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Abstract

Background

High-throughput experimental technologies are generating tremendous amounts of geno-

mic data, offering valuable resources to answer important questions and extract biological

insights. Storing this sheer amount of genomic data has become a major concern in bioinfor-

matics. General purpose compression techniques (e.g. gzip, bzip2, 7-zip) are being widely

used due to their pervasiveness and relatively good speed. However, they are not custom-

ized for genomic data and may fail to leverage special characteristics and redundancy of the

biomolecular sequences.

Results

We present a new lossless compression method CHAPAO (COmpressing Alignments

using Hierarchical and Probabilistic Approach), which is especially designed for multiple

sequence alignments (MSAs) of biomolecular data and offers very good compression gain.

We have introduced a novel hierarchical referencing technique to represent biomolecular

sequences which combines likelihood based analyses of the sequence similarities and

graph theoretic algorithms. We performed an extensive evaluation study using a collection

of real biological data from the avian phylogenomics project, 1000 plants project (1KP), and

16S and 23S rRNA datasets. We report the performance of CHAPAO in comparison with

general purpose compression techniques as well as with MFCompress and Nucleotide

Archival Format (NAF)—two of the best known methods especially designed for FASTA

files. Experimental results suggest that CHAPAO offers significant improvements in com-

pression gain over most other alternative methods. CHAPAO is freely available as an open

source software at https://github.com/ashiq24/CHAPAO.
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Conclusion

CHAPAO advances the state-of-the-art in compression algorithms and represents a poten-

tial alternative to the general purpose compression techniques as well as to the existing spe-

cialized compression techniques for biomolecular sequences.

Background

One of the major tasks of bioinformatics is to collect, analyze and interpret large volumes of

biomolecular data. The amount of available genomic data is increasing approximately tenfold

every year, at a much faster rate than Moore’s Law for computational power [1, 2]. This

advancement in sequencing technologies demands more efficient ways to store and analyze

large genomic datasets. Numerous general purpose compression algorithms, such as zip and

gzip based on DEFLATE algorithm [3], bzip2 using Burrows-Wheeler transform [4], 7-zip [5]

are being widely used to deal with the genomic data deluge. However, these general purpose

compression techniques are agnostic about the special characteristics and redundancy existing

in the biomolecular sequences. Thus, due to the growing awareness about the challenges posed

by the genomic data deluge and the inability of the general purpose compression techniques to

take advantage of the redundancy in genomic data, developing specialized compression tech-

niques for biomolecular sequences has drawn substantial attention from the bioinformatics

community.

Biomolecular sequence compression has been an active research area over the last decade.

Most of these works are focused on directly compressing individual DNA/RNA sequences,

such as BioCompress [6, 7], GenCompress [8], the CTW+LZ algorithm [9], DNACompress

[10], MFCompress [11], DELIMINATE [12], XM [13], Pinho et al. [14] and Tabus and Korodi

[15]. This class of methods utilizes various properties of genomic sequences such as small

alphabet size and repetitive regions. There is another class of compression techniques, known

as reference-based methods, that takes advantage of the redundancy in the biomolecular

sequences. Here, a reference sequence is used to encode a “target sequence”, resulting in sub-

stantial compression when there are significant similarities between the reference sequence

and the target sequence. Reference-based approach is a popular technique for genomic data

compression, and has been used in many methods including RLZ [16], GRS [17], GReEn [18],

coil [6], Fritz et al. [19], Christley et al. [20], Brandon et al. [21], Wang and Zhang [17], Koza-

nitis et al. [22] and Popitsch et al. [23]. These methods are useful in compressing sequence

databases or storing millions of reads produced by next generation sequencing technologies.

Multiple sequence alignment (MSA) is the alignment of biological sequences, inferring

homologies by reflecting basic evolutionary events (insertion, deletion, and substitution). Con-

structing an MSA is a basic step in many analyses in computational biology such as phyloge-

netic tree construction, orthology identification, predicting the structure, and function of

proteins. Therefore, an exponentially increasing number of MSA files are being generated and

analyzed in various domains of computational biology. This underscores the need for develop-

ing methods for the efficient storage of MSA files. However, there has not been notable

advancement in developing compression techniques that are especially customized to consider

the special characteristics and redundancy of MSAs.

