
RESEARCH ARTICLE

Accounting for measurement error to assess

the effect of air pollution on omic signals

Erica PonziID
1,2,3*, Paolo Vineis3,4, Kian Fan Chung5,6, Marta Blangiardo3

1 Department of Biostatistics, Epidemiology, Biostatistics and Prevention Institute, University of Zürich,
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Abstract

Studies on the effects of air pollution and more generally environmental exposures on health

require measurements of pollutants, which are affected by measurement error. This is a

cause of bias in the estimation of parameters relevant to the study and can lead to inaccu-

rate conclusions when evaluating associations among pollutants, disease risk and biomark-

ers. Although the presence of measurement error in such studies has been recognized as

a potential problem, it is rarely considered in applications and practical solutions are still

lacking. In this work, we formulate Bayesian measurement error models and apply them to

study the link between air pollution and omic signals. The data we use stem from the “Oxford

Street II Study”, a randomized crossover trial in which 60 volunteers walked for two hours

in a traffic-free area (Hyde Park) and in a busy shopping street (Oxford Street) of London.

Metabolomic measurements were made in each individual as well as air pollution measure-

ments, in order to investigate the association between short-term exposure to traffic related

air pollution and perturbation of metabolic pathways. We implemented error-corrected

models in a classical framework and used the flexibility of Bayesian hierarchical models

to account for dependencies among omic signals, as well as among different pollutants.

Models were implemented using traditional Markov Chain Monte Carlo (MCMC) simulative

methods as well as integrated Laplace approximation. The inclusion of a classical measure-

ment error term resulted in variable estimates of the association between omic signals and

traffic related air pollution measurements, where the direction of the bias was not predictable

a priori. The models were successful in including and accounting for different correlation

structures, both among omic signals and among different pollutant exposures. In general,

more associations were identified when the correlation among omics and among pollutants

were modeled, and their number increased when a measurement error term was addition-

ally included in the multivariate models (particularly for the associations between metabolo-

mics and NO2).
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1 Introduction

Health effects of air pollution are a major public health issue and have received increasing

attention over the past decades [1, 2, 3]. In this context, the reliable estimation of risk factors

and associations between environmental exposures and health conditions requires the collec-

tion of a large amount of exposure data on a relatively high number of study subjects, which is

often impractical and subject to several sources of error or imprecision. This can lead not only

to the presence of bias in the estimation of parameters relevant to the study but also to inaccu-

rate conclusions when evaluating associations among pollutants, disease risk and biomarkers.

Although the presence of measurement error in such studies has been discussed in the recent

literature and is now recognized as a potential problem [4, 5], it is often not accounted for in

standard analyses, as pointed out in [6, 7].

Different approaches to the problem have been adopted and different methods and tech-

niques are available in the literature, for instance [8] suggested a semi-parametric approach to

different types of error in radiation data, [9] proposed a Bayesian hierarchical model to retrieve

error-free estimates of the health effect, [10] worked on a quantification of measurement error

effect via validation studies, and [11] proposed a method to account for the error in time-series

studies on air pollution. Studies focusing on the effect of traffic-related air pollution (TRAP)

are particularly challenging on this matter and often rely on surrogate measures of pollutants,

as well as on the approximation of personal exposures. [12] identified three main sources of

error in the TRAP exposure assessment, namely a) the difference between measured and true

ambient exposure levels, b) the difference between aggregate personal exposure and the expo-

sure of a given individual, which are mostly due to approximation and classified as Berkson

errors, and c) the difference between ambient concentration and average personal exposure,

classified as a classical error. In this context, different methods have been proposed and a wide

set of measurement error techniques have been employed, including among others the simula-

tion extrapolation algorithm [13], regression calibration and validation data [14] and Bayesian

methods [9, 15]. On the other hand, none of these studies was applied to omics data, as they

focused on estimating disease risks and did not include any molecular data.

