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Abstract
Object-place paired associate learning has been used to test hypotheses regarding the

neurobiological basis of memory in rodents. Much of this work has focused on the role of

limbic and hippocampal-parahippocampal regions, as well as the use of spatial information

derived from allothetic visual stimuli to determine location in an environment. It has been

suggested that idiothetic self-motion (vestibular) signals and internal representations of

directional orientation might play an important role in disambiguating between spatial loca-

tions when forming object-place associations, but this hypothesis has not been explicitly

tested. In the present study, we investigated the relationship between allothetic (i.e., distal

and proximal cues) and vestibular stimuli on performance of an object-place paired-associ-

ate task. The paired-associate task was composed of learning to discriminate between an

identical pair of objects presented in 180˚ opposite arms of a radial arm maze. Thus, ani-

mals were required to select a particular object on the basis of spatial location (i.e., maze

arm). After the animals acquired the object-place rule, a series of probe tests determined

that rats utilize self-generated vestibular cues to discriminate between the two maze arms.

Further, when available, animals showed a strong preference for local proximal cues asso-

ciated with the maze. Together, the work presented here supports the establishment of an

object-place task that requires both idiothetic and allothetic stimulus sources to guide

choice behavior, and which can be used to further investigate the dynamic interactions

between neural systems involved in pairing sensory information with spatial locations.

Introduction

Recent theoretical and experimental work has argued that the recollection of previous experi-
ences is composed of at least three fundamental elements: “what,” “when,” and “where” [1–7].
In other words, an event has a particular temporal relationship with other events, and may
have conspicuous spatial and non-spatial components, including the location, who was pres-
ent, and which objects were encountered. Several behavioral and neurobiological investigations
have demonstrated that the elements of past experiences, such as distinct representations of
what, where, and when, and associations between these elements, can be evaluated in
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behavioral tasks in rats which pair specific items (what) and places (where) using a bi-condi-
tional association rule [8, 9]. In this procedure, rats are specifically rewarded when selecting
object A only when it appears in location 1, but not in location 2. In contrast, object B is
rewarded only when it is encountered in location 2, but not in location 1. Thus, animals are
required to select a particular object on the basis of where it is encountered in the environment,
often referred to as an object-place paired associate.

The acquisition and retrieval of object-place paired associates is thought to require a distrib-
uted network of brain regions including hippocampal, parahippocampal, limbic thalamus, and
prefrontal cortical regions [10–15], but the dynamic interactions between these regions during
learning and retrieval are poorly understood. Resolving this issue requires an understanding of
the precise stimulus sources that contribute to the acquisition and expression of paired object-
place associations. Nevertheless, this issue is complicated by the fact that animals can deter-
mine their place, or where they are in an environment, on the basis of a diverse set of idiothetic
(e.g., motor, proprioceptive, vestibular) and allothetic (e.g., vision, tactile, olfaction) stimuli
that can operate in parallel or sequentially during behavior [16–19]. For instance, using an
object-place task, Lee and colleagues [15, 20, 21] demonstrated that reductions in the salience
of distal visual cues (i.e., those that are located along the walls of the testing environment), by
either partially or completely removing the cues, or by increasing the angle between the cues,
significantly increased the number of object selection errors made by rats.

There is considerable evidence that animals can also use idiothetic cues to guide spatial
localization, especially when familiar landmarks are obscured or when entering new environ-
ments [22, 23, 24]. Idiothetic cues can be used to self-localize through a process of path integra-
tion or dead reckoning—that is, animals can track their own movements to maintain an
internal representation of spatial orientation in relation to a known landmark or home envi-
ronment [16, 25–28]. The vestibular system, in particular, produces a signal reflecting the
velocity of head rotation, which can be integrated over time to derive directional orientation,
and disruption of vestibular cues has been shown to impair disambiguation of spatial locations
in navigation tasks [22, 23, 29–32]. Whether idiothetic vestibular cues, and an internally
derived sense of spatial orientation, plays a role in determining place in paired-associate tasks
has not been explicitly tested, but the possibility has been suggested in recent work [9, 12, 32].
For instance, Grieves et al [32] demonstrated that animals rapidly acquired an item-place task
when the spatial locations were oriented in widely different directions, but were slower to learn
when the locations occupied similar directions. Thus, representations of directional orienta-
tion, possibly based on idiothetic vestibular cues, may facilitate the disambiguation of spatial
locations in paired-place associate learning.