Fundamental to the recent advancements in compressing sequence data is the ability to

leverage the redundancy of the biomolecular sequences [6, 19]. Likewise, MSA files have spe-

cific formats and characteristics. Hickey et al. [24] proposed a way for saving MSA files on the
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basis of phylogenetic hierarchy. Matos et al. presented a model using a special arithmetic cod-

ing for DNA multiple sequence alignment blocks [25]. Many of these existing studies aimed

more at presenting a concept than at providing publicly available usable compression tools.

Moreover, many of them are dependent on external reference sequences [18–20, 22] which

limits their practical use. Furthermore, some of them can handle only the four-letter alphabet

(A, T, C, G), preventing their applications to protein sequences. Thus, although the last two

decades have witnessed the proposal of many algorithms for compressing genomic sequences,

this community is still dependent on the general purpose compressors.

In this study, we present CHAPAO, a reference-based technique for compressing MSA

files. This is to our knowledge the first application of the reference-based technique for com-

pressing MSAs. Unlike conventional reference-based methods where an “extra” sequence (not

included in the input sequence to compress) is used as a reference [17–20, 22], we proposed a

novel hierarchical referencing technique where a suitable subset of the input sequences in the

MSA file is used as reference sequences. Our referencing technique is hierarchical in a sense

that a subset S1 of sequences can be used to encode a subset S2 of sequences, and S2 can subse-

quently be used to encode another subset of sequences. Thus, we aim to keep an optimal subset

of input sequences that can encode all the sequences in the MSA in a hierarchical manner. We

have proposed a likelihood based technique to model the sequence similarity and “represent-

ability”, and subsequently apply a minimum spanning arborescence [26–28] based algorithm

on a graph modeled from the MSA in order to find an optimal set of reference sequences and

an optimal order of hierarchical referencing.

We performed an extensive evaluation study to assess the performance of CHAPAO on the

MSA files from the Avian Phylogenomics [29, 30] and 1000 plants (1KP) [31, 32] projects (two

of the largest phylogenomics projects to date) containing various types of gene sequences

(introns, exons, and UCEs). We also analyzed a collection of large and challenging ribosomal

RNA datasets (16S and 23S) obtained from the Gutell Lab [33, 34]. In addition to the general

purpose compressors (zip, gzip, bzip2, and LZMA [35] (implemented in the 7-zip archiver

[36])), we compared with MFCompress [11], which is the best known alternative method for

compressing FASTA files, and Nucleotide Archival Format (NAF) [37]. Experimental results

suggest that CHAPAO offers notable compression gain and significantly outperforms the best

alternate methods except for 7-zip.

Methods

Overview of CHAPAO

In conventional reference-based techniques, the target sequences (sequences to be com-

pressed) are represented in terms of a reference sequence and some additional metadata infor-

mation. The additional information may be insertion, substitution, or deletion from reference

sequence, that will convert the reference sequence to the target sequence. Fig 1 shows two

sequences that evolved with substitutions, insertions, and deletions and the corresponding

multiple sequence alignment. We denote a pair of reference r and target t sequences by a tuple

<r, t>. Usually, only one reference sequence is used for all the target sequences. This works

well when the sequences come from the same or closely related species (as it is the case for

Fritz et al. [19] where they used a reference genome sequence to map the short reads). For

compressing an MSA with sequences from a collection of species with higher degrees of dis-

similarity between them, single reference based techniques may result in higher amounts of

metadata, and may lead to lower compression ratio.

CHAPAO finds a suitable subset of sequences in the MSA as reference. Unlike other refer-

ence-based techniques [18–20, 22], CHAPAO does not depend on any external reference
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sequence. An efficient statistical and graph theoretic algorithm has been incorporated in CHA-

PAO to find an optimal set R of reference sequences so that other (target) sequences T can be

hierarchically obtained from R with minimum representational cost. This is a hierarchical

approach where a subset T1� T is encoded using R, and subsequently Ti (i> 1) is encoded

using sequences from R[T1[. . .[Ti−1.

In order to find an optimal set of reference sequences, we create an encodability graph EG
where each vertex corresponds to a sequence and the weight wi,j of a directed edge (Si, Sj) from

Si to Sj represents the cost of representing sequence Sj by sequence Si. Next, we find aminimum
spanning arborescenceMA in EG using Edmond’s algorithm [38, 39]. This MA defines an

optimal set of reference sequences and hierarchical referencing (<r, t>) relationships among

the sequences (see Theorem 0.1). Appropriate metadata are generated to decode the sequence

hierarchically from the reference sequences. Note that the encodability graph EG would be a

very dense graph—a directed complete graph where every pair of vertices is connected by a

pair of edges (one in each direction). To keep EG relatively sparse, edges are established only

between the nodes that correspond to “similar” sequences. We used a likelihood based

approach to find similar sequences. Fig 2 shows an overview of the algorithmic workflow of

CHAPAO. We used bzip2 at the final stage of our algorithm to compress the reference

sequences and the metadata.