In the present study, we propose to apply measurement error techniques to correct for

error in environmental exposures when considering their association with high-throughput

molecular data. This is particularly challenging due to the high dimensionality of the data, as

well as to the correlation among omics sampled from the same individual. We use a Bayesian

framework to address the problem, which provides a very flexible way to account for measure-

ment error and model different error types and dependency structures in the data. In particu-

lar, Bayesian hierarchical models seem ideal in these context, as they provide a straightforward

way to include dependency between exposures, but also between different response variables.

Moreover, the possibility to include prior knowledge on the error components can result in

better models and more accurate estimations. Additionally, the possibility of modelling several

fixed and random effects, as well as different link functions, adds flexibility and general appli-

cability to the methods.

In this paper, we apply this approach to the Oxford Street II study, a randomized crossover

trial where omics and air pollution measurements are employed to investigate the association

between short-term exposure to traffic related air pollution and perturbation of different

omic signals [16, 17]. We implement error-corrected models in a classical measurement error

framework and generalize such models to account for dependencies among pollutants, as well

as among response omic variables. This provides a novel way of dealing with high-dimension

omic data, by including them into a Bayesian hierarchical formulation. The possibility to

model more omic signals at the same time also allows to account for dependency among
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signals. Moreover, the inclusion of a measurement error term, which is straightforward and

flexible thanks to the hierarchical formulation, has not been proposed so far in the presence of

high-throughput biological data.

We implement our models using Monte Carlo Markov Chain (MCMC) in JAGS, but to

increase the speed of the computation, we also use the integrated nested Laplace approxima-

tion approach (INLA) [18], which has recently been used to implement measurement error

models, for example in [19] and [20].

The remainder of this paper is structured as follows: we first describe the study and the

model to assess the association between different air pollutants and omic measurements,

focusing on metabolic pathways. The paper then illustrates the Bayesian hierarchical model

we formulate to account for measurement error by including a classical error (see Section 3

for definition and theoretical consideration on classical measurement error). We expand

such model to a multi-response model, accounting for a dependency structure among differ-

ent omic signals, and to a multi-variate model to account for dependency among different

pollutants. We then show the results based on the data set from the Oxford Street II study

and finally conclude with several discussion points and potential expansion of the proposed

method.

2 Metabolic pathways in the Oxford Street II study

2.1 The study

The data we use here stem from the Oxford Street II Study, a randomized crossover trial within

the EXPOsOMICS consortium [21]. In this study, 60 volunteers walked for two hours in a traf-

fic-free area (Hyde Park) and in a busy shopping street (Oxford Street) of London. The walk-

ing experiments were performed on non-rainy weekdays only, from November to March, to

avoid confounding from rain or pollen. Participants were divided into three groups: 1) healthy

volunteers (n = 20) with a normal lung function and without a history of ischemic heart dis-

ease (IHD); 2) subjects with chronic obstructive pulmonary disease (COPD) (n = 20), without

a history of IHD; and 3) subjects with clinically stable IHD over the past six months (n = 20)

without COPD. Healthy participants were recruited using advertising in public areas within

the Royal Brompton Hospital. Individuals with COPD or IHD were recruited from existing

databases or outpatient respiratory and cardiology clinics at the Royal Brompton and Harefield

NHS Foundation Trust. All current smokers or former smoker for less than 12 months were

excluded, as well as people with high occupational levels of TRAP. Inclusion criteria based on

age and forced vital capacity were also applied (see [16]). Information on age, sex, body mass

index (BMI), blood pressure, distance walked, diet and medication use was collected for each

participant.

For each individual and each exposure session, three blood samples were collected: two

hours before walking, two hours after walking and 24 hours after walking; at the same time

TRAP measurements were taken, namely on nitrogen dioxide (NO2), particulate matters PM10

and PM2.5 and black carbon (CBLK). Such measurements are likely to suffer from classical

measurement error, as they were collected using a portable size-selective airborne particle sam-

pler and therefore rely on each participant’s precision when performing and reporting the

experiment, besides being potentially subject to the sources of error in TRAP identified by [12]

and reported above. Moreover, as reported in [16], “NO2 concentrations were taken from a

stationary monitoring site on Oxford Street repeatedly passed during walks on Oxford Street.

