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Abstract

Limbal stem cells (LSC) account for homeostasis and regeneration of corneal epithelium.

Solar ultraviolet A (UVA) is the major source causing oxidative damage in the ocular sur-

face. Autophagy, a lysosomal degradation mechanism, is essential for physiologic function

and stress defense of stem cells. PAX6, a master transcription factor governing corneal

homeostasis by regulating cell cycle and cell fate of LSC, responds to oxidative stress

by nucleocytoplasmic shuttling. Impaired autophagy and deregulated PAX6 have been

reported in oxidative stress-related ocular surface disorders. We hypothesize a functional

role for autophagy and PAX6 in LSC’s stress response to UVA. Therefore, human LSC colo-

nies were irradiated with a sub-lethal dose of UVA and autophagic activity and intracellular

reactive oxygen species (ROS) were measured by CYTO-ID assay and CM-H2DCFDA

live staining, respectively. Following UVA irradiation, the percentage of autophagic cells sig-

nificantly increased in LSC colonies while intracellular ROS levels remained unaffected.

siRNA-mediated knockdown (KD) of ATG7 abolished UVA-induced autophagy and led to

an excessive accumulation of ROS. Upon UVA exposure, LSCs displayed nuclear-to-cyto-

plasmic translocation of PAX6, while ATG7KD or antioxidant pretreatment largely attenu-

ated the intracellular trafficking event. Immunofluorescence showing downregulation of

proliferative marker PCNA and induction of cell cycle regulator p21 indicates cell cycle arrest

in UVA-irradiated LSC. Abolishing autophagy, adenoviral-assisted restoration of nuclear

PAX6 or antioxidant pretreatment abrogated the UVA-induced cell cycle arrest. Adenoviral

expression of an ectopic PAX gene, PAX7, did not affect UVA cell cycle response. Further-

more, knocking down PAX6 attenuated the cell cycle progression of irradiated ATG7KD

LSC by de-repressing p21 expression. Collectively, our data suggest a crosstalk between

autophagy and PAX6 in regulating cell cycle response of ocular progenitors under UVA

stress. Autophagy deficiency leads to impaired intracellular trafficking of PAX6, perturbed

redox balance and uncurbed cell cycle progression in UVA-stressed LSCs. The coupling of

autophagic machinery and PAX6 in cell cycle regulation represents an attractive therapeutic

target for hyperproliferative ocular surface disorders associated with solar radiation.
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Introduction

The corneal epithelium, an indispensable prerequisite for visual acuity, is postnatally main-

tained and regenerated by a pool of adult stem cells, termed limbal stem cells (LSC) [1–4].

Solar ultraviolet A (UVA) is a major environmental hazard causing acute photodamage in cor-

nea and chronic exposure is often associated with hyperproliferative, yet degenerative ocular

surface diseases, such as pterygium [5–7]. Cells respond to UVA stress by activation of antioxi-

dant signaling pathways, dynamic regulation of cell cycle or apoptosis. To date, key cellular

and molecular signaling events driving LSC’s stress response remain unclear in UVA-related

ocular pathology. Autophagy, a lysosomal degradation system, is essential for maintenance of

stem cell characteristics, including self-renewal, differentiation and quiescence [8–11]. Accu-

mulating evidence suggests that autophagy contributes to cellular defense mechanisms in

somatic stem cells under various types of stress [12,13]. Whether autophagy plays a role in

LSC’s stress response to UVA remains elusive.

Paired-box protein 6 (PAX6) is a master transcription factor guiding corneal morphogene-

sis and homeostasis by regulating cell cycle and fate of tissue progenitor cells [14,15]. Recent

reports suggest that PAX6 is implicated in corneal wound healing [16] and inflammatory

response [17,18], both of which are cellular events with a transient surge of reactive oxygen

species (ROS). Interestingly, Ou et al. demonstrated that PAX6 in corneal epithelial cells

responded to oxidative stress by nuclear-to-cytoplasmic translocation [19]. However, the

molecular mechanism and the physiological/pathological significance of the oxidative stress-

triggered PAX6 relocation remains undetermined. In this study, we sought to characterize

LSC’s cellular response to UVA radiation and explored the potential role(s) of autophagy and

PAX6 in the identified stress response.

Materials and methods

Cell culture of primary human LSC

This research has been approved by the Ethical Committee of the Medical University of

Vienna (IRB approval number MUW 1578/2013). Human corneal tissues procured in MUW

cornea bank not suitable for corneal transplantation were used in the current study. Limbal

epithelial sheets from corneoscleral rims were surgically isolated after overnight incubation in

dispase II (10.7 U/mL, from Bacillus polymyxa, Sigma-Aldrich, St. Louis, MO) at 4˚C and sub-

jected to trypsin digestion for 10 mins at 37˚C. Cells were seeded at densities ranging from 100

to 400 cells/cm2 and cultured up to 12 days. Colonies were expanded in serum- and feeder

cell-free conditions in Keratinocyte-Serum Free Medium (KSFM, Gibco, Thermo Fisher Sci-

entific Inc., Waltham, MA) supplemented with 5 ng/mL human recombinant epidermal

growth factor and 50 μg/mL bovine pituitary extract (both Gibco).

siRNA Transfection

siRNA oligonucleotide duplexes targeting human ATG7 and PAX6 were obtained from

Ambion (Thermo Fisher Scientific Inc.). Sense and antisense sequences were as follows: ATG7
Knockdown (KD) #1 sense 5’-CGCUUAACAUUGGAGUUCAtt-3’ antisense 5’-UGAACUC
CAAUGUUAAGCGag-3’, KD#2 sense 5’-GGAACACUGUAUAACACCAtt-3’ antisense 5’-
UGGUGUUAUACAGUGUUCCaa-3’; PAX6, KD#1 sense 5’-GGCAAUCGGUGGUAGUAAAtt-
3’ antisense 5’-UUUACUACCACCGAUUGCCct-3’, KD#2 sense 5’-CCAACUCCAUCAGU
UCCAAtt-3’ antisense 5’-UUGGAACUGAUGGAGUUGGta-3’.Controls were transfected

with two scrambled siRNAs (SCR) with no complementarity to any known human gene prod-

uct (Silencer Select Negative Controls, Ambion). For a 60-mm petri dish, 12.5 pmol of each
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siRNA and 6.25 μl lipofectamine (RNAiMAX Reagent, Thermo Fisher Scientific Inc.) were

used to transfect colonies on clonal day 8–10 at 70% confluence. Transfection mixture was

removed after overnight incubation and cells were cultured for additional three days in KSFM

prior to UVA irradiation and further experiments. Transfection efficiency was assessed by

quantitative PCR, western blot and immunofluorescene analysis.