Representational cost

The cost Ci,j of representing a target sequence Sj using a reference sequence Si depends on the

metadata required to store in order to retrieve Sj from Si. Ci,j includes the cost of storing the

indices of the positions where Si and Sj differ, and the cost of storing the mismatched bases.

Thus, Ci,j = f(N, I), where, N is the number of bits required to store a base, and I is the number

of bits required to store an index. Fig 3(b) shows the cost matrix Mc, showing the cost of rep-

resenting every pair of sequences (in both directions) in Fig 3(a). Note that C2,1 = 2I + 4N, but

Fig 1. Character evolution and multiple sequence alignment. (a) Two observed sequences, (b) Character evolution

with substitution and indels which can change the sequence length and blur the homology, and (c) Multiple sequence

alignment of the two sequences capturing the underlying character evolution where each site consists of homologous

characters.

https://doi.org/10.1371/journal.pone.0265360.g001
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Fig 2. Overview of the compression and decompression techniques in CHAPAO. A directed weighted

“Encodability Graph” is constructed where each vertex corresponds to a sequence in MSA except for the dummy node

(shown in red) which is used as a “source” vertex. Next, a minimum spanning arborescence MA in the graph is

constructed. Sequences that are children of the dummy node in the MA will be used as reference sequences.

Appropriate metadata are generated to hierarchically represent all other sequences. Finally, the reference sequences

along with the metadata are compressed using existing compression techniques. The pipeline is completely reversible,

allowing lossless decompression of the original MSAs.

https://doi.org/10.1371/journal.pone.0265360.g002

Fig 3. Directed graph based modeling. (a) A multiple sequence alignment with three sequences, (b) the corresponding cost matrix, (c) the encodability

graph EG, and (d) the corresponding minimum spanning arborescence MA.

https://doi.org/10.1371/journal.pone.0265360.g003
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C1,2 = 2I + 2N. These two sequences differ in indices 2, 3, 10, and 11. To represent S2 using S1,

we need to store “tt” and indices 2 and 10, whereas we need to store “aa” at 2 and “cc” at 10 for

representing S1 using S2. Therefore, Ci,j is not necessarily identical to Cj,i and thus the encod-

ability graph is a directed complete graph. The cost of storing a reference sequence is I + l�N,

where l is the length of the sequence, and I is the cost to store the index of the sequence. We

store the index of a sequence to ensure that the sequences in the decompressed MSA are in

exactly the same order as in the original uncompressed MSA.

Modeling the encodability graph

Given an MSA with n sequences, we create an encodability graph EG with n + 1 vertices where

n vertices correspond to the n sequences in the MSA. The (n + 1)-th vertex is a dummy vertex

vd which does not correspond to any sequence in the MSA. There is an edge from vd to i (1� i
� n), where wd,i represents the cost of storing sequence Si as a reference sequence. Thus, the

dummy node acts as the “source” vertex in the EG, and a minimum spanning arborescence

MA is constructed considering the dummy node as the root node. Thus, in addition to the

representational cost wi,j, the cost for storing a reference sequence is considered in the encod-

ability graph, and therefore, the minimum spanning arborescence MA in EG defines the opti-

mal set of reference sequences and an optimal order of hierarchical referencing (see Theorem

0.1). A sequence Si is considered to be a reference if there is an edge (vd, Si) from vd to Si in the

MA. The hierarchical referencing is defined by the directed edges in MA. Fig 3(c) shows the

encodability graph of the MSA shown in Fig 3(a), and the corresponding MA is shown in Fig

3(d). Here, the cost of storing all three DNA sequences would be the summation of the cost to

save sequence S3 as a reference, the cost to represent S1 using S3 as a reference, and the cost to

represent S2 using S1 as a reference. Thus, we only need to store S3 and appropriate metadata

to hierarchically decode S1 and S2.

White and Hendy [6] previously used an undirected-graph based technique to model the

similarity among the sequences in a database. They used edit tree distance as an approximation

of the maximum parsimony distance to find groups of similar sequences. They split the whole

database into multiple undirected similarity graphs composed of highly similar sequences.

Next, (undirected) minimum spanning trees are computed for each of the similarity graphs.

