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Abstract

An important part of surgical training in ophthalmology is understanding how to profi-
ciently perform cataract surgery. Operating skill in cataract surgery is typically assessed by
real-time or video-based expert review using a rating scale. This is time-consuming, subjec-
tive and labour-intensive. A typical trainee graduates with over 100 complete surgeries, each
of which requires review by the surgical educators. Due to the consistently repetitive nature
of this task, it lends itself well to machine learning-based evaluation. Recent studies utilize
deep learning models trained on tool motion trajectories obtained using additional equip-
ment or robotic systems. However, the process of tool recognition by extracting frames
from the videos to perform phase recognition followed by skill assessment is exhaustive.
This project proposes a deep learning model for skill evaluation using raw surgery videos
that is cost-effective and end-to-end trainable. An advanced ensemble of convolutional
neural network models is leveraged to model technical skills in cataract surgeries and is
evaluated using a large dataset comprising almost 200 surgical trials. The highest accuracy
of 0.8494 is observed on the phacoemulsification step data. Our model yielded an aver-
age accuracy of 0.8200 and an average AUC score of 0.8800 for all four phase datasets
of cataract surgery proving its robustness against different data. The proposed ensemble
model with 2D and 3D convolutional neural networks demonstrated a promising result
without using tool motion trajectories to evaluate surgery expertise.

1 INTRODUCTION

Cataract surgery is the most common procedure in ophthalmol-
ogy which involves the removal of the crystalline lens of the eye
that opacifies over time which leads to reversible visual impair-
ment and is replaced with an artificial lens [1]. The crystalline
lens of the human eye refracts light to focus a clear image on
the retina.

All ophthalmology residents are trained by faculty surgeons
to proficiently perform the procedure of cataract surgery and
learn the various surgical steps, tools and techniques. Although
there may be slight variations in the surgical tools and tech-
niques, the actual steps of the surgery are fairly universal. A
trainee surgeon may display the medical knowledge of how to
perform the surgical steps; however, intraoperative skills using
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microsurgical instruments, fine dexterity and microscope con-
trol require additional assessment that cannot be based on
knowledge alone.

Skill assessment can be performed by analysing the intraop-
erative surgical videos conducted by the trainee surgeons. Many
rating scales established for evaluating surgical skills depend on
the subjective interpretation and opinion of the faculty surgeons
appointed to observe the surgery. For example, ICO-OSCAR
[2] is a validated rating scale where an assessor examines the
intraoperative surgery based on predefined steps, categories
and scale descriptions. The human graders mark the perfor-
mance of the trainee following the assessment criteria; however,
some of the descriptors can be interpreted in different ways
which involve a subjective grading component. The implica-
tion is that cataract surgical training can be time-consuming,
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labour-intensive and prone to human error. Thus, there is a
need for the objective evaluation of technical skills apart from
subjective measures.

Video classification algorithms can be applied to efficiently
analyse surgical videos recorded for educational purposes
instead of manual analysis. Convolutional neural network
(CNN) models have been proven to be effective in identify-
ing actions in videos [3–5]: this inspires this work to use action
recognition models for skill assessment. The surgical instru-
ments in microscope videos are tiny compared to objects in
public video datasets such as UCF-101, where objects appear
in an identifiable and larger shape. Thus, state-of-the-art video
classification models might not perform well in evaluating
microscope videos. Scholars have tried to perform classifica-
tion on publicly available cataract datasets that were published in
the Cataract Grand Challenge competitions [6]. Videos in these
datasets are well recorded with good lighting conditions, lens
focus and HD resolution, which is not necessarily possible in
locally collected real-time surgeries. Authors in [7] have reported
that the published surgical tool detection models do not gener-
alize well on the datasets collected from local hospitals. Thus,
the publicly available pre-trained neural network model may not
work well on raw cataract surgery videos.

