
Research Paper

Evaluation of aortic 18F-NaF tracer
uptake using PET/CT as a predictor of
aortic calcification in postmenopausal
women: A longitudinal study

Marina Cecelja1 , Amelia Moore2 , Ignac Fogelman3, †,
Michelle L Frost4 , Glen M Blake2 and Phil Chowienczyk1

Abstract

Introduction: Aortic calcification as detected by computed tomography is associated with arterial stiffening and is an

important predictor of cardiovascular morbidity and mortality. Uptake of 18F-sodium fluoride (18F-NaF) in the aortic wall

reflects metabolically active areas of calcification. The aim of this study was to determine if 18F-NaF uptake in the aorta is

associated with calcification and progression of calcification as detected by computed tomography.

Methods: Twenty-one postmenopausal women (mean age 62� 6 years) underwent assessment of aortic 18F-NaF

uptake using positron emission tomography/computer tomography at baseline and a repeat computed tomography

scan after a mean follow-up of 3.8� 1.3 years. Tracer uptake was quantified by calculating the target-to-background

(TBR) ratios at baseline and follow-up. Calcification was assessed at baseline and follow-up using computed tomography.

Results: Over the follow-up period, aortic calcium volume increased from 0.46� 0.62 to 0.71� 0.93 cm3 (P< 0.05).

However, the change in calcium volume did not correlate with baseline TBR either unadjusted (r¼ 0.00, P¼ 1.00) or

adjusted for age and baseline calcium volume (beta coefficient¼�0.18, P¼ 0.42). TBR at baseline did not differ between

participants with (n¼ 16) compared to those without (n¼ 5) progression in calcium volume (2.43� 0.46 vs. 2.31� 0.38,

P¼ 0.58). In aortic segments identified to have the highest tracer uptake at baseline, calcium volume did not significantly

change over the follow-up period (P¼ 0.41).

Conclusion: In a cohort of postmenopausal women, 18F-NaF uptake as measured by TBR in the lumbar aorta did not

predict progression of aortic calcification as detected by computed tomography over a four-year follow-up.
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Introduction

Aortic calcification is an independent predictor of car-

diovascular morbidity and mortality,1–6 improving risk

classification for cardiovascular events by 14–15%.1,7,8

Within the aorta, the prevalence of aortic calcification

increases with age and can occur in both the intimal

and medial layers of the aortic wall. Intimal calcifica-

tion occurs in association with atherosclerosis and may

affect plaque rupture.9 Medial calcification occurs in

association with elastin fragmentation10 and is associ-

ated with stiffening of large arteries independently of

atherosclerosis.11–13 Large artery stiffness predisposes
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to the development of isolated systolic hypertension
and is an independent predictor of cardiovascular mor-
bidity and mortality.14 Despite the negative impact of
vascular calcification and its association with cardio-
vascular outcomes there are currently no therapies
that target aortic calcification.

Aortic calcification is now recognised to be an active
process that resembles osteogenesis.15 The current gold
standard measure of calcification is computed tomog-
raphy (CT). However, this technique is limited to
detecting existing macro-calcification and is insensitive
to tissue undergoing novel mineralisation. Recent data
suggest that 18F-sodium fluoride (18F-NaF) position
emission tomography combined with computed tomog-
raphy (PET/CT) has the potential to detect areas of
biologically active calcification, which may be more
susceptible to treatment.16 In bone, 18F-NaF is incor-
porated into exposed hydroxyapatite. In the vascula-
ture, 18F-NaF absorbs to areas of micro-calcification
and calcified deposits within plaque and localises adja-
cent to areas of existing calcification.16 This technique
therefore, represents a potentially important tool for
non-invasive in vivo imaging of arterial calcification
and its impact on plaque vulnerability and large
artery function. The aim of this study was to determine
if 18F-NaF uptake in the aorta is associated with calci-
fication and whether it predicts progression of calcifi-
cation as detected by CT.