The smallest sequence in each similarity graph is considered as the only reference sequence for

all the target sequences. Therefore, despite some parallels, our technique—with the directed

encodability graph based approach using likelihood based similarity and subsequent computa-

tion of minimum spanning arborescence and the hierarchical referencing—is significantly dif-

ferent than the one used in White and Hendy [6].

Theorem 0.1. The minimum spanning arborescenceMA in an encodability graph EG
defines an optimal set of reference sequences and reference-target (< r, t>) relationships.
Proof. Let R be the set of reference sequences and RT be the set of reference-target pairs

suggested by MA. Let C be the total weight of MA, meaning that C is the cost of storing R
and RT . Assume that C is not optimal, meaning that there exists another set R0

of reference

sequences and a set RT 0
of reference-target pairs that can be stored with cost C0, and C0 < C.

Let us build a graph MA0
where a vertex corresponds to a sequence in R0

and there is an edge

from Si to Sj if < Si; Sj >2 RT 0
. The weight of an edge (vi, vj) represents the cost of storing Sj

using Si as a reference. Finally, we add a dummy node vd to MA0
and add edges from vd to all

the reference sequences in R0, where the cost of an edge represents the cost of storing a refer-

ence sequence. It is easy to see that MA0
is a spanning arborescence, rooted at vd, of EG with
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cost C0. Therefore, since C0 < C, MA cannot be a minimum spanning arborescence, which

leads to a contradiction. This completes the proof.

Log-likelihood based similarity modeling

For a directed complete graph, calculating the cost matrix Mc is expensive and requires O(n2

l) time where n is the number of sequences and l is the length of each sequence. For computa-

tional efficiency, CHAPAO tries to keep the encodability graph relatively sparse by considering

only those edges that are incident on reasonably similar sequences. However, finding pairwise

similar sequences is computationally expensive as well. Therefore, we have introduced an effi-

cient heuristic using the likelihood values of the sequences. Let M be a multiple sequence

alignment with n sequences. A sequence Si in M can be considered as an l-dimensional ran-

dom vector, Si = [Si1, Si2, . . ., Sil], where Sij 2 {a, t, g, c, −} refers to the j-th base (character) in

Si. Thus, M is a collection of n l-dimensional random vectors. We assume that the occurrence

of a base at a position j in a sequence Si is independent of any other base in Si. Therefore, the

likelihood of the sequence Si in M can be computed as follows.

LðMjSiÞ ¼ pðSijMÞ ¼
Yj¼l

j¼1

pðSijjMÞ: ð1Þ

Here, pðSijjMÞ is the probability of the occurrence of a particular base Sij 2 {a, t, c, g, −} at

column j in M. Let F Sij
be the number of times Sij appears at column j in M. Then pðSijjMÞ

can be calculated as follows.

pðSijjMÞ ¼
F Sij

n
: ð2Þ

As the individual probability values are very small, we take the log-likelihood as follows.

log pðSijMÞ ¼
Xj¼l

j¼1

log pðSijjMÞ: ð3Þ

We sort the sequences in an MSA according to their likelihood values so that the adjacent

sequences in the sorted list have a relatively low cost for representing each other. Next we take

a sliding window of a preferred length lw (which is a tunable parameter), and slide it over the

sorted list. The step size (sliding length) is chosen appropriately to ensure a certain amount of

overlap between two windows. The sequences within a window will form a clique (i.e. every

pair of vertices will be connected with each other) in the encodability graph EG. This reduces

the time complexity of computing the cost matrix Mc to O(nl).

Time complexity

The time complexity of our algorithm depends on the cost of computing the cost matrix and

computing the minimum spanning arborescence MA. For each edge e in the encodability

graph EG, we have to calculate its weight which takes O(l) time. Thus, the time complexity for

computing the cost matrix will be O(El), where E is the number of edges in EG.

For an MSA with n sequences, a sliding window of length lw and step size (sliding amount)

ls, there will be d
n� lw
ls
e þ 1 number of cliques in EG. Time complexity to compute the cost

matrix for a clique is l2wl as there are l2w edges in a clique with lw nodes. Considering all the cli-

ques in EG, the time complexity is
Pd

n� lw
ls
eþ1

i¼1 l2wl. Note that
n� lw
ls
þ 1

� �
� O n

ls

� �
, and lw = cls,
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where c is a positive real number. Thus, the time complexity of computing the cost matrix is as

follows.

