region of genes represents
one of the most functional regions of genes that is trans-
lated into protein and are thus most likely to be biologi-
cally relevant. In fact, majority of the SNPs within the
predictive pfcHaps were found to be potentially func-
tional (e.g., altering important functional sites including
transcription factor binding, splicing, microRNA, etc
and/or associated with changes in gene expression and/
or predicted to have deleterious effect on the protein)
(Table 1). The interpretability and biological significance
of the features selected through our algorithm is further
highlighted by previous reports of the association of
some of the genes of the predictive pfcHaps with either
MTX and/or RA (Figure S2) as well as the inferred
enriched pathways of some other predicted pfc genes
being associated with MTX/RA (Figure S1, Table S2).

In summary, our approach not only uncovered
known non-genetic factors that were previously associ-
ated with MTX/RA, but also novel genetic features,
namely haplotype of coding SNPs (pfcHap) that can pre-
dict MTX response in RA patients. Some of these pre-
dictive pfcHap resides in genes that were previously
reported to be associated with MTX/RA or in pathways
associated with MTX/RA, highlighting novel connec-
tions that have yet to be investigated, providing us with
an opportunity to gain new mechanistic insights into
the contributing factors that may account for differences
in MTX response in RA patients. Our findings thus
serve to complement currently reported non-genetic
and genetic features that are associated with MTX
response by providing a totally different set of effective
genetic features, pfcHap, that can predict MTX
response. It would be worthwhile to evaluate if these
MTX predictive features that we identified will also be
able to predict response to other small molecule anti-
arthritic drugs and/or biological agents used for the
treatment of RA.

Further optimization and sensitivity analyses of the
current model can be performed to fine tune the model
as well as assess alternative models in the unseen test
dataset. Another worthwhile future direction is to focus
on examining whole genome sequencing to identify
more predictive haplotypes in all functional regions,
including the promoter, intron, 3’ and 5’UTRs, non-cod-
ing regions, etc, to further improve the predictive per-
formance in unseen data, not only in other patients
with similar profiles but also in patients of different pro-
files (e.g., different ethnicity, etc) so that the predictive
features identified can be generalizable. The effective-
ness of other ML feature engineering algorithms that
have been successfully applied in biomedical stud-
ies86�90 could also be explored.

While further validation and refinement of these pre-
dictors will be necessary, we can remain hopeful that
these predictors have the potential to be used in clinical
practice to facilitate decision-making for the treatment
15
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of RA patients. This approach may also be applicable for
the identification of predictive features associated with
response to other drugs and even disease susceptibility
or traits.
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