Methods

Twenty-one women who had previously undergone
18F-NaF PET/CT imaging for the assessment of bone
mineralisation were studied and invited for a follow-up
scan. Dates of the first and last scans in this prospective
study were May 2009 to March 2015. Exclusion criteria
included previous research X-ray exposure that
exceeded 10 mSv, any contraindication to PET/CT
and poor quality of baseline PET/CT image. The
study was approved by St Thomas’ Hospital
Research Ethics Committee, and written informed con-
sent was obtained from all subjects. The study was
conducted according to the principles of the 1975
Declaration of Helsinki.

PET CT scan acquisition

Baseline hybrid PET/CT with 180 MBq of 18F-NaF
were performed as part of separate research studies
conducted at the Osteoporosis Unit, Guy’s Hospital,
London, UK.17–19 All scans were performed on a GE
Discovery PET/CT scanner (General Electric Medical
Systems, Waukesha, WI, USA). Subjects had an intra-
venous injection of 180 MBq 18F-NaF (three partici-
pants had 90 MBq) approximately 60 min prior to

static PET/CT scan of the abdominal aorta referenced
to lumbar spine region L1 to L4. Low-dose CT images
were acquired for attenuation correction and quantifi-
cation of calcium within the aorta. PET images were
reconstructed by filtered back-projection using a
Hanning 6.3-mm filter. This resulted in 47� 3.27mm2

slice for each frame with pixel size of 2.73mm for PET
and 0.98mm for CT in the transaxial plane. Analysis of
the static scans provided quantitative information of
bone turnover using standardised uptake values (SUV).

A follow-up CT scan was performed after an aver-
age follow-up of 3.8� 1.3 years later using the same CT
scanner with patients in a supine position with arms
raised. A non-enhanced CT scan of the lumbar region
(140 kV, 80mA) was used to acquire transverse slices of
the abdominal aorta over the same region as on the
first visit.

Quantification of tracer uptake in the
abdominal aorta

Retrospective and follow-up PET and CT images were
viewed using the open-source DICOM viewer OsirixX
(Osirix Imaging Software, Geneva, Switzerland). For
quantification of aortic tracer uptake PET and CT
images were fused together. Tracer uptake was quanti-
fied by a single reader using previously published meth-
ods.20 For each 3.27mm image slice, mean
standardised uptake value (SUVmean) and maximum
standardised uptake value (SUVmax) of 18F-NaF was
obtained by placing a region of interest around the wall
of the aorta (Figure 1). The SUV measure is a well-
recognised semi-quantitative measure of uptake cor-
rected for radioactive decay and normalised to the
amount of injected activity and body weight.21 To get
the background blood activity of sodium fluoride
tracer, SUVmean was measured in the vena cava and
averaged for at least 8 consecutive slices. For this a
region of interest (ROI) was placed within the centre
of the vena cava in an area devoid of significant spill
over activity. Tracer uptake was then quantified by cal-
culating the mean target-to-background ratio
(TBRmean) and maximum target-to-background ratio
(TBRmax) as ratios of SUVmean and SUVmax in aorta
and vena cava, respectively. In areas where tracer
uptake in the vertebrae appeared to spill into the
abdominal aorta a region of interest was drawn to
include as much of the aorta as possible while avoiding
activity in the vertebrae. Baseline and follow-up images
were matched using anatomical landmarks on the CT
scans and only matched images were analysed. For
active vessel segment analysis, the slice with the greatest
tracer uptake at baseline was identified and three con-
secutive slices were used for analysis centred on the
slice with the maximum uptake. On the follow-up
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scan the same three slices were analysed for

calcification.

Quantification of calcium score from CT imaging

The CT scan was used to produce the CT attenuation

correction for the PET imaging and also as a diagnostic

scan for aortic calcification. Calcification was defined

as any region over 1mm2 within the aorta with atten-

uation �130 Hounsfield units and quantified in cubic

millimetres to give the calcium volume score (voxel

volume� number of voxels �130 Hounsfield units).22

Statistical analysis

All analysis was performed using Stata (version 14).

Subject characteristics are presented as mean�
standard deviation if they approximated a normal dis-

tribution. Categorical data were presented as n (%).

Continuous variables were compared between the

two time points using Student’s paired t-test and cat-

egorical variables using Wilcoxon-signed-rank test.