X
dnls
e

i¼1

l2wl ¼ d
n
ls
el2wl � nlslc

2:

As ls is a constant which is usually much smaller than the length of the sequences (l), and

does not depend on n, computing the cost matrix takes O(nl) time. This also implies that the

number of edges in the encodability graph, constructed by considering the overlapping win-

dows of sequences with similar likelihood values, is O(n). We implemented Edmond’s algo-

rithm [38, 39] to find the minimum spanning arborescence, which takes O(VE) time. Thus,

the time complexity of our compression pipeline is O(El + VE). Therefore, without the log-

likelihood based heuristic version with sliding windows, CHAPAO takes O(n2 l + n3) time. But

the compression time is reduced to O(nl + n2) using our proposed sparse graph representation,

saving a factor of O(n).

Experimental studies

We evaluated the performance of CHAPAO on a collection of real and challenging

biological datasets. We used data from two of the largest phylogenomics projects to date: 1)

Avian phylogenomics project [29, 30] and 2) 1000 plants (1KP) project [31, 32]. We also

analyzed two other widely used large biological datasets (16S and 23S) from Gutell Lab [33,

34, 40] containing alignment files with large numbers of sequences from 16S and 23S ribo-

somal RNA sampled from bacteria. S1 Table in S1 File shows the summary of various align-

ments in these datasets. We assessed the performance of CHAPAO on DNA sequence

alignments.

We compared CHAPAO with several popular general purpose compression techniques,

namely zip, bzip2, gzip, and LZMA [35] (implemented in the 7-zip archiver [36]). We also

compared CHAPAO with special purpose compression techniques, MFCompress [11] and

NAF [37], which is especially targeted to compress biomolecular sequences in FASTA files.

MFCompress was previously compared with gzip, bzip2, ppmd (a variant of ppm [41]), and

LZMA as well as with the recent special purpose compressor DELIMINATE [12], and was

shown to be the best method for compressing FASTA files. NAF is based on zstd [42] and was

shown to achieve a compression ratio close to DELIMINATE.

In order to compare various compression techniques, we report the average compression

gains (over all the MSAs in a particular dataset) attained by different methods. We also show

the size of the MSAs after compression by different methods, and we divide the MSA files in a

particular dataset into different bins based on the size of the MSAs to better assess the perfor-

mance of different method across varying file sizes. We performed Wilcoxon signed-rank test

(with α = 0.05) to measure the statistical significance of the differences between two methods.

The experiments were performed on a Windows machine with an Intel Core I7–7500U pro-

cessor (3.5 GHz), 8GB DDR4 RAM, and 128GB SSD memory (SATA 3).

The performance of CHAPAO may vary depending on the window size. Longer window

sizes are expected to achieve better compression gain at the cost of more compression time.

We used window sizes ranging from 20 − 40 on various datasets. These smaller window sizes

provided enough compression gain to significantly outperform most other methods. The par-

ticular window size and overlap size that we used to generate the results are mentioned in each

subsequent figure.
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Results on avian dataset

Avian phylogenomics project is the largest vertebrate phylogenomics project [29, 30], which

assembled or collected the genomes of 48 avian species spanning most orders of birds. This

dataset contains exons from 8251 syntenic protein-coding genes, introns from 2516 of these

genes, and a nonoverlapping set of 3769 ultraconserved elements (UCEs). The exon gene set

was prepared based on synteny-defined orthologs chosen from the assembled genomes of

chicken and zebra finch. The intron gene set consists of 2516 genes that are orthologous subset

of introns from the 8295 protein-coding genes. The UCE dataset has 3679 genes with�1000

bp of flanking sequences. The UCE dataset was filtered to remove overlap with the exon and

intron datasets.

Fig 4 shows the relative performance of various methods on avian dataset. Since we have

thousands of alignments covering a wide range of file sizes, we show the results for various

bins of different file size limits. CHAPAO consistently achieved a significantly higher compres-

sion ratio than all other methods, except LZMA and NAF, regardless of the file size and

sequence type. LZMA, despite being a general purpose compression technique, achieved the

best compression gains on all the model conditions on avian datasets, followed by CHAPAO

and NAF.

CHAPAO and NAF achieved competitive compression gain on Intron datasets, while NAF

was slightly better than CHAPAO on the UCEs and CHAPAO was slightly better than NAF of

the Exons. On the Intron alignments, CHAPAO achieved 38.8%, 31.3%, 14.3% and 16.6%

more compression than zip, gzip, bzip2, and MFCompress respectively (see Fig 4(b)). CHA-

PAO achieved the second best compression ratio on exon MSAs, where it achieved 20.28%

more compression than MFCompress, 6.2% more compression than NAF, and 24.64% more

compression than bzip2 (see Fig 4(c)). On the UCE dataset, CHAPAO achieved 21.6% more

compression than MFCompress and 15.9% more than bzip2, and NAF achieved slightly better

compression (2.29%) than CHAPAO (see Fig 4(a)).

