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ABSTRACT
The structure of interconnected systems and its impact on the system dynamics is a much-studied
cross-disciplinary topic. Although various critical phenomena have been found in different models, study of
the connections between different percolation transitions is still lacking. Here we propose a unified
framework to study the origins of the discontinuous transitions of the percolation process on interacting
networks.Themodel evolves in generations with the result of the present percolation depending on the
previous state, and thus is history-dependent. Both theoretical analysis andMonte Carlo simulations reveal
that the nature of the transition remains the same at finite generations but exhibits an abrupt change for the
infinite generation. We use brain functional correlation and morphological similarity data to show that our
model also provides a general method to explore the network structure and can contribute to many practical
applications, such as detecting the abnormal structures of human brain networks.
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INTRODUCTION
Our understanding of percolation properties of
networks has expanded significantly in recent
years. Percolation theory, a classical model in
statistical physics, has been applied in a number of
different network science topics, such as network
structure [1,2], network robustness [3–5], node
ranking [6] and community detection [7], as
well as in studies of network dynamics, such as
information spreading [8], and highway traffic
flows [9].

Although we often assume that the underlying
structure of a network is complex, the rules for the
percolation process are comparatively simple. Typi-
cally, each linkor node is occupiedwith a givenprob-
ability p, independent of the states of other links and
nodes. By contrast, real-world network processes are
often ‘history-dependent’: for example, the spread
of a particular disease can depend on the spread of
other diseases [10] and it can also be influenced by
the availability of immunization information [11].
Network topology itself can be affected by cascad-
ing failures [12,13] or by recovery processes [14]
in other networks. The universality class of a per-
colation transition depends on the quenched disor-

der topology induced by the previous percolation
transition [15].

A second complication results from the presence
of multiple interaction channels that are often
involved in history-dependent processes [16,17].
Such systems can be naturally described in terms
of multiplex networks where nodes are connected
through different types of links [18], such as the
social networks with different types of interactions
which can be either online or offline [19,20], the
multilayer transportation network with various
means of vehicles [21], and the brain network with
both functional correlation and morphological
similarity [22]. One of the typical examples of
iterative interactions on multiplex networks is the
interplay between the spreading of an epidemic and
the information awareness that prevents its further
spreading [20]. Another example is that of cascading
failures on coupled networks of power distribution
and communications [12,23]. Although these
works consider a similar mechanism (i.e. a history-
dependent process), the former features a continu-
ous percolation transition, while the latter features
a discontinuous phase transition [24]. We address
the question of whether there is a general model
of history-dependent percolation on multiplex
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Figure 1. Sketch of history-dependent percolation on a small multiplex network.
(a) A multiplex network with two layers A and B separated by the horizontal gray line.
(b) Generation n = 1. The configuration C1 induced by layer A is connected. (c) Gen-
eration n = 2. The configuration induced by layer B on C1 has two clusters indicated
by blue and red. (d) Generation n = 3. The configuration C3 induced by layer A on C2

has three clusters indicated by blue, orange and red, respectively. (e) Generation n =
4. Applying layer B on configuration C3, no new clusters can be found; the percolation
process has reached a steady state. If the system is large enough, this process can be
done to any number of generations.

networks where both continuous and discontinuous
percolation transitions can emerge.

To answer this question, we introduce an itera-
tive percolation model on multiplex networks. The
percolation of each generation is based on the result-
ing state of the previous generation,which is referred
to as history-dependent percolation here. Different
to previous percolation models with some iterative
processes, our work focuses also on the intermedi-
ate states of the iterative process; these intermediate
states are referred to as generations here. The ben-
efits of doing so are twofold. First, while individual
intermediate generations can have their direct real
counterparts, they are overlooked by focusing on the
infinite (steady-state) generation. Second, by exam-
ining generations in succession, we gain understand-
ing of the origin of the discontinuous transition in
the steady state and its relation with the continuous
transition.