PAX6 and PAX7 overexpression

Pre-packaged human adenovirus (dE1/E3 serotype 5, Vector Biolabs, Malvern, PA) expressing

the human PAX6 gene under control of the cytomegalovirus (CMV) promoter (Ad-CMV-

PAX6) was used to ectopically express PAX6 in LSC colonies. To study whether the observed

PAX6 gene functions were ocular tissue-specific, experiments of ectopic PAX7 gene expression

in LSC colonies were performed in parallel. Adenoviral cassettes carrying viral backbones and

an empty CMV promoter (Ad-CMV-null) served as controls. Colonies were infected on clonal

day 10 with an MOI of 50 overnight. Cells were cultured for additional two days in adenovi-

rus-free KSFM for protein expression before experiments were performed.

UVA irradiation

Sellamed 3000 UVA-1 irradiation device (Sellas, Ennepetal, Germany) was used to generate

radiation filtered for the emission of UVA light in the spectral range of 340–440 nm. During

irradiation, cells were transferred to Dulbecco’s Phosphate Buffered Saline (DPBS, Gibco). A

non-lethal dose of UVA titrated to the irradiance of 20 J/cm2 was used throughout all experi-

ments to study PAX6’s regulation on cell cycle progression in UVA-stressed LSCs (S1 Fig).

Anti-oxidant treatment and ROS detection

Cells were treated with an antioxidant mixture (10 μM α-tocopherol and 15 mM N-acetyl-L-

cysteine, both Sigma-Aldrich) for 16 hours prior to UVA irradiation. Cells treated with 20 μM

H2O2 for 6 hours served as positive controls for oxidative stress. ROS levels were visualized

using CM-H2DCFDA (10 μM; Molecular Probes, Eugene, OR) according to the manufactur-

er’s instructions. Live cell imaging was performed by laser scanning confocal microscopy 30

minutes after exposure to UVA. For quantification, mean fluorescence intensity of LSC colo-

nies was determined.

Autophagosome and autophagic flux measurement

Autophagy activity was determined by autophagosome formation and autophagic flux. Autop-

hagosomes were visualized 6 hours after UVA exposure using a cationic amphiphilic tracer

dye to stain autophagosomal vesicles (CYTO-ID, Enzo Life Sciences, Farmingdale, NY). Cells

treated with 10 μM rapamycin (from Streptomyces hygroscopicus, Sigma-Aldrich) for 6 hours

served as positive controls. Autophagic cells were defined as cells displaying more than five

perinuclear puncta [20,21]. A minimum of 250 clonal cells were counted in each sample and

data are presented as percentage of autophagic cells per colony. Basal and UVA-stimulated

autophagic flux were determined by western blot analysis of lipidated form of LC3B (LC3B-II).

LC3B-II expression in the absence or presence of autophagic flux inhibitor Bafilomycin A1

(BafA1, 100 nM from Streptomyces griseus, Sigma-Aldrich) with or without UVA irradiation

was assessed at different time points up to 24 hours [22]. Data were normalized to glyceralde-

hyde-3-phosphate dehydrogenase (GAPDH) expression levels for densitometric analysis.
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Apoptosis detection

Apoptotic cells were quantified 6 hours after UVA irradiation using terminal deoxynucleotidyl

transferase-mediated dUTP nick end labeling assay (TUNEL; Click-iT TUNEL Imaging Assay,

Thermo Fisher Scientific Inc.) according to the manufacturer’s protocol.

Reverse transcription-quantitative polymerase chain reaction (RT-

qPCR)

Total RNA was isolated using RNeasy Plus Mini Kit (Qiagen, Hilden, Germany) and reverse

transcribed using iScript cDNA Synthesis Kit (Bio-Rad Laboratories, Inc., Hercules, CA).

qPCR was performed using TaqMan Gene Expression Assays and Gene Expression Master

Mix (both Applied Biosystems, Foster City, CA). Amplification reactions were carried out

according to a standardized qPCR program of the ABI Prism 7500 Fast Real-Time PCR System

(Perkin Elmer, Applied Biosystems). Data were analyzed using the “delta-delta method” as

suggested by Applied Biosystems and Pfaffl [23]. Results display averaged relative quantifica-

tion (RQ) target gene expression normalized to GAPDH values of at least three biological

repeats.

Immunofluorescence (IF) confocal microscopy

For immunofluorescent staining, cells were fixed in 4% (v/v) formaldehyde and subsequently

immersed in DPBS containing 0.1% (v/v) Triton X-100 for permeabilization. Samples were

blocked using serum-free Protein Block (Dako, Glostrup, Denmark). Antibody diluent (Dako)

was used to dilute primary and secondary antibodies. Mouse and rabbit IgG served as isotype

controls (Vector Laboratories, Burlingame, CA). 4,6-diamidino-2-phenylindole dilactate

(DAPI) and Hoechst 33342 (both Molecular Probes) were used as nuclear counterstains for

fixed and viable cells, respectively. Images were acquired using an inverted laser scanning

confocal microscope (LSM780, Carl Zeiss GmbH, Oberkochen, Germany) equipped with a

405-nm laser diode and an argon ion laser capable of providing an illumination of 488 nm. A

helium-neon laser was used to generate an excitation wavelength of 594 nm. Fluorescent sig-

nals were detected by a 32-channel spectral detection unit (gallium-arsenide-phosphide detec-

tor 416–728 in 8.3 nm steps, Carl Zeiss). Imaging was routinely performed with a 20x air

objective (numeric aperture 0.8) and a 63x oil lens (numeric aperture 1.4) was used to detect

autophagosomal vesicles using ZEN software (2009, Carl Zeiss). Image processing software

ImageJ and Fiji (Laboratory for Optical and Computational Instrumentation, Madison, WI)

were used for image analysis [24,25].

Western blotting (WB)

Proteins of LSC colonies were isolated with a cell extraction buffer (Invitrogen, Carlsbad, CA)

supplemented with protease inhibitor cocktail (Roche, Basel, Switzerland). Forty μg total pro-

tein provided with loading buffer (Bio-Rad Laboratories, Inc.) and 100 mM dithiothreitol

were electrophoretically separated on polyacrylamide gels (Excel-Gel SDS 8–18 Gradient, GE

Healthcare, Little Chalfont, UK). For LC3B-I/II immunoblotting, a precast 4–20% gradient gel

(Criterion TGX, Bio-Rad Laboratories, Inc.) was used. Proteins were transferred to a nitrocel-

lulose membrane (0.2 μm pore size, Invitrogen). Five % (w/v) nonfat dried milk powder and

2% (w/v) bovine serum albumin (BSA, Sigma-Aldrich) in tris buffered saline containing 0.05%

(v/v) Tween20 was used for membrane blocking and as antibody diluent. Peroxidase-conju-

gated secondary antibodies were visualized using Novex ECL (Invitrogen).
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Chemiluminescence was detected using ChemiDoc XRS system with Image Lab software (ver-

sion 5.2.1, Bio-Rad Laboratories, Inc.).