To assess the applicability and performance of our method on very large alignments, we

analyzed the concatenated alignments resulting from concatenating the alignments of introns,

exons and UCEs. We do not analyze the ultra-large alignments as the likelihood based analysis

is computationally intensive for very large alignments, and restricted our analyses to the files

not exceeding 300 MB [43] (see S2 and S3 Tables in S1 File). Although concatenation (also

known as combined analysis) can be problematic as it is agnostic to the topological differences

among the gene trees [44–49], it is one of the most widely used methods for species tree esti-

mation from multi-locus data. Therefore, there is intrinsic value in storing data of this nature.

Similar to individual gene sequence alignments, LZMA achieved the best compression gain on

concatenated alignments as well except for MSA-7 and MSA-8, where CHAPAO achieved the

best compression gains (Fig 5). However, the performance of NAF substantially degraded on

these large concatenated alignments. CHAPAO and MFCompress achieved second best com-

pression gains. On an average, CHAPAO achieved 45.15% better compression than bzip2

which is the second best performing general purpose compressor on the concatenated align-

ments. Unlike other datasets, MFCompress outperformed CHAPAO on six (out of 10) MSAs.

However, among the largest three MSAs (MSA-7, -8, and -9), CHAPAO outperformed

MFCompress on two of them (MSA-7 and MSA-8). On the other large file (MSA-9), MFCom-

press is better than CHAPAO. We investigated the average p-distance of the sequences in

these large MSA files and observed that the average p-distance of MSA-9 is 0.15 which is much

higher than those of MSA-7 and MSA-8 (0.043 and 0.029 respectively), indicating a lower level

of similarity/redundancy in MSA-9 compared to MSA-7 and MSA-8. This could explain why

CHAPAO did not achieve the same level of compression gain on MSA-9 as it did on MSA-7
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Fig 4. Performance of various compression techniques on avian datasets. To better understand the relative

performance of different methods across different file sizes, we distribute the MSA files into various bins based on their

sizes. For each bin (file-size range), we show the average size of the compressed files produced by various methods. (a)

UCEs. (b) Introns. (c) Exons.

https://doi.org/10.1371/journal.pone.0265360.g004
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and MSA-8. Note also that both CHAPAO and MFCompress achieved substantially better

compression gain than bzip2 on MSA-7 and MSA-8, but the gain is not that substantial on

MSA-9. These results suggest that CHAPAO can effectively capture the similarities/redundan-

cies in the sequences, and hence underscore the importance of using special purpose compres-

sor for large scale MSAs in order to effectively leverage the redundancies in biomolecular

sequences. CHAPAO significantly outperformed NAF on seven (out of 10) MSAs. The com-

pression gains of CHAPAO and NAF are competitive on the remaining three files. Notably, on

an average, CHAPAO achieved 40.81% more compression than NAF on these concatenated

alignments.

The avian dataset is distributed as gzip-compressed files which consumes 923 MB (consid-

ering only the MSAs analyzed in this study) [43]. However, CHAPAO can archive these files

using 604 MB of data, saving 34.56% of the storage requirement. Moreover, this compression

gain has been achieved using a window size of 20 and can be further improved by using longer

window sizes at the cost of more computation time.

There is a notable correlation between the similarity/redundancy in MSA files and the com-

pression ratio obtained by CHAPAO, which is in line with our objective of leveraging the simi-

larity in the biomolecular sequences. We investigated this on avian datasets. We computed the

hamming distances between the pairs of sequences in every MSA file in the avian datasets. We

have defined the average hamming distance of an MSA file according to Eq 4. Here, N and L
are the number of sequences and the length of each sequence in an MSA file, respectively.

Fig 5. Performance of various compression techniques on 10 concatenated alignments in avian dataset.

https://doi.org/10.1371/journal.pone.0265360.g005
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Hamming(Si, Sj) denotes the hamming distance between two sequence Si and Sj. CHAPAO has

achieved more compression on the MSAs with less average pairwise hamming distance among

the sequences (Fig 6). As the level of dissimilarity between the pairs of sequences in an MSA

file is increased, the compression gain of CHAPAO gradually decreases. The experimental

results also suggest that CHAPAO may provide better compression gain for MSAs with rela-

tively large numbers of sequences. For MSAs with large numbers of sequences, relatively larger

proportions of the sequences may be expressed as non-reference sequences, which subse-

quently leads to higher compression gain.