Because no monitoring was available in Hyde Park, NO2 concentrations were taken from the

nearest representative location sited in a school playground”, which suggests the possible pres-

ence of a combination of the two error types. Although we do not consider the presence of
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Berkson error for the scope of this manuscript, the proposed models can easily be generalized

to such a case. Finally, real-time measurements of noise, temperature and relative humidity

were obtained at each exposure session. On such samples, different untargeted omic analyses

were performed, including metabolomic analyses, on which we focus here. A more detailed

description of the study is given in [16], where it is also reported that the study was approved

by the UK National Research Ethics Service and that informed written consent was obtained

from all participants. [17] conducted analyses to assess the short term metabolomic changes

due to exposure to TRAP and identified various associations between air pollution concentra-

tions and levels of metabolites in blood.

2.2 The model

The association between metabolite levels and TRAP exposures was assessed in a mixed

model framework, using a Bayesian approach and including random effects for the individ-

ual, as well as for the location and time point of each measurements. Fixed effects were sex,

age, BMI and health group (defined as a categorical variable, with healthy, COPD and IHD

as levels), as well as average air pollution concentrations one year before the experiment,

used as background or long-term exposure, and instantaneous measurements of the expo-

sure of interest. The four exposures reported above (CBLK, NO2, PM25 and PM10) were con-

sidered separately.

The model was formulated as follows:

mij � Nðmij; s
2
eÞ

mij ¼ aþ β>Xij þ bexpoZij þ gi þ dj;
ð1Þ

with mij being the metabolic feature of individual i at measurement j, Z the exposure, X
including sex, age, BMI and health group, as well as the annual measurement of the exposure

of interest and �ij � Nð0; s2
eÞ. Random effects were included for the individual γ and for the

measurement indicator δ, depending on the location and time point of each measurement,

for each individual. Normally distributed priors with mean equal to zero and variance equal

to 1000 were assigned to the regression coefficients β, and vague inverse gamma priors with

shape and scale equal to 0.01 were assigned to the precisions of the random effects. A graphi-

cal representation of the model is reported in Fig 1, while a similar, frequentistic approach

to the same model was used in [17]. Given the extreme high dimensionality of the omics

dataset we pre-selected only the signals which reported p-values smaller than 0.5 in the fre-

quentist analysis. Our choice of threshold was motivated to reduce the high dimensionality

in the data and limit the analyses to a lower number of omic signals, as it would be very

impractical to consider all metabolic features at the same time. This value is large enough

to avoid false negatives. On the other hand, the hierarchical nature of our analyses leads to

shrinkage and reduces the issue of false positives, further justifying the use of a large pvalue.

To determine whether there was evidence of an association between the signal and the expo-

sure of interest, we used posterior predictive probabilities to calculate Bayesian p-values as

tail posterior probabilities. We then corrected for multiple testing using the Bayesian False

Discovery Rate (FDR) with level 0.05 [22, 23]. This model, and all models reported in this

paper, were formulated using JAGS and INLA and the code to implement them is reported

in the supplementary material. From now on, we will denote this model as the “naive”

model, to indicate the fact that it does not account for the presence of measurement error,

while we will use “corrected” for the model which includes a component for measurement

error.

