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Abstract

Each influenza pandemic was caused at least partly by avian- and/or swine-origin influenza A viruses (IAVs). The timing
of and the potential IAVs involved in the next pandemic are currently unpredictable. We aim to build machine learning
(ML) models to predict human-adaptive IAV nucleotide composition. A total of 217,549 IAV full-length coding sequences
of the PB2 (polymerase basic protein-2), PB1, PA (polymerase acidic protein), HA (hemagglutinin), NP (nucleoprotein),
and NA (neuraminidase) segments were decomposed for their codon position-based mononucleotides (12 nts) and
dinucleotides (48 dnts). A total of 68,742 human sequences and 68,739 avian sequences (1:1) were resampled to
characterize the human adaptation-associated (d)nts with principal component analysis (PCA) and other ML models.
Then, the human adaptation of IAV sequences was predicted based on the characterized (d)nts. Respectively, 9, 12, 11,
13, 10 and 9 human-adaptive (d)nts were optimized for the six segments. PCA and hierarchical clustering analysis
revealed the linear separability of the optimized (d)nts between the human-adaptive and avian-adaptive sets. The results
of the confusion matrix and the area under the receiver operating characteristic curve indicated a high performance of
the ML models to predict human adaptation of IAVs. Our model performed well in predicting the human adaptation of
the swine/avian IAVs before and after the 2009 H1N1 pandemic. In conclusion, we identified the human adaptation-
associated genomic composition of IAV segments. ML models for IAV human adaptation prediction using large IAV
genomic data sets can facilitate the identification of key viral factors that affect virus transmission/pathogenicity. Most
importantly, it allows the prediction of pandemic influenza.

Key words: human adaptation, influenza A viruses (IAVs), genomic nucleotide composition, machine learning (ML),
dinucleotide.

Introduction
Type A influenza viruses (IAVs) infect a wide range of avian
and mammalian hosts, generally with species specificity.
Avian influenza viruses (AIVs) typically exist in natural reser-
voirs, waterfowl, and shorebirds (Yoon et al. 2014), which
mostly cause subclinical bird infection (Webster et al. 1978;
Long et al. 2019). AIVs sporadically infect mammalian hosts,
such as swine (Pensaert et al. 1981), human beings (Subbarao
and Katz 2000; de Jong et al. 2006; Lam et al. 2013), and other
mammals (White 2013; Lee et al. 2017) and are incapable of
intraspecies transmission (Tran et al. 2004; Maines et al. 2006;
Long et al. 2019). However, the high frequency of mutation
and segment recombination endows AIVs with the chance to
obtain human-adaptive genomes, which pose a high pan-
demic risk. Notably, swine adaptation and swine-adapted
IAVs are closely related to human pandemics. All of the last

five recorded influenza pandemics were caused by avian-
origin, swine-origin, or reassortant IAVs (Reid et al. 2004;
Kislinger et al. 2006; Bragstad et al. 2011; Long et al. 2019).
Thus, it is of great importance to predict the adaptation of
avian or swine IAVs to humans.

Human-adaptive IAVs are capable of infecting and causing
disease in humans easily and of spreading among human
populations efficiently. To date, H3N2 and H1N1 (including
seasonal H1N1 and A(H1N1)pdm09) are dominant human-
adaptive IAV subtypes that cause epidemics in humans (Ren
et al. 2016). H5N1, H7N9, and other IAV subtypes occasionally
infect humans but are not yet capable of spreading in human
populations (Yang et al. 2007; Rudge and Coker 2013; Hu et al.
2014; Deng et al. 2017). Laboratory studies have identified
numerous viral determinants that are associated with the
human adaptation of IAVs via mediating receptor binding,
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regulating the virus’s replication cycle, and antagonizing host
immunity (Taubenberger and Kash 2010; Bouvier 2015; Long
et al. 2019). However, there are no universal human adapta-
tion determinants for IAVs.