The purpose of the present study was to test this hypothesis, and establish a procedure, in
which both idiothetic and allothetic sources can be manipulated and by which the neurobiolog-
ical basis of these processes can be evaluated in future work. Here, we describe a paired-associ-
ate task similar to the work by Lee and colleagues [9, 33, 34], which utilized an 8-arm radial
maze with choice platforms at the end of each arm and a pair of identical objects placed above
food wells in two of the arms. In contrast to previous work, however, we trained rats to dis-
criminate between an identical pair of objects presented in 180° opposite arms of a radial arm
maze. Thus, animals were required to select a particular object on the basis of distinct maze
arm locations, which were also oriented in distinct environmental directions. After animals
acquired the object-place rule, a series of probe tests were therefore conducted to evaluate the
relative influence of allothetic (distal landmarks) and idiothetic (vestibular) frames of reference
in discriminating between the distinct maze arm locations/directions. Because previous studies
have shown that local substratal or surface cues related to the maze can control orientation and
place localization in dry maze tasks [35–38], we also investigated the role of the proximal maze
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reference frame in the object-place task. Here we report that rats utilize self-generated idio-
thetic cues, derived from the vestibular system, to discriminate betweenmaze arms, and when
available, can also use local proximal cues associated with the maze. Importantly, and in con-
trast to previous studies, the absence of altered performance after distal landmark manipula-
tion suggests that idiothetic stimuli provide a robust sources of control in tasks where the maze
arms are oriented by 180°. The present study therefore constrains general assumptions regard-
ing the stimulus sources used in item-place tasks, but also establishes an experimental proce-
dure that can be used in future work to better understand the sensory and neurobiological
basis of object-placememory in rats.

Materials & Methods

Subjects

Subjects were 16 male hooded Long-Evans rats (Harlan, Indianapolis, IN) that were approxi-
mately 160 days of age at the beginning of the experiments. All animals were pair-housed in
plastic cages on a 12 h light:dark cycle with food and water available ad libitum. The Institu-
tional Animal Care and Use Committee (IACUC) at the University of New Mexico approved
all procedures for the studies reported here. During pre-training and experiments, rats were
place on a restricted food diet to a weight of 90% of free ad libitum feeding diet and given access
to water ad libitum.

Radial-Arm Maze, Objects, and Environment

A black Plexiglas radial-arm maze was used in all experiments. The maze was composed of
eight arms (each 40.1cm × 9.30cm, separated by 45° from each other) that radiated from a cen-
ter stage (25cm in diameter). The end of each arm was a rectangular platform (20cm × 30cm),
each containing three recessed food wells separated by transparent vertical Plexiglas dividers
(each 5.1cm × 5.1cm). A transparent Plexiglas door (20cm × 9.5cm) was present at the
entrance of each arm from the center stage. A set of toy objects was presented at the end of two
opposite arms above recessed food wells. The maze was placed in the center of black circular
curtains (5ft in diameter), which was decorated with distinctive visual cues. Two of the visual
cues were square foam boards (38 cm x 38 cm); hung approximately 64 cm above the maze,
decorated with electrical tape in diagonal and crosshatch designs respectively. The third visual
cue was a bed sheet that hung from floor to ceiling along the black curtains, which occupied
~90° of arc. The experimenter stood in front of the floor-to-ceiling bed sheet and also likely
served as a visual cue. The configuration of cues was set-up in a triangular formation equally
spaced around the curtain as seen in Fig 1. A video camera was positioned above the maze
along with a small 100-W incandescent lamp providing illumination.

Handling and Shaping

All rats were handled for 1–2 weeks for 5 minutes per day. Once rats showed signs of comfort
with the experimenter (no defecation/urination), shape training began. Shape training con-
sisted of placing rats in the maze for 20 minutes daily for 7 days with food rewards (quarter
pieces of Fruit Loops) scattered across the maze, including two arms of the maze that remained
open and the three recessed food wells at the end of each arm. As the rats became comfortable
with the maze and consumption of the reward, pieces of food were then strategically removed
from the center stage as well as the maze arms and choice platform, however, pieces of food
remained in the recessed food wells. Once rats were comfortable retrieving and eating food
from the recessed food wells, a metal washer (2.5cm diameter) was placed above the food so
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they were required to move the washer to retrieve the reward. In this phase of training, rats
were given 32 trials per day. A trial consisted of placing a rat in the center stage with all maze
arm doors closed, the experimenter then opened one of the doors, the rat ran to the choice plat-
form and displaced the washer to retrieve the reward. The rat was then gently guided back to
the center stage to consume the food. While one trial occurred the experimenter quickly re-
baited the other arm. After a few days of training, animals began to voluntarily, with little guid-
ance, return to the center stage for consumption, likely due to their natural proclivity to con-
sume large food pieces in enclosed areas of an environment [39, 40]. Once rats were able to
displace the washer 32 times within 20min (inter-trial interval of 20–40sec), training in the
object-place paired association task began as explained below. The maze was cleaned between
animal training sessions. Because the experiment required the rapid removal of maze doors,
rebaiting of the maze, and switching of object positions on the choice platform, the experi-
menter remained in a fixed position within the floor-to-ceiling curtains and next to the maze
(Fig 1).