Most prior work on surgical video analysis is dedicated to
surgical workflow analysis and skill assessment by perform-
ing automated recognition of instruments and surgical phases,
tool usage and tool movement with different pre-trained 2D
CNN’s [7–12]. Some earlier work uses 3D CNNs for skill cat-
egorization [13, 14]. Frequency analysis or motion analysis of
surgical activities has also been used for encoding motion fea-
tures from surgery videos [15, 16]. Although some work (e.g.
[10, 12]) investigated real surgery video clips using 2D CNN,
the majority of them rely on simulated surgery video collected
from robotic systems. In summary, few prior algorithms were
designed using real surgery data and none of the works deployed
an ensemble of 2D and 3D CNNs for predicting classification
scores on raw cataract surgery data. Kim et al. performed an
objective assessment of technical skills on the videos of cataract
surgeries using information about instrument usage (position or
velocity) such as tool trajectories as a representation of a video
frame [13]. Alternatively, they propose an approach using optical
flow encodings to represent video frames. The authors reported
a higher accuracy of 84% using tooltip velocity information;
their approach using an optical flow representation computed
directly from video data achieved an accuracy of only 63%. To
obtain tool motion information, trajectories of surgical instru-
ments were determined from crowd-sourced annotations. This
information, however, requires additional equipment for tool
tracking or manual annotation. This is not feasible for most skill
assessment setups.

This work presents a CNN model to categorize surgeons as
novices or experts and thus systematize the process of grading
surgical competence in raw cataract surgery videos. The pro-
posed model is cost-effective and end-to-end trainable. This
tool is intended to assist human raters in grading by producing
highly accurate results.

FIGURE 1 Phases in the cataract surgery dataset. Video frames from
capsulorrhexis formation (upper left), phacoemulsification (upper right),
hydrodissection (lower left), and viscoelastic insertion (lower right).

2 METHODS

2.1 Dataset preparation and preprocessing

The dataset consists of 197 recordings of microscopic video of
varying lengths with a frame rate of 29 fps and a resolution of
1920 × 1080 recorded during cataract surgery [9]. These videos
were collected as part of the routine clinical workflow. Only
recordings that involved multiple surgeons, were incomplete or
failed were excluded. There were seven faculty surgeons and
five trainee surgeons who participated in the study for recording
surgical procedures. The dataset has skill-level annotations, indi-
cating whether each surgery was performed by a novice or an
expert. This was done by appointment status. Fourth-year and
fifth-year residents, who require direct supervision when per-
forming surgery, were considered novices. Attending surgeons,
who do not require supervision during surgery, were consid-
ered experts. While there are 13 phases annotated in the dataset,
this work utilizes data from four phases which can be consid-
ered the most salient steps for identifying operative competence
in cataract surgery: capsulorrhexis formation, phacoemulsifi-
cation, hydrodissection and viscoelastic insertion (Figure 1).
Several steps are followed to prepare the dataset, as described
below.

1. Videos of each surgical phase are trimmed from the raw
surgery video using the phase’s start time and end time
indicated in the annotations.

2. Each video was segmented into video clips with a duration
of 16 s. Each of these video clips is treated as a single data
sample representing the original phase-wise video. The label
of each video clip is based on the appointment status of the
surgeon who performed the surgery.
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3. Each video is downsampled to 1 fps, such that there are 16
frames in each 16-s video.

4. Temporal padding of the nth frame in a video clip is per-
formed so that each video sample can be represented using
16 frames only. This is necessary due to the varying lengths
of each surgical phase across patients.

5. The 16 frames are extracted from each video snippet and
stored as images in an individual folder for each video.

Original videos of the expert class were shorter in length
leaving fewer snippets in the data category than the novice
recordings, so the samples were up-sampled by applying a
random rotation of up to 5 degrees to handle data imbalance.