Antibodies

Rabbit polyclonal antibody (Rb pAb) against ATG7 (1:100 for IF, 1:1000 for WB, Abgent, Inc.,

San Diego, CA), rabbit monoclonal antibody (Rb mAb) against GAPDH (1:1000, Cell Signal-

ing Technology, Danvers, MA), Rb pAb against LC3B (GeneTex, Inc., Irvine, CA), mouse

monoclonal antibody (Ms mAb) against p21 (1:50; Santa Cruz Biotechnology, Dallas, TX), Ms

mAb against PCNA (1:100, Cell Signaling Technology), Rb pAb against PAX6 (1:300 for IF,

1:1000 for WB; BioLegend, San Diego, CA), AlexaFluor 488-conjugated Donkey Anti-Rb IgG

(H+L) (1:1000), AlexaFluor 594-conjugated Donkey Anti-Ms IgG (H+L) (1:1000; both Life

Technologies), Peroxidase-conjugated IgG Fraction Monoclonal Ms Anti-Rb IgG, Light Chain

Specific (1:5000; Jackson ImmunoResearch Inc., West Grove, PA).

Statistical analysis

Data represent average of at least 3 independent experiments. For IF data analysis, at least 10

colonies per condition were imaged, unless specified otherwise. Statistical analysis was per-

formed using non-paired Student’s t test, one-way ANOVA, Sidak’s, Dunnett’s and Tukey’s

multiple comparisons (Graphpad Prism 6.05, GraphPad Software, Inc., La Jolla, CA). Data are

shown as means ± s.e.m. with p< .05 considered statistically significant.

Results

Validation of ATG7KD as an in vitro model of autophagy-deficient human

LSC

In order to generate autophagy-deficient human LSC in vitro, colonies during exponential

growth phase (clonal days 8–10) were transfected with two siRNAs targeting human homolog

of autophagy-related gene 7 (ATG7) while controls received scrambled siRNAs not comple-

mentary to any human gene sequence (SCR). The efficiency of siRNA-mediated ATG7KD was

measured at both mRNA and protein levels. Quantitative PCR demonstrated a 65.1 ± 1.6%

reduction of ATG7 mRNA expression in ATG7KD compared to SCR control (p< .05) (Fig

1A). Western blot analysis and immunofluorescence verified KD efficiency of ATG7 in

ATG7KD LSC at protein levels compared to SCR transfected controls (Fig 1B & 1C). To vali-

date the functional abolishment of autophagy in ATG7KD LSCs, cellular activity of autophago-

some formation in response to rapamycin, an autophagy inducer, was studied. Rapamycin

treatment significantly increased the percentage of autophagic cells from basal autophagic lev-

els of 35.7 ± 4.9% to the inductive level of 84.1 ± 4.1% in SCR (p< .01), while no inductive

effect of rapamycin was observed in ATG7KD LSCs (30.2 ± 6.4% in non-treated ATG7KD ver-

sus 52.9 ± 8% in rapamycin-treated ATG7KD, p>.05) (Fig 1D & 1E). Taken together, these

data validate a successful blockage of inductive autophagy by siRNA-mediated KD of ATG7 in

our LSC clonal culture.

UVA activates autophagy by increasing autophagic flux

To test whether autophagy mediates LSC’s ultraviolet stress response, formation of autophago-

somal structures was assessed 6 hours after exposure to 20 J/cm2 UVA by CYTO-ID assay.

UVA radiation induced autophagy in SCR LSCs evidenced by an increase in autophagic cells

from 35.7 ± 4.9% to 59.4 ± 3.3% compared to non-irradiated controls (p< .01) (Fig 2A & 2B).

In contrast, the number of autophagic cells remained at baseline levels after UVA irradiation

PAX6 and autophagy in UVA-stressed LSC

PLOS ONE | https://doi.org/10.1371/journal.pone.0180868 July 10, 2017 5 / 23

https://doi.org/10.1371/journal.pone.0180868


Fig 1. Validation of ATG7KD as an in vitro model of autophagy-deficient human LSCs. (A) Knockdown efficiency of ATG7 verified by qPCR

analysis. (B) Western blot analysis of ATG7 expression in SCR and ATG7KD LSC colonies. (C) ATG7 expression in SCR and ATG7KD LSCs

assessed by immunofluorescence. Scale bar, 50 μm. (D) Representative micrographs of autophagosome staining by CYTO-ID assay.

Arrowheads indicate autophagosomal vesicles, asterisks denote diffuse pattern of autophagic components. Scale bar, 50 μm. (E) Quantification

of autophagosomes in SCR and ATG7KD LSCs in response to rapamycin treatment. *p < .05, **p < .01.

https://doi.org/10.1371/journal.pone.0180868.g001
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in ATG7KD LSC in comparison to untreated counterparts (30.2 ± 6.4% in ATG7KD and

30.8 ± 6.8% after UVA, p>.05). Data indicate that UVA increases autophagosomes in an

ATG7-dependent mechanism.

To determine whether the observed autophagosome increase in irradiated SCR colonies

results from UVA-impaired autophagosomal clearance or UVA-stimulated autophagic flux,

we then employed BafA1, an autophagolysosomal inhibitor, to measure autophagic flux at

homeostatic state and under UVA stress. In non-irradiated LSCs, LC3B-II was found elevated

after 24 hours of BafA1 treatment (p< .05 compared to drug vehicle-treated group), indicative

of a low homeostatic autophagic flux in LSC colonies (Fig 2C & 2D). In contrast, the elevation

of LC3B-II started as early as 6 hours after UVA irradiation and remained elevated at 24 hours

in BafA1-treated LSCs (p< .05 compared to BafA1-treated, non-irradiated group), suggesting

that UVA activates autophagy in LSCs by increasing autophagic flux.

Autophagy regulates intracellular ROS levels post-UVA irradiation

Next, we sought to determine whether autophagy contributes to restore redox balance after

UVA stress. To this end, intracellular ROS were evaluated by CM-H2DCFDA live imaging.

After UVA irradiation, ROS remained at physiological level in SCR as well as antioxidant pre-

treated LSCs compared to non-irradiated controls (10.5 ± 1.3 a.u. after UVA and 15.1 ± 3.5

a.u. with antioxidant pre-treatment compared to 29.5 ± 2.5 a.u. in controls, p>.05) (Fig 3).