Average Hamming Distance ¼
ð
PN� 1

i¼1

PN
j¼iþ1

HammingðSi; SjÞÞ=L
N

ð4Þ

One of the notable observations from these results is the superior performance of general

purpose compression technique LZMA compared to various special purpose compression tech-

niques (e.g., MFCompress, CHAPAO, NAF). The LZ algorithms approach the data sequentially

and keep track of all the strings that appeared in the past up to a certain limit (window size) [50,

51]. If the current substring is previously seen, it is then replaced by a reference to the previous

occurrence. LZMA is an improvement of LZ coding which can detect repeats that are further

apart. As a result, it can capture both intra-sequence and inter-sequence similarities [52],

whereas CHAPAO tries to leverage only the inter-sequence similarities. We believe that this

could be a reason why the performance of CHAPAO is not better than LZMA in most cases.

Results on 16S and 23S datasets

Results on 16S and 23S datasets are shown in Fig 7a and 7b. LZMA and CHAPAO achieved

extra-ordinary compression gain on these datasets. MFCompress performed worse than bzip2

Fig 6. Performance of CHAPAO with varying levels of dissimilarity/divergence of the 14,490 MSAs in avian datasets. The average

hamming distance (as defined in Eq 4) of these files ranges from 0–13. The box plots show the compression ratio (ratio of the size of the

original file and the compressed file) of CHAPAO on the MSAs in avian datasets (here MSAs are sorted in an ascending order of their

average hamming distance).

https://doi.org/10.1371/journal.pone.0265360.g006
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even though it is a special purpose tool for compressing FASTA files. LZMA was the best per-

forming method on 23S dataset, and CHAPAO was the second best method, which achieved

80%, 78.68%, 55.38%, 65.47%, and 45.84% more compression than zip, gzip, bzip2, MFCom-

press, and NAF respectively. Similar trends hold for 16S dataset, where CHAPAO obtained

76.76%, 73.26%, 32.82%, 68.25%, and 33.92% more compression than zip, gzip, bzip2,

MFCompress and NAF respectively. CHAPAO was able to compress the 16S and 23S datasets,

originally occupying 361.66 MB and 58.79 MB respectively, to only 7.2 MB and 1.3 MB which

can easily be transmitted as an email attachment.

Results on 1KP dataset

The 1000 plants (1KP) initiative has generated large-scale gene sequencing data for over 1000

species of plants, representing approximately one billion years of evolution, including flower-

ing plants, conifers, ferns, mosses, and streptophyte green algae [31, 32]. This dataset com-

prises 9,609 multiple sequence alignments each containing sequences from 1000 different

plant species with a wide range of sequence lengths (303� 63150 bp). The performance of

CHAPAO along with other compression methods is shown in Fig 7(c). LZMA and CHAPAO

achieved the best compression gains on this dataset, and CHAPAO obtained 42.7%, 40.3%,

7.3%, 24.1%, and 6.26% more compression than zip, gzip, bzip2, MFCompress, and NAF,

respectively. Notably, CHAPAO was significantly better than LZMA on larger MSAs (243MB

—284MB range), and competitive with LZMA on other size ranges.

Impact of sliding window lengths on compression gain

Sliding window length lw and sliding amount ls are important hyper-parameters of our algo-

rithm. With a sliding window of lengths of lw, the encodability graph will be composed of a

series of cliques each of size lw. Smaller sizes of the sliding window may result in relatively

lower compression gain. Maximum compression is expected to be obtained when the window

length is equal to the number of sequences in an MSA. We investigated the impact of varying

lengths of window and overlap. Fig 8 shows the impact of various hyper-parameter settings on

16S and 23S datasets. These results suggest that as we increase the window size, the compres-

sion gain tends to improve. A sliding window of length 30 with overlap of 20 (CHAPAO (win-

dow = 30, overlap = 20)) achieved almost 17.71% and 16.1% more compression than

CHAPAO with a sliding window of size 5 with overlap length 3 (CHAPAO (window = 5, over-

lap = 3)) on 16S and 23S datasets, respectively. This impact is even more prominent on the

MSAs with larger numbers of sequences. For example, CHAPAO (window = 30, overlap = 20)

is 20.6% better than CHAPAO (window = 5, overlap = 3) on 16S.B.ALL which contains 27,643

sequences, whereas the improvement is 10.13% on 16S.M which contains 901 sequences. How-

ever, this improved compression gain comes with an additional computational burden. CHA-

PAO(window = 30, overlap = 20) took almost 3.8 times more compression time than

CHAPAO(window = 5, overlap = 3) on 16S and 23S datasets. The average running times for

different lengths of window and overlap on 16S and 23S datasets are shown in Table 1 (see also

S11 Table in S1 File).