Theoretical analysis indicates that the interme-
diate states of the recursive process are not clut-
tered, hence the percolation transition can be ob-

served in any generations. Monte Carlo simulations
on Erdős–Rényi (ER) networks further suggest that
all these continuous transitions belong to the same
universality class. Although the size of the giant clus-
ter becomes smaller and smaller as the generations
progress, endless iterations cannot completely de-
stroy the network when it is initially dense enough.
Instead, a non-vanished cluster suddenly appears
above the threshold indicating a discontinuous per-
colation transition. Specifically, scale-free (SF) net-
works with exponent 2 < γ < 3 have a vanished
critical point for any finite generations, and the non-
trivial critical point can suddenly emerge when the
number of percolation generations diverges. With
the example of human brain networks, our model
shows that to find a meaningful structure (such as
the abnormal structures of human brain networks),
it is not always necessary to evolve the recursive pro-
cess into the steady states. Our model thus provides
a novel approach to analyse the network structure.

RESULTS
History-dependent model
An undirected multiplex network is formed by a set
ofN nodes andmultiple layers with links. Each layer
is described by its adjacency matrix, whose unit ele-
ments correspond to links between the correspond-
ing nodes. For simplicity and without loss of gener-
ality, we consider here only the case of a multiplex
network with two layers, which we refer to as lay-
ersA and B, respectively (see Fig. 1a as an example).
An extension to the general case with more layers is
straightforward, and some discussion on this can be
found in the Supplementary Information.

To model the history-dependent iterative pro-
cess, we use the two network layers alternately to
investigate the percolation process in every genera-
tion. For generation n = 1, we use layer A to check
the percolation process among all the nodes. Then,
nodes form a configuration C1, see Fig. 1b. The per-
colation of generation n = 2 is induced by layer B
based on the configuration C1 formed in generation
n = 1. Specifically, if two nodes i and j who are in
the same cluster inC1 are connected in layer B, then
theywill be connected in this generation. Traversing
all node pairs in the same clusters, we obtain a new
configuration C2, see Fig. 1c. Similarly, for genera-
tionn=3,weuse layerA to performapercolationon
configuration C2. If two nodes i and j who are in the
same cluster inC2 are connected in layerA, they will
be connected in this generation.Then, a new config-
uration C3 is obtained, see Fig. 1d, and so on, to any
number of generations. Note that the two layers A
and B are used cyclically in this progressive process.
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Figure 2. The simulation results for ER networks. (a) The size of the giant cluster ψ n as a function of the average degree z
for different generations. The solid lines are the theoretical results obtained by our method. The system size in simulations
is N = 216. (b) The order parameter at the critical point ψ n

c for finite generations as a function of the network size N. The
simulation results are obtained by averaging over all the model realizations. (c) The distribution of the order parameters
obtained in each individual realization f (ψ n

c ) for generation n= 10. (d) The order parameter at the critical point ψ∞
c for the

infinite generation as a function of the network size N. The simulation results are the average over the roughly 60% of model
realizations that percolate. The fitted curve has the formψ∞

c = ψ∞
c0 + O (N −ε ) withψ∞

c0 = 0.514 ± 0.001 and ε = 0.233
± 0.005.

Note that once the initial configurationof the two
layers is given, the constructionsof clusters in all gen-
erations are deterministic. To study the percolation
transition in each generation, a natural choice of the
control parameter is the average degree z of the ini-
tial network layers. For a network ensemble with a
fixed average degree (or for a given real multiplex
network), one can study the percolation transition
by introducing the link occupation probability p as
the control parameter: the fraction 1 − p of links in
each layer are chosen at random and removed, and
the remaining links are then used in the iterated per-
colation processes.

Network with ER layers
We first consider the case where the two network
layers are both ER networks with the same average
degree z, for which the model can be solved exactly
(see Methods). The results indicate that the first
generation and also all finite generations of iterative
percolation demonstrate a continuous percolation
transition. Figure 2a shows that the computed order
parameter ψn agrees well with the numerical simu-
lations of the process. The theoretical solution also

shows that the critical point znc does not divergewith
the increasing generation n, but rather trends to a
fixedvalue z∞

c ≈ 2.455, atwhichψ∞
c ≈ 0.512.This

means that the percolation transition becomes dis-
continuous when n→ ∞.

To clarify the types of the percolation transition
from simulations, we study the finite-size scaling of
the order parameter ψn

c at the critical point (see
Methods). Figure 2b shows that the simulation re-
sults of the first several generations have the same
scaling for largeN, which indicates that the order pa-
rameter ψn

c will vanish when N → ∞. This implies
that these transitions are all continuous.