Correlations between calcium score and radiotracer

uptake were assessed using Spearman’s rank correla-

tion coefficient because calcium score was not normally

distributed. The present study had 90% power to detect

a significant (P< 0.05) correlation of 0.65 between

tracer uptake and progression of calcification, previ-

ously reported for tracer uptake in the aortic valve.23

Additionally, participants were split into those with

and without progression according to whether there

was an increase or no change in calcium volume

change over the follow-up period. Progression in calci-

um volume was quantified as the change in in calcium

volume between the baseline and follow-up visit.

Association between progression in calcium volume

score and baseline calcium and radiotracer uptake

values were assessed using multivariable regres-

sion analysis.

Reproducibility study

To determine the intra-observer reproducibility, a

PET/CT scan was performed in four additional partic-

ipants at two time points 12 weeks apart. The scan

protocol was identical to that of the second visit.

Reproducibility was assessed by calculating intra-

observer variability, defined as the absolute difference

between measurements divided by the mean of the two

measurements,24 for TBRmax, TBRmean and calci-

um score.

Results

Characteristics of participants at baseline and follow-

up are listed in Table 1. At baseline, the average age of

participants was 62.6� 6.0 years, two participants

(10%) were current smokers, two (10%) were on treat-

ment for hypertension and four (19%) were on treat-

ment for hypercholesterolemia. Average aortic calcium

volume was 0.46� 0.62 cm3 and radiotracer uptake

measured as TBRmax and TBRmean were 2.40� 0.44

and 1.23� 1.34, respectively. After an average follow-

up of 3.8� 1.3 years, the number of participants on

statin treatment increased to 5 (24%) participants

and the number on bisphosphonate therapy increased

to 6 (29%). Aortic calcium volume progressed to 0.71

� 0.93 cm3 (P< 0.05).

Correlation between radiotracer uptake, calcium

score and progression in calcium score

Even though there was a significant increase in aortic

calcium volume over the four-year follow-up period,

with average aortic calcium volume increasing from

0.46� 0.62 to 0.71� 0.93 cm3 (P< 0.05), there was no

correlation between change in calcium volume with

Figure 1. Example of fused 18F-NaF Pet and CT scan of the
abdominal aorta at baseline (a) and a CT scan at follow-up (b) in
separate individuals with the region of interest indicated.
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baseline radiotracer uptake values (r¼ 0.00 (95% con-

fidence interval �0.46–0.46), P¼ 1.00 for TBRmax and

r¼�0.12 (95% confidence interval �0.54–0.31),

P¼ 0.61 for TBRmean, Figure 2). The results did not

change when analysis was repeated excluding women

on bisphosphonate treatment or excluding women on

statin treatment. In multivariate regression analysis

(incorporating age and baseline aortic calcium

volume as covariates), progression of aortic calcium

volume score did not significantly correlate with base-

line TBRmax (beta coefficient¼�0.18, P¼ 0.42).
Progression in aortic calcium volume over the four-

year follow-up was observed in 15/21 participants.

Participants with no progression in aortic calcium

volume did not have any calcium at baseline as

detected by CT. TBRmax and TBRmean did not differ

between participants with progression (n¼ 15) com-

pared to non-progressors (n¼ 6) in aortic calcium

volume (TBRmax 2.36� 0.37 vs. 2.51� 0.60, P¼ 0.48

and TBRmean 1.23� 0.12 vs. 1.24� 0.13, P¼ 0.86). In

aortic segments identified to have the highest radiotrac-

er uptake at baseline, there was a trend towards an

increase in calcium volume however this did not

reach statistical significance (calcium volume at base-

line 0.08� 0.15 cm3 vs. 0.12� 0.26 cm3 at follow-

up, P¼ 0.41).