In contrast, ATG7KD LSCs showed a significant increase of intracellular ROS upon UVA

Fig 2. Autophagy is activated during LSC’s stress response to UVA. (A) Representative images of autophagosomes in ATG7KD LSCs under

UVA stress. Arrowheads show autophagic cells, asterisks indicate absence of autophagosomes. Scale bar, 50 μm. (B) Quantification of cells with

autophagic activity in response to UVA. (C) Representative western blot image of autophagic flux in UVA-irradiated LSC colonies in absence and

presence of BafA1, with or without UVA. LC3B-I and II were detected by immunoblotting at indicated time points. (D) Densitometric analysis of LC3B-II

expression normalized to GAPDH. n = 3, *p < .05.

https://doi.org/10.1371/journal.pone.0180868.g002
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Fig 3. Autophagy regulates intracellular ROS levels in LSCs under UVA stress. (A) Intracellular ROS determined by

CM-H2DCFDA staining of SCR and ATG7KD LSCs, with or without UVA and antioxidant pretreatment. Scale bar, 100 μm. (B)

Quantification of ROS levels by mean fluorescence intensity. *p < .05, **p < .01.

https://doi.org/10.1371/journal.pone.0180868.g003

PAX6 and autophagy in UVA-stressed LSC

PLOS ONE | https://doi.org/10.1371/journal.pone.0180868 July 10, 2017 8 / 23

https://doi.org/10.1371/journal.pone.0180868.g003
https://doi.org/10.1371/journal.pone.0180868


exposure compared to non-irradiated counterparts (70.1 ± 9 a.u. in ATG7KD and 130.9 ± 25.4

a.u. after UVA p< .05) as well as irradiated, autophagy-competent LSCs (12.5-fold increase,

p< .01). Conversely, treating ATG7KD LSCs with antioxidant mixture 16 hours prior to irra-

diation largely alleviated the accumulation of intracellular ROS in ATG7KD LSCs (19.8 ± 8.7

a.u. versus 130.9 ± 25.4 a.u. in UVA-treated ATG7KD LSC, p< .05). These data suggest a cru-

cial role of autophagy in regulating redox balance in LSC’s stress response to UVA.

Autophagy facilitates nucleocytoplasmic transport of PAX6 in response

to UVA-induced ROS

To determine whether our model is suitable to study PAX6 response to oxidative stress, colo-

nies were challenged with 20 μM H2O2 and subcellular expression of PAX6 was examined by

immunofluorescence. Notably, LSC colonies displayed high levels of nuclear PAX6 expression

on clonal day 12 (70.9 ± 1.5%) (Fig 4A & 4B). H2O2-induced oxidative stress resulted in

nuclear depletion of PAX6 (10.8 ± 2.9% PAX6+ nuclei, p< .01 compared to controls), validat-

ing our in vitro ROS-responsive PAX6 model. Since we found that autophagy balances UVA-

induced oxidative stress, we next asked whether PAX6 was differentially regulated in autop-

hagy-competent and—deficient LSCs confronted with UVA-elicited ROS. To this end, the

subcellular localization of PAX6 was studied in UVA-stressed SCR and ATG7KD LSCs by

immunofluorescence. Interestingly, the percentage of LSCs expressing nuclear PAX6+ was sig-

nificantly decreased in SCR LSC colonies after UVA exposure (8.0 ± 1.6%) compared to non-

irradiated SCR LSCs (22.1 ± 1.8%, p< .01) (Fig 4C & 4D). In contrast, ATG7KD LSCs retained

baseline levels of PAX6+ nuclei after irradiation (35.3 ± 7.5% in ATG7KD versus 33.2 ± 3.1%

after UVA, p>.05). Of note, the reduction of nuclear PAX6+ cells in irradiated SCR LSCs cor-

related with the increase of cells with cytoplasmic PAX6 expression. In addition, antioxidant

pre-treatment abolished the UVA-triggered PAX6 nuclear depletion observed in SCR LSCs

evidenced by 26.6 ± 1.3% of nuclear PAX6+ cells in irradiated SCR LSCs (p< .01 compared to

8.0 ± 1.6% in irradiated LSCs). Collectively, data presented here suggest: (1) Nuclear-to-cyto-

plasmic protein transport, rather than transcriptional repression or acceleration of cytoplasmic

PAX6 protein degradation, is the dominant mechanism by which UVA induces nuclear reduc-

tion of PAX6. (2) The UVA-induced PAX6 nucleocytoplasmic transportation is both ROS-

and autophagy-dependent.

UVA radiation induces cell cycle arrest in an autophagy-dependent,

PAX6-mediated mechanism

Next, we aimed to determine whether nucleocytoplasmic translocation of PAX6 plays a role

in cell cycle response during UVA stress. Therefore, we performed dual immunofluorescent

staining against PAX6 and PCNA, a proliferative marker. Accompanying nuclear export of

PAX6, UVA irradiation led to a significant reduction of PCNA expression in autophagy-com-

petent LSC colonies from 52.8 ± 6.5% to 42.3 ± 4.0% PCNA+ PAX6+ cells (p< .01) (Fig 5),

indicative of cell cycle arrest. Compared to irradiated counterparts, SCR LSCs pretreated with

antioxidants retained proliferative activity and nuclear expression of PAX6 under UVA stress

(32.2 ± 2.8% higher levels of PCNA+ PAX6+ cells compared to irradiated counterparts, p<
.05). The number of PCNA+ PAX6+ cells remained high in ATG7KD LSCs following UVA

irradiation (67.1 ± 12.9% and 76.7 ± 3.3% after UVA, p>.05). Interestingly, cells co-expressing

PCNA and nuclear PAX6 after UVA exposure were significantly lower in SCR cells compared

to ATG7KD LSCs under UVA stress (42.3 ± 4.0% in irradiated SCR and 76.7 ± 3.3% PCNA+

PAX6+ cells in irradiated ATG7KD, p< .01).
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Fig 4. Autophagy mediates nuclear export of PAX6 in response to UVA-elicited oxidative stress. (A)

Representative immunofluorescent images depicting subcellular localization of PAX6 in controls and H2O2-

treated LSCs. Scale bar, 50 μm. (B) Quantification of cells expressing nuclear PAX6 after H2O2 treatment. (C)

Representative micrographs of PAX6 subcellular localization in LSCs exposed to UVA with or without

antioxidant pretreatment. Arrowheads indicate nuclear localization of PAX6, asterisks denote cytoplasmic

distribution of PAX6. Scale bar, 100 μm. (D) Percentage of LSCs expressing nuclear PAX6. *p < .05, **p < .01.

https://doi.org/10.1371/journal.pone.0180868.g004
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To determine whether reduced PCNA levels following UVA exposure results from

nuclear depletion of PAX6, we restored the nuclear expression of PAX6 by adenoviral over-

expression (S2 Fig). Compared to basal proliferation of unirradiated PAX6-expressing LSC

colonies, adenoviral forced PAX6 expression in nuclear compartment clearly sustained the

proliferative activity of LSC under UVA stress. The percentage of cycling PAX6+ PCNA+

Fig 5. Autophagy mediates PCNA expression and PAX6 cyto-localization in UVA-irradiated LSC colonies. (A) Dual immunofluorescent staining

against PCNA and PAX6 in UVA-irradiated LSC colonies with or without adenoviral overexpression of PAX6. Scale bar, 100 μm. (B) Quantification of

PAX6+PCNA+ cells. *p < .05, **p < .01, ***p < .001.

https://doi.org/10.1371/journal.pone.0180868.g005
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cells was significantly lower in UVA-irradiated, Ad-CMV-null vector-infected LSCs

(4.7 ± 1.1%) compared to Ad-CMV-null vector-infected controls (48.6 ± 8.3%, p< .05)

(Fig 5 & S3 Fig). Intriguingly, overexpressing PAX6 abolished the UVA-induced downregu-

lation of cycling cells (31.3 ± 4.8% in UVA-irradiated, Ad-CMV-PAX6 vector-infected LSC

compared to 48.6 ± 8.3% in non-irradiated Ad-CMV-null vector-infected control LSCs,

p>.05). Furthermore, the percentages of cycling PCNA+ PAX6+ cells in irradiated and

non-irradiated Ad-CMV-null vector-infected ATG7KD LSCs were found similar to that in

non-irradiated Ad-CMV-null vector-infected SCR LSCs (55.7 ± 8.4%, 67.1 ± 12.9%, and

48.6 ± 8.3%, p>.05). Lastly, adenoviral forced PAX6 expression in ATG7-KD LSCs did not

correct the aberrant cell cycle progression under UVA stress, as the percentage of PAX6+

PCNA+ cells did not differ between non-irradiated Ad-CMV-null vector-infected

ATG7KD, UVA-irradiated Ad-CMV-null vector-infected ATG7KD and UVA-irradiated

Ad-CMV-PAX6 vector-infected ATG7KD (67.1 ± 12.9%, 55.7 ± 8.4% and 48.9 ± 12.1%,

p>.05).