However, for a large n, the simulation results ap-
pear to deviate from the finite-size scaling of a con-
tinuous phase transition, see Fig. 2a. For a better
understanding of this, we further show the distribu-
tion of ψn

c obtained in each individual realization.
Figure 2c takes generation n = 10 as an exam-
ple, see Section III of the Supplementary Infor-
mation for other generations. The results show a
heavy-tailed distribution instead of being confined
to a small region as in classical percolation transi-
tion [25]. Especially when the system size is small
(see the case N = 216), a bimodal distribution
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Figure 3. The cluster size distribution ps at the critical point. (a) ps for different generations n; the network size is N= 220.
(b) ps of generation n= 10 for different network sizes N.

similar to that of the discontinuous percolation tran-
sition can be found, namely, ψn

c around zero cor-
responds to the non-percolating realizations and
the larger values for the percolating realizations.
That is why we cannot observe a finite-size scaling
in Fig. 2b for large n. In addition, Figure 2c also
shows that the heavy tail will disappear with increas-
ing system size. Thus, the similar scaling to that of
the classical percolation is expected for very large
systems.

For n = ∞, the distribution of ψn
c becomes a

standard bimodal distribution (see Section III of
the Supplementary Information), which allows us to
identify the non-percolating realizations and remove
them from the subsequent analysis. Then, the fitted
result of the percolating realizations ψ∞

c0 ≈ 0.514
shown in Fig. 2d is in good agreement with the the-
oretical analysis, indicating a discontinuous percola-
tion transition.

Moreover, for a finite system the infinite genera-
tion just corresponds to a generation nc, for which
the late generations do not further alter the re-
sults. When n → nc, the system will demonstrate
a much sharper percolation transition to that for
the thermodynamic limit. However, nc is varied
for different network realizations, and the corre-
sponding largest clusters are thus much different.
As a result, the simulation results of the largest
clusters at the theoretical threshold are distributed
broadly. Consequently, the heavy-tailed distribu-
tion is found (see Fig. 2c), and the order param-
eters obtained by averaging over these become
larger than the expectation of the finite-size scal-
ing (see Fig. 2b). Note that nc generally increases
with the system size, thus the heavy-tailed distribu-
tion shown in Fig. 2c is more obvious for smaller
systems.

As pn−1
c < pnc , the percolation transition of gen-

eration n just corresponds to a classical percola-
tion process (with a rescaled control parameter) in
the supercritical phase of generation n − 1. This
indicates that there is no essential difference be-
tween the percolation transition of two consecutive
generations. As an immediate consequence, all the
finite generationsmust belong to the sameuniversal-
ity as the classical percolation, and the scaling behav-
ior changes abruptly from the class shown in Fig. 2b
to that of Fig. 2d when n→ ∞.

To further confirm the universality class of the
history-dependent percolation model, we study
the cluster size distribution ps. As pointed above,
the largest clusters around the critical point are dis-
tributed broadly for a large n. A direct result of this
is increasing the probability of finding large clus-
ters in the system. For the cluster size distribution,
this results in a cocked tail before a normal expo-
nential cutoff, and becomes more and more appar-
ent with increasing generation n (see Fig. 3a). How-
ever, from Fig. 3b, we find that this phenomenon
weakens with increasing system size N, so a distri-
bution similar to that of classical percolation can be
expected for larger systems, that is a power-law with
an exponential cutoff (without a cocked tail). This
also suggests that the universality class is the same
for all finite generations of the iterated percolation
process.