Reproducibility study

There was good reproducibility for the quantification

of aortic TBRmax, TBRmean and calcium score in the

four participants with repeat PET-CT scans. The mean

absolute difference between repeat measurements on

the same participant for aortic TBRmax, TBRmean and

calcium score was 0.12 (range: 0.01–0.33), 0.16 (range:

0.06–0.33) and 0.05 cm3 (range: 0–0.17 cm3), respective-

ly. The relative intra-observer variability for the abso-

lute difference was 9.2% (95% confidence interval (CI):

�6.9–25%) for TBRmax and 12.7% (95% CI: 1.0–25%)

for TBRmean. The intra-observer variability for aortic

calcium score was 6.2% (95% CI: �14–26%).

Discussion

Aortic calcification, detected using CT or X-rays, is

associated with increased cardiovascular morbidity

and mortality.1–6 The mechanism by which the pres-

ence of aortic calcification is predictive of cardiovascu-

lar outcome is unknown but is likely to involve

negative effects of calcification on plaque rupture, arte-

rial stiffening and predisposition to isolated systolic

hypertension.9–14 Despite the prognostic importance

of vascular calcification there are currently no interven-

tions available to reduce or prevent vascular calcifica-

tion. Developing novel therapeutic interventions

targeting vascular calcification may further be impeded

by current imaging techniques, which are limited to

detecting macro-calcification rather than biologically

active areas of novel mineralisation, which may be

more susceptible to therapy.
PET/CT imaging using 18F-NaF is a possible new

approach to detect metabolically active calcification

non-invasively. The 18F-NaF radiotracer has been

shown to absorb to calcified deposits within plaque

Table 1. Demographic and clinical characteristics.

Baseline Follow-up P-value

Age (years) 62.6� 6.0 66.3� 6.1 <0.0001

Height (cm) 160.3� 7.1 160.0� 7.6 0.41

Weight (kg) 65.7� 7.5 65.4� 7.8 0.72

Current smoker, n (%) 2 (10) 2 (10) 1.00

Hypertension, n (%) 2 (10) 2 (10) 1.00

Statins, n (%) 4 (19) 5 (24) 0.31

Bisphosphonates, n (%) 0 (0) 6 (29) <0.05

TBRmax 2.40� 0.44 – –

TBRmean 1.23� 0.12 – –

Calcium volume (cm3) 0.46� 0.62 0.71� 0.93 <0.05

Figure 2. Correlation between change in aortic calcium volume
(mm3) over a four-year follow-up and baseline aortic 18F-NaF
tracer uptake (TBRmax).
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using electron microscopy, autoradiography, histology,
and preclinical PET/CT.16 Furthermore, Derlin
et al.25,26 showed radiotracer uptake, as detected by
PET, to co-localise with regions of macro-
calcification detected by CT in carotid arteries of 269
oncology patients. In patients with aortic valve disease,
imaged radiotracer uptake correlates with aortic valve
disease severity, Framingham risk score and prior car-
diovascular events.20,27 In the present study, average
aortic TBRmax was 2.40� 0.44, which is similar to
that previously reported from histological studies16

and in the aorta and large arteries (range 2.20–
2.40),20,26,28–30 but higher than reported in the aortic
valve of asymptomatic individuals (1.56; range 1.41–
1.64).27 The average TBRmean of 1.23� 1.34, which
was similar to that observed in the aortic valve (1.23;
range 1.2–1.59).27 We found limited evidence of a cor-
relation between baseline calcium volume and radio-
tracer uptake score. This is similar to findings from a
recent study by Oliveira-Santos et al.31 that showed
18F-NaF tracer uptake in the coronary, aortic and
carotid arteries but found no correlation between
tracer uptake and calcium score. Similarly, Li et al.28

and Ishiwata et al.30 showed no correlation between
calcium density and radiotracer uptake in the aorta
and large arteries. A direct correlation between NaF
vascular uptake and CV risk score factors was demon-
strated by Morbelli et al.32 However, the same study
did not find any correlation between TBR and calcium
load (similarly to the present study).32 In contrast,
Dweck et al.20,27 found a strong positive correlation
between tracer uptake and calcification in both the
aortic valve and coronary artery in patients with
aortic stenosis and controls. However, the authors
also noted that a large proportion of participants
with extensive calcification had normal radiotracer
uptake.20 These inconsistent findings may be due to
the correlation between available surface area to the
isotope and radiotracer uptake, which may be greater
in the valve compared to the aorta.16 Another study
has demonstrated that only plaques with a lower den-
sity display a relevant tracer uptake in cross-sectional
analysis.33 This phenomenon was attributed to the dif-
ferent ‘active’ and ‘passive’ calcification patterns that
prevail in initial and consolidated plaques, and this
might explain the inconsistent findings reported.