Object-Place Paired Associate task

Animals were trained in an object-place task [9, 34, 41] in which the washers were replaced
with distinct toy objects (a stack of Dice and a yellow tower; see Fig 1). The toy objects were
placed above the far left and far right food wells in the choice platform (the middle food
well was not used) of two arms located 180° relative to each other. The same two arms
were used throughout training. The location of the toy objects in the choice platform were

Fig 1. Floor plan with arrangement of room cues, objects, and maze position. Three distal landmarks and

experimenter (E) position is shown during training (left panel) and probe tests (right panel). T indicates the

reinforced object-place paired associate during training. R indicates the opposite, or reversal, object. If distal cues

control choice behavior in the object-place task, then the reversal object will be the preferred choice following 180˚

rotation of the distal landmarks during the probe test.

doi:10.1371/journal.pone.0163102.g001
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counterbalanced across trials, and rats were required to displace one of the objects to uncover
the reward. Thus, animals were required to learn a rule associated with each arm—that is, they
had to choose a particular object irrespective of its location in the choice platform (i.e., left or
right food well location), but dependent on the location (i.e., the maze arm) of the object. Since
accurate object displacement requires an association between a particular place in the maze
and object information, this rule is typically referred to as an object–place paired association.
An incorrect object choice was punished by preventing the animal from correcting its response
and obtaining the food reward. In these cases, the rat was blocked and guided back to the start
box with no food reward. The left-right position of objects in the choice platform was pseudo-
randomly selected across trials so as to prevent animals from learning a specific egocentric
response to obtain the food reward. The sequence of arm visits was randomized with two dif-
ferent sequences that were alternated between days.

Distal Landmark Rotation

Animals (n = 10) received training in the object-place task as described above for a total of 10
days followed by two probe tests. To discourage the use of proximal cues, the maze was cleaned
using a mild solution of soapy water and rotated by 45° between training sessions. The maze
was not cleaned between trials, but was cleaned between training sessions for each animal.
After 10 days of training, a landmark rotation test was performed in which animals were first
tested in the object-place task for 16 trials with the distal cues in the trained configuration (Fig
1). After 16 trials were completed, animals were placed back in their home cages while the
investigator rotated the distal environmental landmarks by 180°. Because the experimenter
occupied a fixed position next to the maze during acquisition and may have been viewed as a
stable extramaze cue [42], the experimenter also rotated their position with the distal land-
marks. After approximately 60 min, rats were then returned to the maze where they performed
an additional 16 trials of the 180° rotated object-place task. Animals were not presented the
food reward on the first trial of the probe test, however subsequent trials were rewarded only if
the animal selected the object defined by the distal cues, which for the purposes of clarity in
analysis and presentation, we have termed as the reversal object (Fig 1). The opposite object,
which was reinforced during acquisition, is referred to as the trained object. In other words, the
trained object occupied the same absolute location in the environment across training and
probe testing.

Disorientation

After the landmark rotation test, the same animals were tested in a probe designed to evaluate
the use of vestibular cues for maze arm discrimination. Rats first performed the object-place
task for 8–16 trials, after which animals were placed in their home cage while the investigator
cleaned the maze. In one probe test, the distal cues maintained the same orientation between
sessions, but in the second probe test, the distal landmarks were rotated by 180°. For both
probe tests, after 60 min, animals were transported individually in an opaque covered plastic
box (38cm x 55cm, and 30cm in height) from the colony room to the testing room and were
given a disorientation treatment. The disorientation manipulation consisted of the experi-
menter gently rotating the box in a clockwise and counterclockwise direction for 60sec while
walking around the testing room; this was performed before the first set of trials but not
between trials. The rate of rotation varied but generally ranged between 90–180° per second.
After 60sec, the rats were removed from the box and placed in the center platform, and after
several seconds, animals were tested in the object-place task for 8 trials. A similar disorientation
procedure has been used in a number of studies [29, 30, 43–48] and was used here to disrupt
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the accurate tracking of vestibular cues between the holding room and the testing
environment.