Bayesian measurement error models for air pollution
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3 Classical measurement error

To model the presence of measurement error, we included an additional component in the

model by formulating a classical measurement error for the different pollutants, i.e. assuming

that the exposure variable Z can be observed only via a proxy W, such that

W ¼ Z þ U; ð2Þ

with U � Nð0; s2
uÞ. In the presence of a classical measurement error, an attenuation of the

effect of the error-prone variable is expected, as the presence of the additional error variance

biases the estimates of the regression parameters towards zero [24]. In fact, bearing in mind

that b̂expo ¼
sðW;mÞ
s2
W

, s2
W ¼ s

2
Z þ s

2
U , and assuming that the error in W is independent of m and

of any other variables, it is quite straightforward to see that the error-prone regression parame-

ter will be given by

b̂?expo ¼
sðW;mÞ
s2
W

¼
spðZ;mÞ
s2
Z þ s

2
U

� b̂expo ;

and that the quantity that is estimated is b
?

expo ¼ lbexpo with l ¼ s2
Z=ðs

2
Z þ s

2
UÞ. It is important

to underline that, even if an attenuation is usually expected, upward bias is also a possible con-

sequence of classical measurement error even in relatively simple models, due for example to a

correlation between covariates [24]. It is therefore necessary to disentangle the error variance

from the true variance measured by the proxy in order to obtain unbiased estimates of the

regression coefficients. To do so, we formulated a Bayesian hierarchical model, as the hierarchi-

cal formulation and the possibility to include prior knowledge provide a flexible way to model

measurement error [25, 26]. Such formulation was included in the model by adding a latent

variable for the exposure, namely a normally distributed variable with mean equal to 0 and var-

iance equal to the error variance. The underlying level of the structure was instead the same as

Fig 1. Bayesian formulation of the basic model to assess association between metabolic levels and TRAP exposure. Squares

are used to indicate data, while circles represent random variables.

https://doi.org/10.1371/journal.pone.0226102.g001
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in model (1), resulting in the following hierarchical structure:

mij � Nðmij; s
2
eÞ

mij ¼ aþ β>Xij þ bexpoZij þ gi þ dj

Wij ¼ Zij þ Uij

Uij � Nð0; s2
UÞ:

ð3Þ

A vague gamma prior was used for the error variance, with shape and scale parameters

equal to 0.01. For all the other variance components and regression coefficients, the same pri-

ors were used as in the naive model reported in the previous section.

A graphical representation of the model is reported in Fig 2.

4 Multivariate models

4.1 Dependency among omic signals

Another source of imprecision and possible bias in the assessment of the association between

omic signals and TRAP exposure is potentially given by the formulation of independent mod-

els for each omic feature. Dependency across metabolic features is very likely to occur in prac-

tice, first of all because 5749 different features are sampled and analysed from the same 60

individuals, and second because they all reflect metabolic pathways and phenomena that

are highly correlated in each individual. The flexibility and the layer structure of Bayesian

Fig 2. Bayesian formulation of the classical error model. Z is not observed, W is the observed proxy for the exposure.

https://doi.org/10.1371/journal.pone.0226102.g002
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hierarchical models makes it straightforward to account for such dependency, namely by

using a multivariate response for the omic signals and introducing dependency in their vari-

ance covariance structure. The resulting model is a generalization of model (3) and was formu-

lated as follows:

mij � Nðmij;S
2

ei
Þ

mij ¼ aþ b
>Xij þ bexpoZij þ gi þ dj

Wij ¼ Zij þ Uij

Uij � Nð0; s2
UÞ;

ð4Þ

where the response variable followed a multivariate normal distribution m� N(μ, Se), with

Se denoting the covariance matrix of the omics signals and all variances were given a Wishart

prior with shape and scale equal to 0.01, in consistency with the univariate model. Note that

this formulation with multivariate signals evaluates all the hypoteses at the same time rather

than testing each one separately. This implies that model (4) does not require any correction

for multiple testing, unlike the initial univariate model, as it naturally accounts for dependency

across omics. Therefore, no Bayesian FDR was used in this context and associations were sim-

ply assessed by means of posterior predictive distributions.

To model the presence of the error in the exposure variable, we used the same reasoning as

before and introduced a latent variable for the exposure, namely a normally distributed vari-

able with mean equal to 0 and variance equal to the error variance. The error structure was

again given by (2), following a classical error structure and a vague gamma prior was used for

the error variance, with shape and scale parameters equal to 0.01, again in consistency with the

formulation and priors used in the univariate model.