The ability to predict future calcification cannot be
inferred from cross-sectional observations and is of
importance since a surrogate marker for interventions
to prevent and/or reverse calcification that may have to
be sustained over the longer term would be invaluable.
In the present study, over an average follow-up of 3.8
years, even though there was a significant increase in
aortic calcification as detected by CT, radiotracer
uptake within the aorta did not correlate with

progression in calcification. Additionally, aortic radio-
tracer uptake did not differ between individuals with
and without progression in aortic calcification and
areas identified to have the highest radiotracer uptake
did not have a significant change in calcium volume.

Previous studies that assessed the relationship
between radiotracer uptake and progression of
macro-calcification have reported inconsistent findings.
Dweck et al.23 investigated the progression of aortic
valve calcification in 18 patients with aortic sclerosis
and stenosis. After one year, baseline radiotracer
uptake correlated with progression of valvular calcifi-
cation. However, the authors noted areas of high tracer
uptake that did not develop into detectable change in
calcification. Li et al.28 showed that, despite significant
radiotracer uptake and radiotracer progression in the
aorta, carotid and iliac arteries, there was limited evi-
dence that this was associated with the progression of
macro-calcification detected by CT in 19 myeloma
patients (P¼ 0.07). Ishiwati et al.30 found that out of
96 identified hotspots of radiotracer uptake, only 19
developed calcification as detected by CT. In areas of
existing calcification tracer uptake did predict progres-
sion of calcification as detected by CT, but this analysis
was limited to areas of existing macro-calcification and
did not include the whole of the aorta. The discrepancy
between these findings may be due to differences in the
distribution of intimal and medial calcification between
the aorta and other vascular beds where 18F-NaF
tracer uptake may not be able to penetrate calcification
in the media of the aorta.16

Conclusion

In a cohort of 21 postmenopausal women, 18F-NaF
uptake as measured by TBR in the lumbar aorta did
not predict progression of aortic calcification as
detected by CT over a four-year follow-up period and
is unlikely to be a useful marker of calcification in
small-scale interventional studies of aortic calcification
confined to the lumbar region.

Limitations

We recognise several limitations of the present study.
This study is limited to female participants and may
not be generalisable to men or other populations, in
particular high-risk patients. The proximity of the
aorta to the vertebrae may mean that our results may
have been influenced by overspill from tracer uptake in
the vertebrae and we cannot necessarily extrapolate our
results to the thoracic aorta or to other areas of vascu-
lar calcification. However, care was taken to exclude
these sections of the aorta and the observed aortic
tracer uptake was similar to other studies that have

Cecelja et al. 5



reported tracer uptake in large arteries distant from the

vertebrae.25,27 In addition, we found good repeatability

of radiotracer uptake from scans performed on two
separate occasions with the limits similar to that previ-

ously reported in patients with aortic sclerosis, stenosis

and controls.27 The CT scans were performed at differ-

ent radiation doses. However, previous studies have
found that low-dose scans have produced equivalent

calcium scores compared to higher dose scans and

this is thus unlikely to impact the present study.34 In

addition, the CT scan settings did not vary between

subjects and thus any systematic effect is unlikely to
contribute to between subject variability.

Furthermore, the calcium volume score does not take

into account any changes in calcium density. The

sample size of the present study was relatively small.
However, the upper 95% CI for the correlation

between 18F-NaF TBRmax and progression of calcium

score accounted for 21% of the variability in the pro-

gression of calcification. This suggests that, even if a

positive correlation were demonstrated in a larger
sample size, 18F-NaF tracer uptake would not be a

useful marker in small-scale interventional studies. In

addition, this is the largest study to date to investigate

the association between tracer uptake and progression
in calcification.
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