Proximal Cue Rotation

Rats (n = 6) were trained in the object-place task for a total of 8 days followed by two probe
tests. In contrast to the experiments above, the maze was cleaned, but was not rotated by 45°
between training sessions. Thus, in this task, animals could learn to use proximal maze features
(shape or visual asymmetries) to disambiguate arm locations. In the first probe test, the land-
mark rotation experiment was replicated as described above, but the rats were not disoriented.
In the second probe test, the landmark rotation experiment was again replicated, but in addi-
tion to rotating the distal cues, the maze was also rotate by 180°.

Data Analysis

An animals object choice was defined as the displacement of an object in the choice platform,
which was typically done with the snout, conveniently allowing for an explicit characterization
of choice behavior. For each trial, the animals object choice was recorded and the percentage of
correct responses was calculated for daily sessions. The percentage of correct object choices
during task acquisition was subjected to a repeated-measures analysis of variance (ANOVA)
with days as within subject factors. Early in training and prior to learning the object-in-place
rule, rats often show a turn-response bias for a particular side of the choice platform [9, 41, 49].
To determine whether the manipulations and testing procedures conducted in the present
study encouraged, or discouraged, this temporal expression of a turn-response (left turn vs.
right turn), we created a response index bias measure as described in previous studies [9]. The
measure was calculated by taking the absolute value after subtracting the number of choices
made for the left food well from the number of choices made for the right food well and then
dividing the result by the sum of the number of choices. We also calculated the bias index for
the correct object-in-place paired associate by subtracting the number of choices made for the
incorrect object in the arm from the number of choices made for the correct object, and divid-
ing by the total number of choices [49]. Bias indices for response and object-in-placewere sub-
jected to a repeated-measures ANOVA.

On days in which probe experiments were conducted, the preference for the trained object
during the 16 baseline trials before and the first 4 test trials after each manipulation was statisti-
cally compared using a paired-sample t-test (two-tailed). In addition, Chi-Square tests (χ2)
were conducted on probe trials to determine whether object selectionwas significantly associ-
ated with the trained vs. reversal object. Effect sizes for t-tests and ANOVAs were calculated
using Cohen’s d (d) and partial eta squared (η2), respectively. Statistical tests were conducted
using SPSS (23.0, SPSS Inc., Chicago, IL).

Results

Do rats use distal landmarks to discriminate maze arm locations in the

object-place task?

Fig 2A plots the percentage of correct choices in the object-place task over the 10 days of train-
ing. On average, animals showed marked improvement in selecting the reinforced object, and
by Day 10 of training, animals demonstrated a high degree of discrimination between the two
objects based on maze arm location (mean ± standard error of the mean: 95.3 ± 1.34%; see also
S1 Table). This observationwas confirmed by an significant ANOVA yielding a training day
effect for percent correct, F(9, 81) = 43.8, p< 0.001, η2 = 0.83. We also observed an inverse
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relationship for bias measures of object-in-place and response strategies (Fig 2B). Consistent
with previous studies [41, 49], the bias toward performance of a turn-response observed early
in training was largely diminished by the end of testing (Day 1: object-place bias: 0.14 ± 0.04;
turn-response bias: 0.27 ± 0.06; Day 2: object-place bias: 0.14 ± 0.04; turn-response bias:
0.30 ± 0.06), but the preference for the target object associated with the maze arm significantly
increasedwith training. A repeated-measure ANOVA confirmed this observationwith a signif-
icant day-by-strategy effect, F(9, 144) = 37.8, p< 0.001, η2 = 0.70.