2.2 Ensemble model for skill assessment

Model ensembling is often considered a powerful technique
to form a noise-invariant and robust model. We deployed an
ensemble of two deep 2D CNN-LSTM models and one 3D
CNN model for performing skill assessment in surgical videos
(Figure 2). We utilized model ensembling with a basic bagging
approach where separate models work on the same training set
parallelly and the outputs from the last layer of each model
are concatenated to produce the final prediction scores. In the
ensemble model, all the models learn different features from the
same input, which helps to reduce the variance and improve the
performance of video classification to a greater extent. The pro-
posed ensembling approach is highly inspired by C3D [17] and
more precisely T3D [18] that have fused features from both 2D
and 3D convolutional networks to design a competent video
classification model that has outpaced many state-of-the-art
models. The first model is a 2D CNN model where convolu-
tion is applied in a time-distributed manner. The second model
is developed employing the first model as a baseline. These 2D
CNN models can learn spatial features. We use a shared LSTM
layer between these two models to analyse the frame-level fea-
tures temporally. Finally, we integrate a simple 3D CNN model
with the first two models, designed using 3D convolutional
layers.

A sequence of 16 frames from each input video is fed to
both the 2D CNN-LSTM models and the 3D CNN as a sepa-
rate input. An earlier work uses two separately trained networks
for modelling spatial and temporal features individually [3];
however, this approach needs the optical flow images to be pre-
computed and it requires the RGB videos to be incorporated
with the optical flow images as the input to the models. This
strategy has excessive memory needs which is impractical when
a large dataset is utilized. Therefore, our work does not utilize
separately computed optical flow images so that the network
can be made end-to-end trainable and efficient.

2.3 Basic 2D CNN with LSTM

This model is designed using time-distributed convolutional lay-
ers along with a filter size of 3 × 3 that allows a sequence of

frames to be processed by a 2D CNN. The same base con-
volutional block is repeated a few times to deepen the CNN
structure (see Figure 2a). The dropout layer is associated with
each batch norm layer as an advanced regularization approach.
Features learned from the last convolutional block of this model
are passed down to the concatenation layer before it is fed to a
shared LSTM layer for analysing the temporal aspects.

2.4 2D CNN with Inception V4 and LSTM

This model is built with some modifications to the first 2D
CNN model (see Figure 2b). An Inception block is incor-
porated between each time-distributed convolutional layer for
performing feature extraction which is inspired by Inception V4
[19]. We have utilized the basic inception module, Inception A
module and Reduction module from Inception V4, which are
designed to resolve the issue of computational expenses while
efficiently learning patterns at various scales using different fil-
ters. The output layer after the last inception block in Figure 2b
is concatenated with the output layer from the first model. This
concatenated output is then fed to a shared LSTM layer.

2.5 3D CNN

The 3D CNN contains similar convolutional blocks as the first
2D CNN-LSTM where 3D layers are used instead of 2D lay-
ers (see Figure 2c). They are like the 2D CNNs, where features
from both spatial and temporal dimensions are extracted by
performing 3D convolutions with a filter size of 3×3.

3 IMPLEMENTATION DETAILS

The proposed model is implemented in TensorFlow on the Dig-
ital Research Alliance of Canada Graham cluster. The author’s
thesis explains the finest details about the implementation [20].
Greyscale images were used with a resolution of 128 × 128.
ReLU is used as an activation function while sigmoid activation
is used in the output layer only. The single LSTM has 64 nodes
with a dropout value of 0.2. RMSprop is used as an optimizer
function with a learning rate of 0.0001 and binary cross-entropy
being the loss function. The ensemble model was trained end-
to-end, and the following parameter space was searched: using
100–200 epochs, batch sizes of 4, 6 and 8, and a dropout
probability ranging from 0.2 to 0.3 for the convolution layers.