To determine whether the UVA-induced PCNA downregulation in LSCs is a gene function

unique to ocular tissue-resident PAX6, we ectopically overexpressed PAX7, a PAX family

member normally absent from ocular tissue. qPCR analysis was used to determine PAX7
expression in Ad-CMV-PAX7-infected and control LSC colonies 72 hours after viral transduc-

tion. PAX6 mRNA was found highly expressed in Ad-CMV-null controls and not affected by

adenoviral forced PAX7 overexpression (ΔCt = 2.36 ± 0.36, GAPDH Ct = 23.00 ± 0.34 in Ad-

CMV-null versus ΔCt = 2.66 ± 0.33, GAPDH Ct = 22.41 ± 0.27 in Ad-CMV-PAX7, 40 thermal

cycles, p>.05). In contrast, PAX7 was undetectable in Ad-CMV-null controls, while PAX7
expression was found significantly increased in colonies transfected with Ad-CMV-PAX7

(ΔCt = 0.21 ± 0.17, GAPDH Ct = 22.41 ± 0.27), confirming PAX7 overexpression. To deter-

mine the effect of ectopic PAX7 on cell cycle regulation, PCNA expression was assessed by

immunofluorescence in Ad-CMV-PAX7 LSCs. As expected, the number of PCNA-expressing

cells was found significantly reduced by irradiation in scrambled KD and control vector-trans-

duced LSCs (38.01 ± 3.73% in non-irradiated versus 16.12 ± 3.02% in irradiated SCR, Ad-

CMV-null, p< .01) (Fig 6). In contrast to adenoviral PAX6 restoration of PCNA expression in

UVA-stressed LSCs (Fig 5), PCNA expression was not rescued by adenoviral-forced PAX7

expression in irradiated, nuclear PAX6-depleted LSCs (26.91 ±4.8% PCNA+ cells, p>.05).

Taken together, these results suggest a PAX6-specific mediation on UVA-induced PCNA

downregulation.

To verify autophagy-dependent PAX6’s regulatory effects on LSC’s clonal proliferation,

we knocked down PAX6 by siRNA (97% of KD efficiency, S4 Fig). A significantly lower

percentage of proliferative cells was found in UVA-irradiated SCR LSCs (34.7 ± 4% in non-

irradiated SCR controls versus 7.9 ± 3.3% in UVA-irradiated SCR LSCs, p< .01) (Fig 7).

While the number of PCNA+ cells in ATG7KD LSCs was not reduced by UVA irradiation

(30.6 ± 4.4% in irradiated ATG7KD versus 34.7 ± 4% in non-irradiated ATG7KD, p>.05),

PAX6KD LSCs displayed equally low levels of PCNA+ proliferative cells as irradiated SCR

LSCs (8.85 ± 0.9 PCNA+ cells, p>.05). Importantly, concomitant knockdown of both ATG7

and PAX6 restored the UVA-induced cycle arrest response in irradiated LSCs, as the per-

centage of PCNA+ cells in irradiated ATG7/PAX6 double KD LSCs was reduced to a level

of only 16.2 ± 4.9%, significantly lower than those observed in non-irradiated SCR LSC

(30.6 ± 4.4%, p< .05) and irradiated ATG7KD LSC (30.6 ± 4.4%, p< .05). Taken together,

our data suggest PAX6 functions as a unique molecular intermediate downstream to

ATG7-mediated autophagy to regulate the cell cycle kinetics during LSC’s ultraviolet stress

response.
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Fig 6. PAX7 overexpression in nuclear PAX6-depleted LSCs does not rescue UVA-induced PCNA downregulation. (A)

Representative micrographs of PCNA immunofluorescence in irradiated SCR and ATG7KD colonies with or without adenoviral

overexpression of PAX7. Scale bar, 100 μm. (B) Quantitative analysis of nuclear PCNA expression. *p < .05, **p < .01.

https://doi.org/10.1371/journal.pone.0180868.g006
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UVA-induced, autophagy-mediated nuclear depletion of PAX6 arrests

cell cycle by activating cell cycle inhibitor p21

To further dissect the mechanism by which autophagy induces cell cycle arrest in response to

UVA, we investigated nuclear expression of p21, a negative regulator for cell cycle progression.

Following UVA irradiation, autophagy-competent LSCs upregulated p21 expression from

0.6 ± 0.3% to 43.5 ± 11.6% compared to non-irradiated controls (p< .01) (Fig 8 & S5 Fig).

Forced PAX6 expression abolished the UVA-induced p21 expression in SCR colonies

(0.25 ± 0.2% compared to 43.5 ± 11.6% in irradiated SCR controls, p< .05). In contrast, UVA

Fig 7. PAX6KD attenuates the uncurbed cell cycle response in ATG7KD LSCs following UVA irradiation. (A) Representative

images of PCNA immunofluorescence in ATG7KD, PAX6KD and ATG7/PAX6 KD colonies following UVA irradiation. Scale bar,

100 μm. (B) Quantification of cells expressing PCNA in ATG7KD, PAX6KD or double KD LSCs. *p < .05, **p < .01.

https://doi.org/10.1371/journal.pone.0180868.g007
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Fig 8. Autophagy mediates p21 induction in response to UVA via nuclear export of PAX6. (A) Micrographs of p21 and PAX6 cyto-localization in

irradiated SCR and ATG7KD LSCs with or without PAX6 overexpression. Arrowheads denote PAX6+ p21- nuclei, asterisks indicate cells expressing

nuclear p21 and cytoplasmic PAX6. Scale bar, 50 μm. (B) Quantification of p21+ nuclei. *p < .05, ***p < .001.

https://doi.org/10.1371/journal.pone.0180868.g008
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radiation failed to induce p21 expression in autophagy-deficient LSCs (12.6 ± 5.4% p21+ in

non-irradiated versus 4.2 ± 1.2% after irradiation, p>.05). Moreover, p21 expression was not

induced by UVA irradiation in PAX6-overexpressing ATG7KD colonies (6.5 ± 0.9% p21+

cells) compared to irradiated Ad-CMV-null controls (4.2 ± 1.2% p21+ cells, p>.05).