We next asked whether animals utilized distal cues to disambiguate maze arm locations in
the paired associate task. Thus, on Day 11, animals were given 16 training trials in the object-
place task with the distal cues in the standard location, followed by 16 trials with the distal cues
rotated by 180°. We hypothesized that if the rule guiding the paired object-place associate is
exclusively determined by distal cues, then animals should reverse their object preference fol-
lowing distal cue rotation (see Fig 1). Fig 3A (left panel) plots the percentage of responses made
toward the trained object before and after distal cue rotation. On average, in the first four trials
after the rotation of the distal cues, animals showed a strong preference for the trained object,
which was comparable to the 16 trial baseline training session (Before Rotation: 98.1 ± 1.33%;
After Rotation: 87.5 ± 5.59%; t(9) = 1.90, n.s.), suggesting that the change in spatial location of
the distal cues had little effect on the object-place behavior of the rats. This was particularly
apparent in the first two trials after distal cue rotation as animals displayed an unambiguous pref-
erence (i.e., 20 out of 20 trials) for selecting the trained object rather than the reversal object (Fig
3A, right panel). Interestingly, preference for the trained object was generally maintained in trials
3 and 4 (15 out of 20 trials; χ2(1) = 5.00, p< 0.05), despite the fact that only the reversal object
was reinforced during the probe session. Together, these observations strongly support the con-
clusion that rats do not preferentially use distal landmarks to define locations within the maze.

Do rats use vestibular cues to discriminate maze arm locations in the

object-place task?

The results above suggest that animals do not exclusively use distal landmarks in this task, sug-
gests that perhaps animals do not make use of distal landmarks in this task, or, alternatively,
that other stimuli additionally contribute to the disambiguation of maze arm locations and
come to control behavior when the distal cues are manipulated. Because the maze was cleaned
and rotated between sessions, proximal cues were unlikely to provide disambiguating informa-
tion. Thus, we hypothesized that animals may have utilized idiothetic cues such as vestibular
information as a disambiguating stimulus. We tested this possibility on Day 12 and Day 13 by
first training animals in the object-place task with the distal cues in the standard trained orien-
tation (see Fig 1 for experimental procedures). Following baseline training, animals were dis-
oriented before being placed back in the maze. On Day 12, the distal cues remained in the same
orientation between baseline training and the probe, but on Day 13, the cues were rotated by
180°. We reasoned that disoriented rats would be more likely to utilize distal cues for orienta-
tion and maze arm disambiguation, and therefore would reverse their object preference in the
probe test on Day 13.

Fig 3B plots the percentage of responses made toward the trained object before and after dis-
orientation on Day 12. Similar to the results of the landmark rotation test, animals showed a

Fig 2. A. Plot showing the mean and SEM for the percentage of correct object selections as a function of

training day for animals tested in the distal landmark rotation and disorientation probe tests. The dashed

horizontal red line indicates chance performance. B. Plot showing the mean and SEM for the bias index

measured for object-in-place (black) and turn-response (red) behaviors.

doi:10.1371/journal.pone.0163102.g002
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strong preference for the trained object after disorientation, which was comparable to baseline
testing (Before Rotation: 96.9 ± 1.40%; After Rotation: 95.0 ± 3.33%; t(9) = 0.52, n.s.). Again
the preference for the trained object largely dominated the first two trials of the probe test
(χ2(1) = 12.80, p< 0.001; Fig 3B, right panel). On Day 13 baseline testing, 7 of the 10 animals
clearly displayed a preference for the trained object (82.1 ± 2.52%), while 3 rats failed to exceed
50% accuracy and were therefore at chance performance. It is possible that these 3 rats were
impacted by the previous sessions extinction trials, and because subsequent probe performance
would produce difficulties in interpretation, these animals were excluded from further analyses
and probe testing. Fig 3C plots the percentage of responses made toward the trained object
before and after combined distal cue rotation and disorientation. In contrast to the results of
the previous experiments, rats generally reversed their object preference in the first 4 trials of
the probe session (After Rotation: 39.3 ± 9.22%; t(6) = 3.83, p< 0.01, d = 0.84; see also S2
Table). This preference was expressed most prominently in the first two probe trials as 11 out
of 14 trials were directed toward the reversal object (χ2(1) = 4.57, p< 0.05; Fig 3C, right panel).
In contrast, preference for the reversal object was reduced to approximately chance levels in tri-
als 3 and 4 of the probe session with only 6 of 14 trials being directed toward the reversal object
(χ2(1) = 0.29, n.s.). This latter observation is particularly striking provided that rats were rein-
forced for selecting the reversal object, and indicates that disorientation only had a transient
influence over spatial localization in this task.

Do rats use proximal cues to discriminate locations in the object-place

task?