We experimented on three model configurations. First,
we use an L2 kernel regulariser with a value of 0.001 to the
kernel to avoid overfitting. Second, we add batch normalization
with dropout following all convolution blocks to improve the
learning mechanism of the model following the idea of Chen
et al. [21]. We opted to augment the data such that the model
could better learn patterns in the data without exaggerating
the memory requirements. To this end, we compute and apply
HOG descriptors for image frames to the image sequences.
This augments spatial features in the frames with minimal
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FIGURE 2 Ensemble model: (a) 2D convolutional neural network (CNN) LSTM, (b) 2D CNN LSTM with Inception V4 Modules, and (c) 3D CNN.

extra computation resources. HOG is a feature descriptor that
emphasizes the shape of any object in a given image and hence
augments the spatial features in video frames which is crucial
for microscopic recordings.

A five-fold trial-out cross-validation strategy was used with
the same data partitions for all splits (i.e. at each iteration, 80%
of the data is used for training and validation, while 20% of
the data is used for testing). Subsequently, we have also per-
formed a leave-one-surgeon-out cross-validation strategy and
have reported the result. This evaluates how well the model gen-
eralizes to never-before-seen surgeons. The reported accuracies
and other performance metrics were averaged over all folds.

4 RESULTS AND DISCUSSION

The model for surgical skill assessment is trained and evaluated
using video data from four cataract phases. The model classifies
the video data as either expert or novice. First, the validation

TABLE 1 Scores for all three models.

Model names 2D CNN

2D CNN–

Inception 3D CNN

Train Acc. 0.9400 0.9571 0.9608

Valid Acc. 0.7500 0.7819 0.7405

Abbreviation: CNN, convolutional neural network.

accuracy of the model is computed using capsulorrhexis data
for all the model configurations and hyperparameters discussed
above. Table 1 illustrates the performance of each component
of the ensemble. Table 2 shows performance under various
model configurations. As seen in Table 2, the baseline training
accuracy is 95.0%, which is higher than the 77.8% validation
accuracy. L2 regularization reduces the generalization gap
between the accuracy scores. It makes the model more stable
and reduces the memory requirements during training where
the total number of model parameters changes from 18.6
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TABLE 2 Model scores with different settings.

Approach Baseline

L2

Regulariser

Batch norm

+ Dropout

HOG

filter

Train Acc. 0.9500 0.9681 0.9685 0.9999

Valid Acc. 0.7777 0.8214 0.8400 0.8900

TABLE 3 Skill assessment scores on all four phases.

Phase name Train acc Val. acc. Test acc. Sensitivity AUC

Capsulor. 0.9999 0.8960 0.8100 0.8340 0.8700

Phacomul. 1.0000 0.9400 0.8494 0.8833 0.9000

Hydrodiss. 0.9999 0.9072 0.8130 0.8473 0.8820

Viscoelast. 1.0000 0.9100 0.8300 0.8677 0.8897

TABLE 4 Test accuracy for skill assessment on all five folds for all phases.

Phase Name Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Avg.

Capsulor. 0.8700 0.8200 0.8000 0.7900 0.7700 0.8100

Phacomul. 0.8100 0.8072 0.8000 0.9600 0.8700 0.8494

Hydrodiss. 0.7760 0.7590 0.9000 0.8000 0.8300 0.8130

Viscoelast. 0.8200 0.8202 0.8000 0.8300 0.8800 0.8300

to 12 million. Interestingly, combining batch normalization
and dropout in the convolution blocks also improved the
model’s performance, and the model performance was further
improved by applying HOG filters on the image frames.

Following these experiments, once the model configuration
and hyperparameter settings are finalized, the test accuracy is
computed for all four phases using the optimal configuration of
the model. The same model gets trained individually using data
from each phase following the same optimal configuration. The
average classification results for all phases are demonstrated in
Table 4 as an average over all cross-validation folds. The data
in all four surgical phases are different as they have different
video durations and include dissimilar surgical steps and tools.
The videos for capsulorrhexis are on average 156.3 s while for
phacoemulsification, they are 729.5 s on average. The valida-
tion and test accuracy for the other three phases were consistent
with the model accuracy for capsulorrhexis data (Table 3). The
model showed notable results with an average AUC score of
88.00% and a sensitivity score of 85.80% overall data for all
phases (Tables 3 and 4). The consistency in the overall results
for all phases implies that the model is robust to different types
of surgical phases.