Network with SF layers
Wenow study the case where both layers are SF net-
works. In particular, we assume the power-law de-
gree distribution [26]

pk = c k−γ , k = m,m + 1, . . . , K , (1)
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Figure 4. The simulation results for SF networks with the degree distribution given by equation (1) where m= 2, K = √
N

and γ = 2.5. (a) The size of the giant cluster ψ n as a function of probability p for different generations. The network size
is N= 216. (b) The size of the giant cluster ψ n of generation n= 3 as a function of probability p for different network sizes
N. The solid lines are the number of nodes in the second largest cluster N2. (c) The finite-size scaling of the pseudo-critical
points for generation n = 3. The fitting curve takes the form pc ∝ N−α with α = 0.075 ± 0.003. (d) The size of the giant
cluster ψ n as a function of probability p for infinite generations with different minimum degrees m. The network size is
N= 216.

where c is a normalization factor, andm andK are the
lower and upper bounds of degree, respectively. IfK
is large enough and γ > 1, the normalization factor
is approximately c ≈ (γ − 1)mγ − 1. In the simula-
tion, networks are constructed by generating node
degree values with equation (1) and then connect-
ing the nodes with the configuration model. As the
average degree is fixed by equation (1), we activate a
fraction p of links of both network layers to control
the effectivemeandegree and trigger the percolation
process. In this section, we therefore seek the critical
point in terms of critical probability pc, not critical
average degree zc as in the previous section.

It is known that when γ > 3, such SF network
also has a non-trivial critical point similar to that of
ER networks [3]. Consequently, the results are sim-
ilar to those found for ER networks. Here we focus
on the case γ ∈ (2, 3) which is realized inmany real-
world networks [27]. Previous studies have demon-
strated that the standard percolation in this case has
zero critical point [4,5].

The simulation results shown in Fig. 4a show
that the percolation transition becomes sharper
and sharper as the generation increases. However,
Fig. 4b demonstrates that the pseudo-critical point

indicatedby themaximumof the second largest clus-
ter decreases with the system size, which suggests a
vanished critical point can also be found for infinite
system. From the theoretical analysis (see Methods
and the Supplementary Information), we found that
all the finite generations on such networks have zero
critical point as the classical percolation,which is fur-
ther confirmed by the finite-size scaling of pseudo-
critical point shown in Fig. 4c.

We also find that to observe a non-trivial crit-
ical point on such networks, it requires endless
iterations, large m and broad degree distribution,
otherwise the infinite generation will destroy the
whole network (see Section I-C in the Supplemen-
tary Information for details). Generally speaking, SF
networks with more connections and border degree
distributions aremore likely to survive in the infinite
iterated processes. Figure 4d demonstrates that
whenm> 1, a discontinuous percolation transition
withnon-trivial critical point canalsobe found forSF
networks.

Real multiplex networks
Our brain is a complex system and network neu-
roscience holds great promise for expanding our
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Figure 5. History-dependent percolation on human functional-morphological brain networks for different average degree
values (z ); p is the link occupation probability; ψ n is the size of the giant cluster given the percolation generation n. (a) The
HC participant’s bilayer brain network. (b) The MDD participant’s bilayer brain network.

understanding of a healthy brain functioning,
brain diseases, brain development and brain aging
[28,29]. Simply, the brain can be modeled by a
network, where the brain regions and their con-
nections constitute the set of nodes and the set of
links, respectively. Here, we consider the human
brain networks which are constructed using the
high-resolution brain atlas with 1024 Regions-
of-Interest (ROIs) [30], that is the network thus
has 1024 nodes. This multiplex network has two
layers, which capture functional correlations and
morphological similarity of the human brain based
on ROIs, respectively. For the functional brain
layer, the mean time series is extracted for each
ROI by averaging the time series of all voxels
(small measured volumes in three-dimensional
space) within it. Then, we calculate the Pearson
correlation for each pair of ROIs and generate a
1024 × 1024 correlation matrix. For the morpho-
logical brain layer, we estimate the interregional
similarity in the distribution of regional gray matter
volume in terms of the Kullback-Leibler divergence
measure [31]. By this construction, both layers
are represented by weighted complete networks.
We tune the resulting networks by choosing the
average degree in each layer, z, and thus obtain the
corresponding unweighted networks where only
links with the highest weights are kept. See the last
section of the Supplementary Information for a
detailed description of the data and the MRI data
preprocessing strategy.