The results of the experiment above suggest that when vestibular cues are disrupted, animals
can utilize distal landmarks to disambiguate maze arm locations. This observation suggests
that animals can rapidly switch between stimulus sources when one cue is no longer informa-
tive or is in conflict with other sensory systems. Nonetheless, the preference for the reversal
object was maintained only in the first two trials of the probe test indicating that non-vestibu-
lar, non-distal, based cues may have provided conflicting information and may come to control
behavior when they are salient. This led us to test the possibility that proximal cues related to
the maze substrate could potentially be used to disambiguate arm locations in this task. A
group of 6 naïve rats were trained over 8 days in the object-place task with the distal cues in the
standard orientation. In contrast to the experiments above, the maze was not rotated between
sessions, allowing animals to learn a consistently presented set of local maze asymmetries. Fig
4A plots the percentage of choices in the object-place task over the 8 days of training. An
ANOVA yielded a significant training day effect for percent correct, F(7, 28) = 7.68, p< 0.001,
η2 = 0.66, suggesting again, that by the final testing day, animals learned to discriminate
between the two objects on the basis of maze arm location (Day 8: 97.4 ± 0.96%; see also S3
Table). We again observed an inverse relationship for bias measures of object-in-place and
response strategies (Fig 4B) with a significant interaction between the bias index for turn
response and the object-place response (F(7, 56) = 7.89, p< 0.001, η2 = 0.50). It is noteworthy
that with the maze maintaining the same position between sessions, there was no significant

Fig 3. Left panel plots show the mean ± SEM for percent correct (i.e., selection of the trained object) before

and after, A, distal landmark rotation, B, disorientation, and C disorientation/landmark rotation. The dashed

horizontal red line indicates chance performance. Note that only disorientation/distal landmark rotation

resulted in a significant difference between the baseline and the probe trials. Right panels plot the pooled

object choice (T, trained object; R, reversal object) across the first two trials of the probe session. Notice that

in standard landmark rotation (A) the trained object is preferred, but when the maze is rotated (B), the

reversal object (R) is preferred.

doi:10.1371/journal.pone.0163102.g003
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bias for turn-response behavior early in training (Day 1: object-place bias: 0.28 ± 0.10; turn-
response bias: 0.11 ± 0.02; Day 2: object-place bias: 0.32 ± 0.06; turn-response bias:
0.15 ± 0.05).

On Day 9, we replicated the distal landmark rotation experiment, and animals showed a
strong preference for the trained object during baseline testing in the standard distal cue con-
figuration (95.8 ± 2.64%; see Fig 5A). Consistent with our results above, there was a general
absence of control by the distal cues as the animals preference was maintained for the trained
object during the first 4 trials of the probe test (After Rotation: 79.17 ± 10.0%; t(5) = 1.87, n.s.).
On Day 10, we performed the distal landmark rotation, but in addition to rotating the distal
landmarks by 180°, we also rotated the maze by 180°. Animals again showed a preference for
the trained object during baseline training with the distal and proximal cues in the standard
training configuration (90.6 ± 4.18%; see Fig 5B and S4 Table). In contrast to distal landmark
rotation alone, rats generally preferred the reversal object during the first 4 trials of the probe
session as indicated by a significant reduction in the percentage of responding to the trained
object (After Rotation: 20.8 ± 7.68%; t(5) = 6.56, p< 0.01, d = 0.95). The reversal of object
selectionwas particularly prominent in the first two trials (10 out of t12 trials directed toward
the reversal object; χ2(1) = 5.33, p< 0.05; Fig 5B, right panel), and the preference for the rever-
sal object was generally maintained in trial 3 and 4 of the probe test (10 out of 12 directed
toward the reversal object). These observations suggest that the proximal reference frame, in
combination with distal cues, provides a strong source of spatial information in the object-
place task.

Discussion

Here we describe a procedure that allows the investigation of the idiothetic and allothetic sen-
sory basis of spatial localization in an object-place task. We suggest that this task can be used to
precisely evaluate the neurobiologicalmechanisms underlying associations between sensory
information and spatial stimuli. The present study supports three novel conclusions regarding
the influence of idiothetic and allothetic cues to spatial localization in an object-place paired-
associate task. First, our findings support the general conclusion that the procedure used in the
present study involves the use of vestibular cues in the establishment of object-place paired
associations. Specifically, we report that distal landmark rotation produced a reversal in object
preference only after animals were disoriented between the animal holding and experimental
rooms (see Fig 3). Based on this finding, we argue that disorientation, or rotational stimulation,
discouraged the accurate tracking of angular head movements, which would normally allow
rats to angular path integrate and maintain an accurate sense of spatial orientation when being
placed in the maze [16, 25, 27]. Our conclusion is consistent with other maze studies demonstrat-
ing a vestibular basis for self-localization in dry-land and water maze procedures [22, 29, 30, 31],
however, we are unaware of work demonstrating the use of vestibular cues in an object-place
paired associate task. This work therefore supports previous suggestions that idiothetic cues may
provide a fundamental stimulus source in the generation of declarative and episodicmemory
processing [3, 50], and suggests that a broad network of subcortical and cortical circuits involved
in processing vestibular information also contributes to object-in-placememory.