A graphical representation of the model is reported in Fig 3.

4.2 Dependency among different exposures

Dependency structures are very likely to occur in such studies also between different environ-

mental exposures, as different works in the literature recently pointed out [27, 28]. In particu-

lar, all the TRAP measurements show a general common trend based on traffic conditions, as

well as weather, humidity and temperature, but also based on other confounding factors regis-

tered in each particular day. Moreover, individual-specific factors as activity patterns or time

spent in specific locations, as well as respiratory rates can cause a variation in all pollutants at

the same time, affecting in our specific case the measurements taken before and after the walk

experiment. Such dependency appears to be very frequent between particulate matters of dif-

ferent sizes, as they are induced by similar mechanisms and conditions, besides being mea-

sured using the same techniques and instruments, and between PMs and black carbon. The

Bayesian hierarchical structures employed in the previous sections can be further generalized

to account for such correlation, by modelling more TRAP exposures at the same time. The

resulting model was obtained as a generalization of (4) and formulated as follows:

mij � Nðmij;S
2

ei
Þ

mij ¼ aþ b
>Xij þ bexpo

>Zij þ gi þ dj

Wij ¼ Zij þ Uij

Uij � Nð0;S2

UÞ:

ð5Þ
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All coefficients and variables were modeled as before and the same priors were given to all

of them. Again, the flexible formulation of Bayesian hierarchical structures allows to include as

many pollutants as desired and to inform the model on their correlation and variances based

on our knowledge. In analogy with the first univariate model, we added a latent variable for

the multivariate exposure, following a normal distribution with mean equal to 0 and variance

equal to the error variance. To account for dependency among pollutants, U was multivariate

and modeled as a vector with four dimensions, corresponding to the four different pollutants.

The variance covariance matrix of the multivariate exposure, as well as of the multivariate

error, was given an uninformative Wishart prior to account for correlation among pollutants.

A graphical representation of the model is reported in Fig 4.

5 Implementation

We implemented our models using JAGS, as well as INLA. In terms of implementation and

computation time, INLA performed faster than traditional MCMC samplers, specifically JAGS,

but it showed more issues in the matter of space and memory burdens. In particular, when

considering dependency among different omic signals, it was possible to implement the error-

corrected model in INLA with only up to 4 signals, while a substantially higher number of sig-

nals were included in the JAGS model. In particular, for the single omic model INLA took

about a quarter of the time employed by JAGS. Nevertheless, when including omic-specific

measurement error terms, the implementation of more than 4 signals was not possible in

Fig 3. Bayesian formulation of the multivariate model with classical measurement error.

https://doi.org/10.1371/journal.pone.0226102.g003
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INLA, while it was still feasible in JAGS, although taking very long computational times.

These aspects should be taken into account when considering studies with larger sample sizes,

where such issues will have even higher impact on the analyses. In this matter, dimension

reduction techniques might be employed to select only relevant omic signals, prior to the sug-

gested analyses. All code to reproduce the analyses reported above using both frameworks are

provided in the supplementary material.

6 Results

The inclusion of a classical measurement error term resulted in different estimates of the asso-

ciation between omic signals and TRAP measurements. Note that the presence of classical

measurement error in pollutant measures can cause bias in different directions, and that the

effect, as well as the direction of the error correction, is therefore not clear a priori. Fig 5 shows

the estimates of regression parameters βexpo obtained by models (1) and (2) for the selected

omics. The error corrected models reported stronger associations between TRAP measure-

ments and metabolomic signals, although with higher uncertainty, which reflects the uncer-

tainty on the error component. While the naive models identified after FDR correction

respectively 0, 2, 5 and 24 associations for CBLK, PM25, PM10, NO2, the error corrected

models only identified 0, 1, 3 and 5 associations respectively, reflecting the propagation of

uncertainty about the error into the posterior distributions of parameters of interest. These sig-

nals included a signal from the phenylalanine cluster already found to be associated with NO2

in [17], as well as an unknown signal whose association with PM10 was also detected by [17].