Gene sequencing technology and machine/deep learning
methods have facilitated virus sequence identification of a
considerably large data set, including IAVs. Machine learning
(ML) methods have recently demonstrated their effectiveness
in multiple disciplinary fields, including virology. The distinct
host tropism protein signatures of IAVs (Eng et al. 2016), the
zoonotic risk of various viruses (Eng et al. 2017), and even the
avian-to-human transmission risk of IAVs (Qiang et al. 2018)
have been recognized. The host dependence of mononucleo-
tides (nts) and tetranucleotide compositions of influenza vi-
ruses has also been studied with ML methods (Iwasaki et al.
2013). Notably, the prominent role of dinucleotides in virus
genomes has been implicated in both experimental and com-
putational reports. Viral dinucleotides are targets for the host
innate immune system (Takata et al. 2017), and they inde-
pendently regulate the virulence (Atkinson et al. 2014;
Tulloch et al. 2014) and replication (Witteveldt et al. 2016)
of IAV viruses. Species-specific (Glass et al. 2007) and virus-
family-specific (Di Giallonardo et al. 2017) dinucleotide com-
positions have also been computationally recognized. More
recently, the dinucleotide composition in RNA virus genomes
accurately predicts viral reservoir hosts and arthropod vectors
using ML methods (Babayan et al. 2018). Therefore, we hy-
pothesize that genomic dinucleotide composition is another
crucial genomic feature for influenza viruses, which is most
likely amino acid independent, and may be useful for char-
acterizing the human adaptation feature of IAVs.

In the present study, 60 types of mono- and dinucleotide
compositions were analyzed based on the nucleotide position
within a codon in the full-length coding sequences of the first
six genomic segments of IAVs: PB2 (polymerase basic protein
2), PB1, PA (polymerase acidic protein), HA (hemagglutinin),
NP (nucleoprotein), and NA (neuraminidase). These (d)nts
were optimized based on their relative importance, with prin-
cipal component analysis (PCA) and support vector classifier
(SVC) methods. Then, ML models of gradient-boosted regres-
sion trees (GBRT), multilayer perceptron (MLP) classifier, ran-
dom forest (RF) classifier, and SVC were built to analyze and
predict the human adaptation of human-, swine-, or avian-
origin IAVs. Our models perform well in predicting human-
adaptive swine or avian IAVs.

Results

Prediction Pipeline and Data Processing of the
Genomic Nucleotide Composition in IAVs
As the workflow diagram in figure 1A shows, data wrangling
was performed for IAV open reading frame (ORF) sequences.
Twelve types of mononucleotides (nts) and 48 types of dinu-
cleotides (dnts) in the ORF were counted for all the sequence
samples. The phylogeny of the sample ORF sequences, the
hierarchical clustering of sequence samples based on the 60
(d)nts,, and the distribution of the sequence samples, in each
type of sequence label, were analyzed (fig. 1A). The 60 (d)nts

were sorted based on their importance (cross-validation
score, cv_Score) for the classifier with PCA and SVC methods
(fig. 1B), and the best (d)nts (fig. 1B), which were optimized
with ML approaches from the sorted (d)nts, were utilized for
the final data optimization and the final prediction (fig. 1B).

In total, 226,183 full-length coding sequences for the first
six segments (PB2, PB1, PA, HA, NP, and NA), available up to
December 31, 2018, had skewed distributions for the labels of
country/area, host, subtype, segment, or year. In total, 8,634
sequences were dropped, beyond the length range had re-
peated sequence IDs (supplementary table 1, Supplementary
Material online). The remaining 217,549 sequences were still
predominantly from the United States for the country/area
and from 2009 to 2018 for the year (supplementary fig. 1,
Supplementary Material online). Random resampling was
performed to maintain a ratio of approximately 1:1 for the
sequences from the United States and mainland China, the
second largest influenza sample country. The resampled
83,980 avian and human sequences available for feature ex-
traction and model building were dominantly from North
America and East and Southeast Asia, particularly from the
United States and China (supplementary fig. 2A,
Supplementary Material online); the sample distributions of
the different types of hosts, subtypes, segments and years are
indicated (supplementary fig. 2B–F, Supplementary Material
online). The 34,990 swine IAV sequences were not included in
the training data because of their double biological adapta-
tion to both human and avian hosts.

The Characterization of the Human Adaptation-
Associated Nucleotide Composition of IAV Sequences
The (d)nt composition was counted and compared within
and between species based on the profile of relative dinucle-
otide abundance values according to previous reports (Karlin
and Mrazek 1997). Hierarchical clustering was performed for
3.59–5.01& (59–61) randomly sampled sequences from each
segment sequence set according to the (d)nt composition.
The majority of human and avian IAVs were not clustered
into human and avian branches, respectively, for the PB1, PA,
HA, and NA segments (supplementary fig. 3, Supplementary
Material online), and these selected sequence samples were
not clustered into human and avian groups in a phylogeny
tree (supplementary fig. 4, Supplementary Material online).
Additionally, a PCA transversion of the 60 (d)nts was per-
formed to evaluate the linear separability between major hu-
man sequences and avian sequences. There was no such
separability in the principal component 1 or principal com-
ponent 2 of the 60 (d)nts in the PB2, PA, HA, or NA segments;
only the PB1 and NP segments were separable for both
groups of subtypes for principal component 1 (supplemen-
tary fig. 5, Supplementary Material online).