A second conclusion of the present study is that proximal cues associated with the maze
substrate can also be used to disambiguate arm locations. This was evidencedby the fact that

Fig 4. A. Plot showing the percent correct (mean ± SEM) across training for animals tested in the distal

landmark and proximal cue rotation probe test. B. Plot showing the mean and SEM for the bias index

measured for object-in-place (black) and turn-response (red) behaviors.

doi:10.1371/journal.pone.0163102.g004
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the coherent 180° rotation of the maze and distal landmarks produced a reversal in object pref-
erence, whereas rotation of the distal landmark alone failed to have a similar effect on object
selection (see Fig 5). This finding is consistent with work showing that animals can use cues
directly associated with the maze substrate for spatial orientation [38], which can include odors

Fig 5. Left panel plots show the mean ± SEM for percent correct (i.e., selection of the trained object) before and

after, A, distal landmark rotation, B maze/landmark rotation. Note that maze/distal landmark rotation resulted in a

significant difference between the baseline and the probe trials. Right panels plot the pooled object choice (T,

trained object; R, reversal object) across the first two trials of the probe session. Notice that in standard landmark

rotation (A) the trained object is preferred, but when the maze is rotated (B), the reversal object (R) is preferred.

doi:10.1371/journal.pone.0163102.g005
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[51, 52, 53], or geometric asymmetries in arena shape [35, 54, 55]. Whether rats utilized geo-
metric relationships within the maze, local odor cues, or whether the object nature of the task
enhanced the salience of the proximal frame of reference is unclear, and should be investigated
in future studies. It is important to note however that the maze was intentionally constructed
to avoid asymmetrical features (i.e., 8 evenly spaced arms with identical components on each
arm), and we intentionally cleaned the maze surface between rats and testing days with the
intention of preventing animals from utilizing olfactory cues. Learning to use specific odors or
trails of odors for maze arm discriminationwould therefore be difficult between daily sessions,
but perhaps possible within a testing session as is suggested by previous work [51, 52, 53]. Also,
because only the correct object was rewarded during training, it could be argued that animals
may have learned to discriminate between objects based on olfactory cues directly associated
with the food reward or directly with the objects themselves. We tested for this possibility in
the probe test, in which animals were not rewarded on the first trial, but were rewarded on sub-
sequent trials. Because performance was consistent between the first two trials of each probe
session, we suggest that odors directly associated with the reward were not likely used in this
task. Further, we have performed tests in which the reward was provided only for a randomly
selected subset of trials and found no differences in performance between trials in which food
was provided and trials in which it was not provided (data not shown). An additional consider-
ation is that lengthier training schedules are believed to discourage the use of cues associated
with places, including distal cues, but encourage response strategies based on motor responses
or proximal cues associated with the goal [56, 57]. However, the pattern of results presented in
this study, and in previous studies using a similar object-place task [41, 49], suggest that the
turn-response biases are preferred early in training rather than later in training (see Fig 2B and
Fig 4B).

A final conclusion relates to some key differences between the present work and previous
studies investigating the influence of visual contextual cues in object-place learning. In a series
of experiments by Lee and colleagues [20, 21], the authors report that discrete changes in visual
context, either by completely removing the distal context by turning the room lights off, or by
removing a subset of the distal cues, can produce a significant reduction in the percentage of
correct object-place choices. Our results however indicate the exclusive or dominate use of dis-
tal cues in place discrimination in the object-place task, as landmark rotations failed to produce
reversals in object selection.However, our results support the interpretation that the relation-
ship between the distal landmarks and the maze arms were learned during task acquisition, but
were utilized only after vestibular and proximal stimulus sources were disrupted. Thus, animals
were capable of rapidly switching between stimulus sources to maintain accurate performance.
Procedural differences in the present study may have discouraged the exclusive use of distal
landmarks, while encouraging the use of multiple stimulus sources for accurate performance.
First, it is possible that the distal cues in the present study were not as salient as in previous
work. For instance, three distinct landmarks hung along the curtains, and the experimenter
was located in a constant position in relation to the distal cues during training and in probe
tests (see Fig 1). In contrast to the object-place tasks by Lee and colleagues, and work by others
using a radial-arm maze procedure [58], the distal cues in the present study were not located
directly behind the choice platform of each arm, and were possibly not clearly visible while ani-
mals were on the choice platform. A second consideration is that Lee and colleagues trained
rats to perform their object choices on two maze arms that were clearly spatially distinct, but
were pointing in the same relative direction within the room reference frame [9]. Thus, it is
possible that the ambiguity in maze arm direction may have discouraged the use of vestibular
and directional stimulus sources to disambiguate maze arms. This latter possibility is supported
by recent behavioral work showing that the acquisition of a paired odor-place associate
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conducted in adjacent maze compartments is impaired relative to the same paired associate
acquired in radially arranged, and opposing, maze compartments [32]. Future work could be
directed at systematically manipulating the saliency of each of these stimulus sources and
determining the impact on probe test behavior as described in the present study. Regardless,
the present work demonstrates that distal cues can be used if vestibular cues are disrupted, sup-
porting the general conclusions of Lee and colleagues that distal contextual cues take part in
guiding choice decisions in object-place associates [13, 14].