This also shows that some associations might be affected by an opposite impact and that atten-

uation is not the only possible consequence of measurement error. This is also reflected by the

width of credible intervals which naturally increases when accounting for measurement error,

as a consequence of the uncertainty about this component. When more information is avail-

able about the prior distribution of the error, such uncertainty will most likely decrease and

potentially smaller credible intervals will be identified.

Such correction acquired a more defined pattern when accounting for the dependency

among different omic signals. In such case, the error corrected model retrieved estimates

Fig 4. Bayesian formulation of the multivariate model with classical measurement error and multivariate exposure.

https://doi.org/10.1371/journal.pone.0226102.g004
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Fig 5. Regression coefficients with and without classical error modeling in JAGS. Estimates are reported with their 95%

confidence intervals.

https://doi.org/10.1371/journal.pone.0226102.g005
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which were constantly lower than the estimates from the naive models for most omic signals.

When comparing the two naive models, with and without accounting for the dependency

among signals, the retrieved estimates did not differ substantially. Fig 6 shows the estimates of

regression parameters βexpo obtained by model (4) with and without including a level for the

error component. In this case the naive model identified respectively 1, 2, 2 and 4 associations

for CBLK, PM25, PM10, NO2, while error corrected model identified respectively 6, 1, 4 and 51

associations. Note that the inclusion of a dependency structure among omic signals and of

an error term in the model identifies more associations than the univariate models, because

the presence of such dependencies can obscure associations among omic signals and TRAP

measurements.

When accounting for dependency among signals and pollutants, all signals that were

associated with any of the pollutants were considered. The correction reported by the error

corrected models was in most cases higher than in the previous models. Accounting for

dependency among pollutants and for correlated measurement errors also retrieved more

associations than the other models, leading to higher estimates also between signals and pol-

lutants that were not associated in the first cases. Fig 7 shows the difference in estimates of

regression parameters βexpo obtained by model (5) with and without including a level for the

Fig 6. Regression coefficients with and without classical error modeling in JAGS. Estimates are reported with their 95% confidence intervals. A correlated

structure among omic signals is assumed.

https://doi.org/10.1371/journal.pone.0226102.g006
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Fig 7. Regression coefficients with and without classical error modeling in JAGS. Estimates are reported with their

95% confidence intervals. Dependencies among omic signals and among different TRAP exposures are modeled, as well as

dependency among error components on different pollutants in the corrected model. All signals that were associated with

any of the pollutants are reported for all pollutants.

https://doi.org/10.1371/journal.pone.0226102.g007
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error component. In this case the naive model identified respectively 18, 0, 25 and 16 associa-

tion for CBLK, PM25, PM10, NO2, while error corrected model identified respectively 7, 1, 22

and 52 associations. This reflects the fact that ignoring the presence of measurement error

can obscure associations between signals and pollutants and lead to an underestimation of

effect sizes, as well as identifying potentially false associations. On the other hand, models

including correlation structures identify even stronger effect sizes when corrected for mea-

surement error, as well as a generally higher number of significant associations between sig-

nals and pollutants, which might be obscured when ignoring the presence of bias. In general,

more associations were identified when the correlation among omics and among pollutants

were modeled, and their number increased when a measurement error term was additionally

included in the multivariate models.

7 Discussion

We implemented Bayesian hierarchical models to account for the presence of error in mea-

surements of traffic related air pollution. This kind of formulation allows to model several

dependency structures in a very flexible way, as well as to include an additional component

for measurement error. In our work, we applied such methodology to the study of how

TRAP measurements are associated with high-throughput molecular data, namely metabolic

features sampled from the exposed individuals in a randomized crossover trial. Our applica-

tion to the Oxford Street II study showed that the inclusion of a classical error term in the

models resulted in corrections of the regression estimates whose extent and direction was

not clear a priori, which underlines the importance of explicitly modelling the error compo-

nent rather than predicting its effect based on prior beliefs. Regression estimates were also

corrected by the inclusion of dependency structures in the models, namely dependency

among different omic signals and among pollutants. The explicit formulation of such models

was possible thanks to the flexible structure of Bayesian hierarchical models, and it was rela-

tively straightforward to embed dependency and measurement error correction in the same

hierarchical structure.