The result from the surgeon out cross-validation on capsulor-
rhexis data is depicted in Table 5. However, the results from the
model are not as good as they were for trial-out cross-validation

TABLE 5 Skill assessment scores on surgeon-out cross-validation.

Surgeon Id A B C D E F G

Test Acc 0.7502 0.7203 0.7789 0.6917 0.6910 0.7740 0.7423

FIGURE 3 Real-time prediction on an unseen video sample identifying
novice.

in Tables 2–4 since the number of surgeons who participated in
the surgery recordings was only 12.

For further analysis of how the model results can be exploited
to assist surgical evaluation, the real-time prediction result from
a surgical video is depicted in Figure 3.

A 147-s video was trimmed into 16-s clips and video duration
was plotted in the x-axis as 16-s snippets. In Figure 3, it is visible
that for the first two video clips (video clip durations 0–16 and
17–32 s), the prediction score is higher than 0.5 identifying an
expert-level (Expert Score is 1) surgical performance; however,
for subsequent video clips, the score is within 0.30–0.45, which
implies the surgical performance during those times was at the
novice level (Novice Score is 0). This prediction can be utilized
to identify exactly at what time the surgeon showed novice-
level proficiency during the surgery and, thus, what parts of the
surgery the trainee must practice more to achieve proficiency.

The outcome of our work indicates a substantial improve-
ment over earlier results for skill assessment. Earlier research
work reported a similar accuracy for skill classification by
utilizing motion trajectories obtained from tool tip positions
in the surgery videos [13]. However, their video-level accuracy
was 63% only. Therefore, an average testing accuracy of 82.6%
is adequate given the fact that the proposed model can be even
better than the human rating consistency (which was found to
be 71% on a separate dataset) [20]. Our model yields reasonable
accuracy for skill assessment on four different phases on a
larger dataset, and it does not need tool trajectories to be com-
puted from raw surgeries for predicting operator proficiency.
Another skill analysis was conducted on our dataset in an earlier
experiment using a late supervision approach [9]. The highest
skill classification accuracy achieved from the earlier work was
63.3%.

One of the primary limitations of this project is the ground-
truth annotation for skill level. These annotations do not
provide fine-grained information about skill level. It is also pos-
sible that some of the staff or faculty surgeons might not truly
be experts, and some residents may be very proficient toward
the end of their training. Another limitation is the small size of
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the dataset (only seven experts and five novices participated).
Finally, the model is not designed to predict skill classification
scores on an entire surgery video.

5 CONCLUSION

The performance of the ensembled model reveals that the
model is effective in capturing intraoperative skills in cataract
surgeries without human grading input. An ensemble of 2D and
3D convolutional networks with different sizes of convolution
filters can successfully study technical skills in cataract surgeries
without using tool motion trajectories for evaluating expertise
in surgeries. Histogram descriptors turned out to be effective
for augmenting visual appearance in the data which improved
the model’s ability to assess surgical proficiency with an increase
in accuracy. One of the noteworthy achievements of this work
is obtaining consistent results from four phases of cataract
surgery. This work shows the feasibility of deployment as a
tool in the certification of cataract surgery proficiency, where
a trainee has their learning curves monitored using the pro-
posed model prior to final proficiency evaluation by an expert
preceptor.

Future work involves predicting a more granular skill score
such as skill level on a rating scale (e.g. ICO-OSCAR), collect-
ing data from more unique surgeons and from more than one
hospital to formulate a more generalized algorithm for surgi-
cal skill recognition, and developing a video classifier that can
predict skill level from an entire surgery video.
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