The dynamic interactions between distal, proximal, and vestibular cues in the performance
of object-in-placememory has broad implications with respect to understanding the neural cir-
cuitry involved in memory episodic-likememory in rodents. Namely, our findings indicate
that neural systems involved in conveying vestibular and directional orientation information
also play a role in object-in-place information processing. An attractive hypothesis [9, 32] is
that vestibular and directional cues may be provided by head direction (HD) cells, which are
neurons found throughout the limbic system that fire as a function of an animal’s heading in
an environment [59]. Although HD cells are modulated by a wide range of idiothetic cues such
as proprioceptive motor and optic flow cues [60], vestibular information has been shown to be
necessary for the expression of HD cell signals as direct lesions of vestibular system circuitry, as
well disorientation manipulations, can impair the HD cell signal [48, 61–64]. HD cells are
found within several nuclei that are collectively identified as part of the classic Papez circuit,
including the anterior thalamus, lateral mammillary nuclei, retrosplenial cortex, and presubi-
culum [59, 64, 65]. Interestingly, lesions of the anterior thalamus and disruption of neural plas-
ticity in the presubiculum can impair choice behavior in variants of the object-place task [10,
11, 66]. Thus, it is possible that when the direction of reinforcement provides a salient source
of discriminative information in object-place learning, HD cell circuitry, through its diffuse
limbic projections to the hippocampal formation may influence the formation of paired-place
associations such that objects can also be linked with “directions” based on vestibular cues. Pre-
vious work has demonstrated that neural pathways involving the hippocampus and other lim-
bic structures have been linked to the acquisition of object-place paired associates [13, 14, 15].
Some recent electrophysiologywork supports the possibility of a dynamic interaction between
hippocampal place cell and idiothetic processing in a paired associate task [15, 32], in particu-
lar, a study by Park and Lee [15] showed that hippocampal place cells generally maintained
their location-specific firing despite novel changes in distal cue configurations (i.e., a change in
the degree of separation between distal cues), suggesting dominance of the idiothetic frame of
reference in guiding place cell orientation. Further, Grieves et al [32] showed that hippocampal
place cells were more likely to express non-repeating place fields when the maze arms were
arranged in a radial and opposing fashion, but expressed repeating place fields in a maze in
which the arms were arranged in parallel. This latter findingmay indicate that idiothetic vestib-
ular cues and HD cells provide a discriminating stimulus source for the expression of hippo-
campal place cell activity.

In summary, the findings from the present study demonstrate three important features of
contextual processing in the object-place task. First, the results indicate that animals can deter-
mine spatial location in an object-place task based on vestibular information. Second, the
results show that animals can utilize local or proximal cue sources related to the maze substrate
to localize their place in the environment. Finally, we confirm that distal landmarks are utilized,
but are not exclusively used and dominate performance using the procedures in the present
study. Instead, we conclude that animals likely use multiple stimuli and can rapidly switch
between cues in maintaining accurate performance in object-in-place tasks. Collectively, the
results strongly support the general conclusion that a distributed network of subcortical and
cortical limbic systems are involved in object-place paired associations, and the object-place

Cues and Object-Place Memory

PLOS ONE | DOI:10.1371/journal.pone.0163102 September 22, 2016 15 / 19



procedure used in the present study lends itself uniquely to the determination of the precise
sensorymechanisms by which these neural systems may contribute to paired-associate
learning.
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