To attest whether p21 expression is repressed by nuclear PAX6 in an autophagy-dependent

mechanism, we examined p21 expression in UVA-irradiated ATG7KD, PAX6KD, and ATG7/

PAX6 double KD LSCs. While p21 was significantly induced by UVA irradiation in SCR LSCs

(60.3 ± 0.5% p21+ cells in the UVA group versus 3.1 ± 0.5% in non-irradiated controls, p<
.01), p21 induction was not observed in UVA-irradiated ATG7KD (30.1 ± 3.8%) (Fig 9). Nota-

bly, the UVA-induced p21 expression was restored by knocking down PAX6 in ATG7KD

LSCs (41.1 ± 7%). Collectively, these data demonstrate that the autophagy induces cell cycle

arrest in UVA-irradiated LSCs by unlocking PAX6-repressed p21 expression.

Discussion

In current study, we identified autophagy as an UV stress sensor in LSCs. Dual functional

roles for autophagy in cellular stress response were further suggested by alteration of redox

status and cell cycle progression in UVA-irradiated LSC. Activation of autophagy in LSC con-

tributes to restoration of intracellular redox balance and adaptive cell cycle response. We pro-

pose a novel PAX6-p21 molecular mechanism underpinning the autophagy-mediated stress

response (Fig 10).

Autophagosome accumulation has been reported in the UV stress response of epidermal

keratinocytes [21], whether autophagic flux is increased or decreased remains undetermined.

Increased number of autophagosomes in stressed cells may result from elevated autophagic

flux or impaired lysosomal degradation of autophagosomes. Our autophagic flux experiment

suggests the autophagosome accumulation observed in UVA-irradiated LSCs, corneal kerati-

nocyte progenitors, resulted from increased autophagic flux.

Zhao et al. show that autophagy exerts a cytoprotective effect by selective degradation of

UV-oxidized macromolecules [21]. Here, we identified autophagy as an alternative antioxidant

mechanism in LSCs to reduce ROS elicited by UVA (Fig 3). Whether the autophagy-mediated

redox balance contributes to reduce UVA-induced oxidative damage in LSCs requires further

investigation. While it is known that high dose irradiation induces cellular apoptosis, physio-

logical effects of low dose UVA radiation on LSCs remains unclear. Using a non-lethal dose of

UVA irradiation, we found that stressed LSCs employ autophagy as a molecular machinery to

curb cell cycle (Figs 5 & 8). Interestingly, low level of ROS was identified as a key signaling

event in the autophagy-mediated cell cycle response, since antioxidant pretreatment was

found to abrogate the UVA-induced cell cycle arrest. Impairing autophagic machinery by

ATG7KD resulted in excessive ROS accumulation and failure of cell cycle response in UVA-

stressed LSCs. Paradoxically, high level of ROS in autophagy-deficient LSCs failed to induce

cell cycle arrest (Figs 3, 5 & 8). Therefore, ATG7-mediated autophagy is intrinsic to redox bal-

ance and cell cycle response in LSC’s stress response to mitigate UVA-elicited oxidative stress.

PAX6 deregulation and oxidative stress have been identified as early pathogenic events in

various ocular surface diseases [17,26–29]. A direct molecular interaction between PAX6 and

ROS is suggested by rapid nucleocytoplasmic translocation of PAX6 in hydrogen peroxide-

treated corneal cells [19]. Data presented in current study further suggest a functional role

for the ROS-driven PAX6 mobilization in stressed corneal cells, i.e. mediation of cell cycle

response. In our experiment, PAX6 and PCNA were found mostly co-localized in the nuclear

compartment of proliferative LSCs in unstressed conditions (Fig 5). In contrast to the cyto-

static growth effect in differentiated corneal cell [30], nuclear PAX6 at physiological dose in
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Fig 9. PAX6KD restores UVA-induced, p21-mediated cell cycle arrest in ATG7KD LSC. (A) Immunofluorescence of p21 in LSC colonies

with KD of ATG7, PAX6 or both. Scale bar, 100 μm. (B) Quantification of p21-expressing cells in ATG7KD, PAX6KD or ATG7/PAX6 double KD

LSCs. *p < .05, **p < .01.

https://doi.org/10.1371/journal.pone.0180868.g009
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non-irradiated clonal cells might have a stimulatory effect in cell cycling. Following cyto-

plasmic relocation of PAX6, we observed a cell cycle arrest via p21-mediated PCNA downregu-

lation (Figs 8 & 9). PAX6 is known to differentially regulate cell cycle via various mechanisms.

For instance, PAX6 expression has been associated with proliferation and cell cycle progression

of colorectal cancer cells, non-small cell lung carcinoma cells and breast cancer cells [31–33]. A

mechanistic for the PAX6-driven cell cycle progression is recently suggested by a recent work

of Li et al. [34]. In their work, Li and colleagues reported that lentiviral overexpression of

PAX6 in retinoblastoma cells results in downregulation of p21 and impairs the p53-mediated

cell cycle arrest response through reducing p53-p21 molecular interaction. Although the effect

of PAX6 on cell cycle progression observed in their study is in line with ours, the underlying

mechanism for PAX6-driven cellular proliferation might differ. As a mutually exclusive

expression of PAX6 and p21 in the nuclear compartment was observed during LSC’s stress

response in our work (Fig 8), we postulate de-repression of cell cycle inhibitor p21 by nuclear

export of PAX6 as the mechanism for UVA-induced cell cycle arrest. In contrast, PAX6

Fig 10. Model of autophagy-mediated regulation of PAX6 cyto-localization and cell cycle in UVA-stressed LSCs. In autophagy-competent

LSCs, UVA activates autophagy by inducing ROS. In return, autophagic activity stabilizes intracellular ROS at physiological level. Furthermore,

autophagy regulates cell cycle by facilitating cytoplasmic export of nuclear PAX6, which normally represses p21 in PCNA+, proliferative LSCs. In lack

of functional autophagy, UVA induces excess levels of ROS, PAX6 is retained in the nucleus and the p21-mediated cell cycle response is hampered.

https://doi.org/10.1371/journal.pone.0180868.g010
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downregulation was associated with cell cycle progression and proliferation of corneal epithe-

lial cells in PAX6+/- corneal epithelia [35]. Genetic depletion of Pax6 in murine neuroepithe-

lium led to clonal expansion of progenitor pool by downregulating p21 [36]. Li et al. showed

that EGF induced cellular proliferation via PAX6 downregulation [37]. Furthermore, Ouyang

et al. demonstrated that PAX6 overexpression induced cell cycle exit in proliferative corneal

epithelial cells [30]. The differential cell cycle regulation between our study and the others sug-

gest a stress context-dependent PAX6 function.