This is certainly a major advantage of using Bayesian hierarchical models, which provide

a general adaptable way to formulate a broad range of models and structures, as in our case

measurement error or dependency structures, and more generally any additional random

effect which might be needed in the analysis. Moreover, the use of a Bayesian framework

allows to incorporate prior knowledge in the analysis, for example about the error compo-

nent and parameters, as well as to reflect the prior uncertainty in the posterior distributions

of parameters of interest. This requires some knowledge about the error component, in

order to properly formulate the measurement error level and to assign reasonable priors.

Note that this requirement is not specific to the Bayesian framework, but rather to any error

modelling strategies. In fact, it is always necessary to know the error structure (i.e. classical

measurement error and its distribution), as well as the error variance, in order to formulate

an identifiable error model [29]. In practice, it is not always straightforward to obtain such

information, and often assumptions about the error distribution and parameters are vague

or potentially incorrect. The advantage of Bayesian models is that the uncertainty in such

assumptions can easily be accounted for and propagated to posterior distributions of cor-

rected estimates.

In comparison to general traditional analyses of the association between metabolite levels

and air pollution, and specifically to the work of [17], our models allow to account for the pres-

ence of measurement error. As a consequence, the estimates of associations between metabo-

lite levels and TRAP exposure are corrected and their absolute values are substantially higher.,
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i.e. they indicate a stronger effect of TRAP on metabolomic features compared with no error

adjustment. This practice, and the difference in the results when compared to traditional anal-

yses, show also that ignoring the error can lead to a loss of reproducibility of the studies and to

potentially inconsistent results. Moreover, -instead of considering each omic signal separately,

we propose to model different signals jointly, so that their correlation is accounted for explic-

itly. The inclusion of a correlation among exposures is also new with respect to [17]. While

traditional analyses are useful to select candidate signals associated with TRAP exposures, the

models we suggest in this work explore the texture of this association in more detail, and cor-

rect for biases and correlation structures that might distort their quantification and direction.

The models we propose use a Bayesian framework to model measurement error and correla-

tion structures based on the data at hand and to incorporate prior beliefs with the evidence

given by the observed data. Doing so, it is possible to account for dependencies among differ-

ent omics and among pollutants, which can sometimes obscure associations between them

and which were not taken into consideration in the traditional model, where associations were

assessed separately for each omic signal with each pollutant. Moreover, we included a term for

measurement error, which was not accounted for in the traditional model and which can also

lead to a biased estimation of these associations.

With such framework, it is also possible to treat more general models, for example in terms

of error structures. It is indeed sufficient to modify the error level in the hierarchical structure,

for instance into a Berkson model. Moreover, given the general formulation of Bayesian hier-

archical models, it is possible to include more complex dependency structures, for example

spatial correlation between pollutants, which can be easily included in the Bayesian structure,

especially with INLA [30]. Another possible extension of the method can also be the inclusion

of different types of molecular data, which would require a specific and more complex depen-

dency structure among omic signals.

Supporting information

S1 Appendix. Code for implementation of all models. All models are implemented in JAGS

in the following files, where “naive” stands for the model with no error correction, “multio-

mics” for the multivariate model with dependency among omic signals and “multiexpo” for

the multivariate model with dependency among exposures.

• multiexpo_classicalME.txt

• multiexpo_naive.txt

• multiomics_classicalME.txt

• multiomics_naive.txt

• univariate_classicalME.txt

• univariate_naive.txt

(7Z)
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