In Fig. 5, we compare the results of our perco-
lation model on two different human functional-
morphological brain networks, one from amajor de-
pressive disorder (MDD) participant and one from
a healthy control (HC) participant. For the MDD
data, both the critical point and the giant cluster for
a given p are smaller than that of HC, indicating
that the brain network of the MDD participant is
more vulnerable. For the infinite generation of the
model, the pattern of the remaining nodes and links
(the giant cluster) of the MDD data is sparser and
more dispersed. These nodes are mainly located in
frontal, parietal and occipital lobes, and do not form
obvious community structures, whereas, for the HC
participant, these nodes are close together and are
mainly located in the highly myelinated brain re-
gions (i.e. themotor-somatosensory strip in the cen-
tral sulcus, the visual cortex in the occipital lobe).
This suggests that for the HC participant, the gi-
ant cluster identified by a finite-generation perco-
lation process may reflect the biological meanings.
See Fig. 7 in the Supplementary Information for
details.

When we increase the average degree to z = 20,
both brain networks become robust, and the per-
colation transition of infinite generation becomes
sharper (see Fig. 5). As shown in Fig. 6, for the
HC participant, the giant cluster of the infinite
generation diffuses across the frontal, parietal, oc-
cipital, temporal and subcortical lobes. Compared
withHCdata, theMDDnetwork shows an apparent
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Figure 6. Visualization of human brain bilayer networks at degree z = 20 and 1024
parcellation templates when p is slightly larger than the corresponding pc. (a) The HC’s
bilayer brain network. (b) The MDD’s bilayer brain network. We show the lateral and
medial brain of each hemisphere. The visualization is done with BrainNet viewer [32].

deficiency of nodes in frontal, occipital and tem-
poral lobes, some of which belong to the default
mode network (DMN) [33]. These DMN regions
play an important role in our advanced cognitive
abilities, such as executive control, visual and au-
ditory sense, and some pieces of evidence sup-
port the decreased functional connectivity [34,35]
and frontal cortical thinning [36] in these regions
for MDD participants, see Fig. 6. Therefore, our
model opens a new avenue toward detecting abnor-
mal nodes or components between healthy partic-
ipants and those with disease from a comprehen-
sive functional-morphological perspective, which
can help us detect the potential connectome-based
MRIbiomarker and gain new insights into themech-
anisms of some brain disorders. Importantly, these
findings are beyond the single modal imaging/layer
and traditional percolation, thus providing a novel
understanding and convergent results for MDD.
Furthermore, ourmodel is easy to expand to the net-
works with three or more layers and could be used
to investigate the similarities, differences and com-
prehensive understandingof various brain disorders.
Note that the current study is a single case valida-
tion. Besides, our brains are highly personalized and
a large sample size is needed to infer robust conclu-
sions [37,38]. Further study should use larger sam-
ple sizes or different brain disorders to verify our
model.

We also applied our model to a bilayer so-
cial network composed of users who are active

on both Twitter and FriendFeed [39]. Among the
150 684 common users of the two networks, there
are 8 308 326 and 5 270 665 links in the Twitter and
FriendFeed layers, respectively. The results can be
found in Fig. 6 in the Supplementary Information.
We find that the percolation transition occurs at
much lower activation probability p than that of the
brain network data. This is a direct consequence of
the average degree in the social network (z ≈ 110
and 70 in the two network layers, respectively) be-
ing substantially higher than in the brain network
(z = 6, 8, 10, 20).The Twitter-FriendFeed network
reaches the steady state after four generations, and
the discontinuous percolation transition is also ab-
sent.This can be a result ofmany links (about 37%of
the total number) that occur in both network layers,
which render subsequent process generations equiv-
alent to the first two or three generations of the case
discussed in Fig. 4.

These results suggest that to observe non-trivial
behaviors in iterative percolation, oneneeds to study
multiplex networks with limited layer overlap. To
fully understand the relation between the layer over-
lap and the dynamics of the iterative percolation re-
mains a future challenge. The human brain network
reaches the steady state after 10 generations. At this
point, the percolation transition is more abrupt than
that for smaller iteration values. With respect to the
small size of the studied system (1024 nodes), the
possibility that a larger brain network (achievable
with a higher imaging resolution) would display yet
more abrupt transition, and thus suggest a discontin-
uous percolation transition in the thermodynamic
limit, remains open. However, whether the perco-
lation transition is discontinuous or not, the pro-
cess provides a series of methods to analyse network
structures.