Compression and decompression time

Compression times of CHAPAO (for the window sizes used in this study) and other methods

are shown in S4-S12 Tables in S1 File. CHAPAO tends to take more time for compression,

especially on the larger files, than other methods. However, shorter window sizes can substan-

tially reduce the compression time. However, the decompression step is much faster and takes

less computational time than MFCompress (see S15 Table in S1 File). Even for the largest ones
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Fig 7. Comparison of various compression techniques on 16S and 23S datasets and 1KP dataset. (a) 16S. (b) 23S.

(c) 1KP.

https://doi.org/10.1371/journal.pone.0265360.g007
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Fig 8. Impact of the lengths of sliding window and overlap on compression ratio. We show the performance of various

variants of CHAPAO on 16S and 23S datasets. (a) 16S. (b) 23S.

https://doi.org/10.1371/journal.pone.0265360.g008
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like 16.S.B.All, it takes only around 9 seconds, whereas MFCompress takes around 24 seconds

to compress and 26 seconds to decompress (S15 Table in S1 File). NAF and LZMA (7-zip) are

faster than CHAPAO both in terms of compression and decompression speed.

Conclusions

Given the huge number of multiple sequence alignments that can be harvested from various

comparative genomics projects, there is a need for efficient tools to archive them. General pur-

pose techniques are being widely used to archive MSA files. However, these methods are

agnostic to the specificity of MSAs. In this paper, we have attempted to advance the state-of-

the-art in MSA compression by taking the redundancy and specificity of MSAs into account.

We have presented CHAPAO, a new lossless compression technique which is especially tai-

lored to leverage the redundancy of genomic sequences by exploiting a novel hierarchical ref-

erence-based sequence representation to allow parsimonious storage of MSAs. Extensive

experimental studies on a variety of real biological datasets suggest that CHAPAO can achieve

substantially higher compression gain over the existing general purpose compression tech-

niques (except 7-zip) as well as the special purpose techniques for genomic data at the cost of

more compression time. However, this study can be extended in several directions. Although

CHAPAO can handle reasonably large MSAs, this is not yet scalable to ultra-large whole

genome alignments due to computational requirements (time and memory). Designing appro-

priate divide-and-conquer frameworks—which will operate on smaller blocks in the ultra

large alignments—to boost the performance of CHAPAO both in terms of scalability and com-

pression gain would be interesting. CHAPAO cannot take in account the intra-sequence simi-

larity like LZMA (7-zip). Capturing the similarity within a particular sequence may improve

the performance of CHAPAO and so future studies need to investigate this. CHAPAO, in its

current form, can run on protein sequence alignments, but CHAPAO is not particularly tai-

lored for protein alphabets. As the number of different characters present in protein sequences

is significantly higher than the alphabet size of DNA sequences, special customization is

required to handle alignments of protein families (as was done in CoMSA [53]). Besides the

proposed likelihood-based technique, exploring other techniques for capturing the similarity

and redundancy in protein MSAs are required to identify appropriate approaches for protein

MSAs. Although we have performed an extensive simulation study on various datasets with a

wide range of model conditions, future studies need to analyze more datasets to further inves-

tigate the relative strengths and weaknesses of various methods to guide the users in choosing

the right compressors for different datasets. Finally, our proposed hierarchical referencing

technique is expected to be of potential interest for efficiently compressing short reads gener-

ated by the next generation sequencing technologies, which we leave as future work. Finally,

CHAPAO represents a notable contribution towards designing compression algorithmic

frameworks for biomolecular sequences and should be considered as a potential alternative to

the widely used general purpose compression techniques.

Table 1. Impact of sliding window and overlap lengths on compression time. We show the running time of various

variants of CHAPAO on 16S and 23S datasets.

Window Overlap Average Running Time

5 3 83.91

10 7 136.05

20 15 238.82

30 20 323

https://doi.org/10.1371/journal.pone.0265360.t001
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