Recent epidemiological studies suggest associations of solar UV radiation and PAX6 dereg-

ulation in ocular surface diseases [26,38–42]. Our data suggest that PAX6 mediates LSC’s

UVA stress response by regulating cell cycle. Although the functional significance of cell cycle

arrest via nucleocytoplasmic PAX6 relocation in LSC’s stress response remains unclear, we

surmise that pausing cell cycle might contribute to stem cell’s self-repair and autophagic clear-

ance of UV-induced cellular damage. Interestingly, PAX7, a PAX family member expressed in

muscle precursor cells, directs in ovo myogenesis by regulating proliferation of UV-stimulated

myoblasts [43,44]. To attest whether ocular-resident PAX genes, i.e. PAX6, regulate UVA cell

cycle response of LSCs, we expressed PAX7 in nuclear PAX6-depleted LSCs in UVA stress

context. In contrast to adenoviral PAX6 overexpression experiments, forced PAX7 expression

did not affect autophagy-mediated UVA cell cycle response (Fig 6). Based on these findings,

we conclude that the “UVA-autophagy-PAX-cell cycle” axis is specific to PAX6 in ocular stem

cells. While it is surmised that PAX7 cannot replace PAX6 to orchestrate complex ocular tran-

scriptional network, the detailed mechanism for PAX6-specific cell cycle regulation in UVA-

stressed LSCs warrants further studies.

It is known that cells employ master transcription factors, such as p53 and Nrf2, to orches-

trate stress responses, including apoptosis, cell cycle regulation and antioxidant defense to

repair oxidative damage. The transcriptional activity of stress response transcription factors is

controlled by dynamic subcellular localization with autophagy lately identified as a new regula-

tory mechanism [45–47]. Two mechanisms by which ROS drive PAX6 nuclear-to-cytoplasmic

trafficking are oxidative modification of its nuclear export signal and oxidation of its adaptor

proteins [48,49]. In the current study, we showed that low dose of ROS in autophagy-compe-

tent LSC induced cytoplasmic relocation of PAX6, while excessive levels of ROS in autophagy-

deficient LSCs failed to drive the relocation (Figs 3 & 4). These findings clearly indicate an

autophagic regulation of PAX6’ ROS response. Although physiological protein turnover of

PAX6 mainly depends on proteosomal degradation [50], we do not rule out the potential of

synergistic (or alternative) autophagic clearance of PAX6 in UVA stress context. Autophagy

was reported to navigate intracellular trafficking of PAX6 by indirectly degrading PAX6 adap-

tor proteins, such as TRIM44 and SPARC [51–54]. Whether or not autophagy responds to

ROS stress by selectively targeting PAX6 adaptor proteins to regulate cell cycle response

requires further investigations.

In conclusion, our data indicate that autophagy mediates cell cycle response of LSCs follow-

ing UVA exposure via a novel PAX6-p21 molecular cascade. The spatial dynamics of PAX6

recruitment to nucleocytoplasmic compartments represent a novel post-translational regula-

tion for autophagy-mediated oxidative stress response. Functional enhancement of autophagy

might thus represent a novel therapeutic strategy in treating UVA-associated, PAX6-deregu-

lated ocular surface degenerative diseases.

Supporting information

S1 Fig. Non-lethal UVA irradiance to SCR and ATG7KD LSCs. Percentage of apoptotic

cells assessed by TUNEL staining in SCR and ATG7KD following low dose UVA irradiation
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of 20 J/cm2.

(TIF)

S2 Fig. Adenoviral-assisted overexpression of PAX6 in human LSC colonies. (A) Western

blot of PAX6 expression in Ad-CMV-null and Ad-CMV-PAX6 infected cells. (B) Densitome-

try of PAX6 expression normalized to GAPDH levels. ��p< .01 of 3 independent experiments.

(TIF)

S3 Fig. PAX6/PCNA co-localization in irradiated ATG7KD colonies with adenoviral

PAX6 overexpression. (A) Stacked bar diagram and (B) statistics of PAX6+PCNA-,

PAX6+PCNA+, PAX6-PCNA+, and PAX6-PCNA- cells. �p< .05 compared to SCR, Ad-

CMV-null controls, #p< .05 compared to SCR, Ad-CMV-null, UVA-irradiated counterparts.

(TIF)

S4 Fig. Efficiency of siRNA-mediated KD of PAX6 in LSC colonies. (A) PAX6 immunofluo-

rescence in SCR and PAX6KD LSC colonies. Scale bar, 100 μm. (B) Mean fluorescence inten-

sity of PAX6 in SCR and PAX6KD LSCs. ���p< .001.

(TIF)

S5 Fig. PAX6/PCNA co-localization in irradiated ATG7KD, PAX6-overexpressing LSC

colonies. (A) Stacked bar diagram and (B) statistics of percentages of PAX6+p21-, PAX6+p21+,

PAX6-p21+, and PAX6-p21- cells. �p< .05 compared to SCR, Ad-CMV-null controls, #p< .05

compared to SCR, Ad-CMV-null, UVA-irradiated counterparts.

(TIF)
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36. Duparc R, Abdouh M, David J, Lépine M, Tétreault N, Bernier G. Pax6 controls the proliferation rate of

neuroepithelial progenitors from the mouse optic vesicle. Dev Biol 2007; 301(2):374–387. https://doi.

org/10.1016/j.ydbio.2006.11.006 PMID: 17157287

37. Li T, Lu L. Epidermal growth factor-induced proliferation requires down-regulation of Pax6 in corneal

epithelial cells. J Biol Chem 2005 Apr 1; 280(13):12988–12995. https://doi.org/10.1074/jbc.

M412458200 PMID: 15659382

38. Wong TY, Foster PJ, Johnson GJ, Seah SK, Tan DT. The prevalence and risk factors for pterygium in

an adult Chinese population in Singapore: the Tanjong Pagar survey. Am J Ophthalmol 2001 Feb; 131

(2):176–183. PMID: 11228292

39. Gazzard G, Saw SM, Farook M, Koh D, Widjaja D, Chia SE, et al. Pterygium in Indonesia: prevalence,

severity and risk factors. Br J Ophthalmol 2002 Dec; 86(12):1341–1346. PMID: 12446360

40. Chan CM, Liu YP, Tan DT. Ocular surface changes in pterygium. Cornea 2002 Jan; 21(1):38–42.

PMID: 11805505

41. Bai H, Teng Y, Wong L, Jhanji V, Pang CP, Yam GH. Proliferative and migratory aptitude in pterygium.

Histochem Cell Biol 2010 Nov; 134(5):527–535. https://doi.org/10.1007/s00418-010-0751-5 PMID:

20938674

42. Li J, Li C, Wang G, Liu Z, Chen P, Yang Q, et al. APR-246/PRIMA-1Met Inhibits and Reverses Squa-

mous Metaplasia in Human Conjunctival Epithelium. Invest Ophthalmol Vis Sci 2016 Feb; 57(2):444–

452. https://doi.org/10.1167/iovs.15-17519 PMID: 26868746

43. Halevy O, Biran I, Rozenboim I. Various light source treatments affect body and skeletal muscle growth

by affecting skeletal muscle satellite cell proliferation in broilers. Comparative Biochemistry and Physiol-

ogy Part A: Molecular & Integrative Physiology 1998; 120(2):317–323.