DISCUSSION
In summary, we introduce a history-dependent per-
colation model to study the critical behavior of
the percolation transition on multiplex networks.
The percolation process is run iteratively on differ-
ent layers. Instead of focusing solely on the steady
state, we pay more attention to finite generations,
each of which can be considered as an independent
model. For example, n= 1 corresponds to the com-
mon model of information or disease spreading on
monopartite networks; n = 2 can be used to de-
scribe the interplay between the spreading of disease
and immunity information [20]; n = 3 can be used
to model the information spreading on multiplex
social networks where users communicate through
multiple channels.Thegeneral example ofmultilayer
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propagation is the one where online communica-
tion influences user offline behavior and then cou-
ples back to online communication. A typical exam-
ple of n = ∞ is the study of cascading failures in
coupled networks [12]. In this sense, ourmodel pro-
vides a unified framework to study the percolation
process on multiplex networks.

We investigate both ER networks and SF net-
works with power-law exponent 2 < γ < 3. The
results reveal that the intermediate state of the
recursive process can be also used to uncover mean-
ingful structures, and therefore the percolation tran-
sition should be defined and studied in each gen-
eration. For any finite generations, the percolation
transition on random networks shows a continuous
transition and belongs to the same universality class,
while SF networks have the critical point trending to
zero as the network size grows. When n= ∞, a dis-
continuous transition exists for both networks [12].
In essence, this is because the percolation transition
of generation n emerges from the supercritical phase
of the percolation of generation n− 1. As a result, it
inherently cannot generate a new universality class
[15]. However, when n diverges, n− 1 is also diver-
gent, this relation of the critical state is broken.Then,
the new phenomenon, that is discontinuous transi-
tion, emerges.

Furthermore, on one hand, our result indicates
that the continuous transition found in real systems
couldbe the result of a combinationofmany sequen-
tial processes, see an example in Ref. [20]. On the
other hand, to observe the abrupt percolation tran-
sitions in real multiplex networks, for which the gen-
eration cannot go to infinite actually, themodel may
need to be extended by, for example, considering
the space embedding of network layers [40], model-
ing relative importance of inter- and intra-layer con-
nections [41] or introducing cores of ‘high quality’
edges [42]. Our model can be easily extended to a
general case with more layers. This would make it
possible to use the generalized model to analyse the
percolation transition on a temporal network com-
prising several layers corresponding to different time
points [43].

Beyond the theoretical analysis, we showed that
the outcomes of the iterative percolation process
can be used to characterize real networks whose
percolation properties differ markedly between sys-
tems (such as the used brain scan and social net-
work data) as well as between various samples of
networks from the same class (such as the brain
scan data of a healthy participant and a participant
with a mental disorder). The proposed model can
thus become a useful tool for evaluating and, more
importantly, comparing structural properties ofmul-
tiplex networks.The model represents an important

step towards understanding the history-dependent
dynamic processes on multiplex networks, and may
prove useful in important practical applications
like link prediction [44], vital node identification
[45] and community detection [46] in multiplex
networks.

METHODS
Mean-field theory analysis
To obtain the exact analytical solution of the criti-
cal point, we consider the giant cluster in the infinite
system [12]. We introduce first the function F(x)
which returns the size of the giant cluster of a net-
work ensemble with given degree distribution, when
a fraction x of nodes is chosen at random and used
to construct the giant cluster. Note that the fraction
obtained by function F(x) is with respect to the ac-
tually used nodes. The size of the giant cluster with
respect to the original network is thus xF(x).

Leaving the specific form of F(x) aside, which
may be a group of equations or a dataset obtained by
MonteCarlo simulations,wenow lay out the general
analytical framework for the history-dependent per-
colation process. As the network’s layers are in gen-
eral different, we assume that layers A and B have
functions FA(x) and FB (x), respectively. In addi-
tion, we label the size of the giant cluster in genera-
tion n as ψn, and the fraction of the nodes that can
be used to construct the giant cluster in generation n
as Sn− 1.The function F(x) allows us to write

ψn = Sn−1F(Sn−1), (2)

where F(x) is FA(x) and FB (x) for odd and even
generations, respectively. All we need to do now is
to find Sn− 1 for each generation n.

For an infinite system, the giant cluster of gen-
eration n can only emerge from the giant cluster
of generation n − 1. So, leveraging this recursive
relationship, the fractionof nodes that canbe used to
construct the giant cluster Sn for an odd n satisfies

Sn = S0FA(Sn−1), (3)

and for an even n,

Sn = S0FB (Sn−1). (4)

In addition, if one removes a fraction 1− p of nodes
in the initial configuration to trigger the iterated per-
colation, then S0 = p. If the removal is for links, such
as theonesused inFigs 4 and5, the functionF(x) for
the diluted network should be replaced with F(px)
as the degree distribution has changed [8].



1304 Natl Sci Rev, 2020, Vol. 7, No. 8 RESEARCH ARTICLE

If functions FA,B (x) are known, equations (2)–
(4) can be used to calculate the size of the giant
cluster for any generation and also the critical point.
For ER networks F(x) can be obtained by solving a
self-consistent equation; however, there is no closed
form for SFnetworks and the theoretical analysis can
be done only around the critical point, see Section I
of the Supplementary Information for details.

If function F(x) has a non-trivial critical point
xc below which F(x) = 0 and F(xc ) = 0, such as
ER networks, equations (3) and (4) show that the
critical point of generation n corresponds to a non-
zero Sn− 1, that is the supercritical state of genera-
tion n − 1. This indicates that there is no essential
difference between the percolation transition of the
two generations, and consequently the first genera-
tion and also all finite generations of iterative perco-
lation demonstrate a continuous percolation transi-
tion. Figure 2a takes ER networks as the example to
show that the resulting ψn agrees well with numeri-
cal simulations of the process.

The recursive relations equations (3) and (4)
have their fixed point S = F(S), which corresponds
to the infinite generation, and allows us to find the
fixed point for ER layers z∞

c ≈ 2.455 and Sc =(
1 + √

1 − z∞
c /2

)
/2 ≈ 0.715, see Section I-C of

the Supplementary Information for details.The crit-
ical order parameter that corresponds to the found
Sc is ψ∞

c = (Sc )2 ≈ 0.512, which also agrees well
with numerical simulations shown in Fig. 2d. The
giant cluster size thus undergoes a discontinuous
phase transition at z∞

c .
For SF networks, the recursive relations equa-

tions (3) and (4) can also be used to obtain the crit-
ical point of each generation. As F(px) has a zero
critical point for 2 < γ < 3, we can find that all the
finite generations give a vanished critical pointpc =0
by using equations (3) and (4), recursively (see Sec-
tion I-B of the Supplementary Information for de-
tails). By examining the fixed point of equations (3)
and (4), we can also find that the infinite genera-
tion demonstrates a discontinuous percolation tran-
sition, see Section I-C of the Supplementary Infor-
mation for details.

The order parameter at the critical point
As a topological phase transition, there is no free
energy that can be used to determine the type of
the percolation transition. Therefore, the transition
with a step-like changing of the order parameter at
the critical point is often treated as a discontinuous
percolation transition [2,12,16,24,41,42], and the
continuous percolation transition is for that with
continuous changing at the critical point. That is to
say, the discontinuous percolation transition has a
non-zero order parameter at the critical point, and

a zero order parameter can be found for continuous
percolation transition.

However, because of finite sizes of the systems
used in the simulation, both types of percolation
transitions could give a non-zero order parameter
at the critical point. In this way, we use the finite-
size scaling to check the types of percolation tran-
sition in simulations. For a continuous transition,
the order parameterψ c must decrease with increas-
ing system size and becomes zero for an infinite sys-
tem, which corresponds to ψ c ∝ N−ε where ε =
1/3 for random networks [25]. For a discontinuous
transition, the order parameter ψ c takes a bimodal
distribution, the values around zero correspond to
the non-percolating realizations and the larger val-
ues for the percolating realizations. Excluding the
non-percolating realizations, the finite-size scaling
thus takes the formψ c ∼ψ c0 +O(N−ε), whereψ c0
is the order parameter at the critical point for an infi-
nite system.Therefore, Fig. 2b–d just indicate that all
the finite generations take the continuous percola-
tion transition, and the infinite generation takes the
discontinuous percolation transition. However, be-
cause of finite-size effects, larger systems are needed
to observe a better finite-size scaling.

SUPPLEMENTARY DATA
Supplementary data are available atNSR online.
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