44. Halevy O, Piestun Y, Allouh MZ, Rosser BW, Rinkevich Y, Reshef R, et al. Pattern of Pax7 expression dur-

ing myogenesis in the posthatch chicken establishes a model for satellite cell differentiation and renewal.

Developmental Dynamics 2004; 231(3):489–502. https://doi.org/10.1002/dvdy.20151 PMID: 15390217

45. Gama-Carvalho M, Carmo-Fonseca M. The rules and roles of nucleocytoplasmic shuttling proteins.

FEBS Lett 2001; 498(2–3):157–163. PMID: 11412848

PAX6 and autophagy in UVA-stressed LSC

PLOS ONE | https://doi.org/10.1371/journal.pone.0180868 July 10, 2017 22 / 23

https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1038/nmeth.2019
http://www.ncbi.nlm.nih.gov/pubmed/22743772
https://doi.org/10.1002/path.2256
http://www.ncbi.nlm.nih.gov/pubmed/18027901
https://doi.org/10.1371/journal.pone.0077286
http://www.ncbi.nlm.nih.gov/pubmed/24143217
https://doi.org/10.1167/iovs.05-1083
http://www.ncbi.nlm.nih.gov/pubmed/16723449
https://doi.org/10.1007/s10620-013-2929-x
https://doi.org/10.1007/s10620-013-2929-x
http://www.ncbi.nlm.nih.gov/pubmed/24185687
https://doi.org/10.1371/journal.pone.0085738
http://www.ncbi.nlm.nih.gov/pubmed/24454925
https://doi.org/10.3892/mmr.2014.2684
http://www.ncbi.nlm.nih.gov/pubmed/25323813
https://doi.org/10.1167/iovs.11-8139
http://www.ncbi.nlm.nih.gov/pubmed/21948554
https://doi.org/10.1016/j.exer.2005.02.002
http://www.ncbi.nlm.nih.gov/pubmed/16080917
https://doi.org/10.1016/j.ydbio.2006.11.006
https://doi.org/10.1016/j.ydbio.2006.11.006
http://www.ncbi.nlm.nih.gov/pubmed/17157287
https://doi.org/10.1074/jbc.M412458200
https://doi.org/10.1074/jbc.M412458200
http://www.ncbi.nlm.nih.gov/pubmed/15659382
http://www.ncbi.nlm.nih.gov/pubmed/11228292
http://www.ncbi.nlm.nih.gov/pubmed/12446360
http://www.ncbi.nlm.nih.gov/pubmed/11805505
https://doi.org/10.1007/s00418-010-0751-5
http://www.ncbi.nlm.nih.gov/pubmed/20938674
https://doi.org/10.1167/iovs.15-17519
http://www.ncbi.nlm.nih.gov/pubmed/26868746
https://doi.org/10.1002/dvdy.20151
http://www.ncbi.nlm.nih.gov/pubmed/15390217
http://www.ncbi.nlm.nih.gov/pubmed/11412848
https://doi.org/10.1371/journal.pone.0180868


46. Huang S, Liu LN, Hosoi H, Dilling MB, Shikata T, Houghton PJ. p53/p21(CIP1) cooperate in enforcing

rapamycin-induced G (1) arrest and determine the cellular response to rapamycin. Cancer Res 2001

Apr 15; 61(8):3373–3381. PMID: 11309295

47. Ichimura Y, Waguri S, Sou Y, Kageyama S, Hasegawa J, Ishimura R, et al. Phosphorylation of p62 acti-

vates the Keap1-Nrf2 pathway during selective autophagy. Mol Cell 2013; 51(5):618–631. https://doi.

org/10.1016/j.molcel.2013.08.003 PMID: 24011591

48. Lesaffre B, Joliot A, Prochiantz A, Volovitch M. Direct non-cell autonomous Pax6 activity regulates eye

development in the zebrafish. Neural Dev 2007 Jan 17; 2: 2. https://doi.org/10.1186/1749-8104-2-2

PMID: 17229313

49. Parisi I, Collinson JM. Regulation of Merkel cell development by Pax6. Int J Dev Biol 2012; 56(5):341–

350. https://doi.org/10.1387/ijdb.113406ip PMID: 22811268

50. Tuoc TC, Stoykova A. Trim11 modulates the function of neurogenic transcription factor Pax6 through

ubiquitin-proteosome system. Genes Dev 2008 Jul 15; 22(14):1972–1986. https://doi.org/10.1101/gad.

471708 PMID: 18628401

51. Kimura T, Mandell M, Deretic V. Precision autophagy directed by receptor regulators—emerging exam-

ples within the TRIM family. J Cell Sci 2016 Mar 1; 129(5):881–891. https://doi.org/10.1242/jcs.163758

PMID: 26906420

52. Zhang X, Qin G, Chen G, Li T, Gao L, Huang L, et al. Variants in TRIM44 cause aniridia by impairing

PAX6 expression. Hum Mutat 2015; 36(12):1164–1167. https://doi.org/10.1002/humu.22907 PMID:

26394807

53. Sailaja G, Bhoopathi P, Gorantla B, Chetty C, Gogineni VR, Velpula KK, et al. The secreted protein

acidic and rich in cysteine (SPARC) induces endoplasmic reticulum stress leading to autophagy-medi-

ated apoptosis in neuroblastoma. Int J Oncol 2013; 42(1):188–196. https://doi.org/10.3892/ijo.2012.

1678 PMID: 23123816

54. Shubham K, Mishra R. Pax6 interacts with SPARC and TGF-beta in murine eyes. Mol Vis 2012; 18:

951–956. PMID: 22539874

PAX6 and autophagy in UVA-stressed LSC

PLOS ONE | https://doi.org/10.1371/journal.pone.0180868 July 10, 2017 23 / 23

http://www.ncbi.nlm.nih.gov/pubmed/11309295
https://doi.org/10.1016/j.molcel.2013.08.003
https://doi.org/10.1016/j.molcel.2013.08.003
http://www.ncbi.nlm.nih.gov/pubmed/24011591
https://doi.org/10.1186/1749-8104-2-2
http://www.ncbi.nlm.nih.gov/pubmed/17229313
https://doi.org/10.1387/ijdb.113406ip
http://www.ncbi.nlm.nih.gov/pubmed/22811268
https://doi.org/10.1101/gad.471708
https://doi.org/10.1101/gad.471708
http://www.ncbi.nlm.nih.gov/pubmed/18628401
https://doi.org/10.1242/jcs.163758
http://www.ncbi.nlm.nih.gov/pubmed/26906420
https://doi.org/10.1002/humu.22907
http://www.ncbi.nlm.nih.gov/pubmed/26394807
https://doi.org/10.3892/ijo.2012.1678
https://doi.org/10.3892/ijo.2012.1678
http://www.ncbi.nlm.nih.gov/pubmed/23123816
http://www.ncbi.nlm.nih.gov/pubmed/22539874
https://doi.org/10.1371/journal.pone.0180868