An ML analysis combining PCA and SVC was performed to
characterize the human adaptation-associated nucleotide
composition of IAVs from the 60 (d)nts. As the workflow
(fig. 1B) shows, 3,540 iterations of PCA/SVC analysis
(guaranteeing more than 200 repeat analyses for each
(d)nt) (supplementary fig. 6, Supplementary Material online)
were performed to reduce every four (d)nts into one principal
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component, which was then utilized for the SVC for avian
and human IAV sequences. The statistical analysis results of
the cross-validation score (Cross_val score) from the PCA/
SVC for the 60 (d)nts of each segment are listed in supple-
mentary tables 2–7, Supplementary Material online. The 60
(d)nts were sorted according to the mean Cross_val score, in
other words, based on the feature importance (supplemen-
tary fig. 7A–F, Supplementary Material online, for the six seg-
ments). The plotting of the relative (d)nt composition for
each segment demonstrated that there was a significant dif-
ference between human and avian sets in terms of the (d)nts.

The ML-based GBRT, MLP classifier, RF classifier, and SVC
models were utilized to identify the optimal number of (d)nts
for the human/avian IAV classification. As indicated in
figure 2A–F, a leveling off of the crossing of the cross-
validation score (Cross_val score) with its moving average 3
(MA3) level, along with the (d)nt accumulation, was defined
as the indicator of the optimal number of (d)nts. Accordingly,
an average of 9–13 top (d)nts in the sorted list was identified
as the best/optimized (d)nts by the four types of ML classifiers
(fig. 2G). For the PB2 segment, there was a significant
(P< 0.001, Mann–Whitney U test, supplementary table 8,
Supplementary Material online) difference between avian
and human sets for each of the nine optimized (d)nts
(fig. 2H, supplementary fig. 8A, Supplementary Material on-
line). A significant (P¼ 0.049461 for p_ag_N12 in the HA
segment, P< 0.001 for the others, Mann–Whitney U test,
supplementary table 8, Supplementary Material online)

difference was also observed for each of the other (d)nts for
the PB1 (supplementary fig. 8B, Supplementary Material on-
line), PA (supplementary fig. 8C, Supplementary Material on-
line), HA (supplementary fig. 8D, Supplementary Material
online), NP (supplementary fig. 8E, Supplementary Material
online), and NA (supplementary fig. 8F, Supplementary
Material online) segments.

Predicting Human Adaptation of IAVs Based on the
Characterized Nucleotide Composition
The unsupervised clustering and supervised two-category
classification with the four ML classifiers mentioned above
were performed to evaluate the effectiveness of the charac-
terized (d)nts for human/avian IAV classification. It was dem-
onstrated that the two principal components of the nine
optimized (d)nts were separable in distribution between
avian and human sequence sets for the PB2 (fig. 3A) and
PB1 (fig. 3B) segments. Such separability was also observed
for the PA (supplementary fig. 9A, Supplementary Material
online), HA (supplementary fig. 9A, Supplementary Material
online), NP (supplementary fig. 10A, Supplementary Material
online), and NA segments to varying degrees. Such separabil-
ity was also indicated by the hierarchical clustering of both
sequence sets. The majority of the human and avian PB2
sequences were clustered into two groups for the PB2 seg-
ment (fig. 4) and the other five segments (supplementary figs.
11–15, Supplementary Material online), particularly for the
ribonucleoprotein complex of the PB2, PB1, and NP

FIG. 1. The workflow of data processing, feature optimization, and model construction. (A) The workflow of data processing and model
construction. Original ORF sequences within the length range were utilized for codon dependently counting 12 mononucleotides (nts) and
48 dinucleotides (dnts). The counting file for the 60 (d)nts for the PB2, PB1, PA, HA, NP, or NA segments was randomly resampled to maintain a
balanced distribution of human and avian sequences. The (d)nt composition distribution and the sequence phylogeny were analyzed, and then
the randomly split (d)nt counting data were utilized for model building and testing. (B) Workflow of the feature extraction with PCA/ SVC
methods. The 60 (d)nts were sorted according to the score (AUC) from the SVC analysis, with the PCA-extracted principal component from the
randomly selected (d)nt counting information. Accumulated (d)nts in the sorted list were analyzed with ML models, with the cross of the AUC
score curve down its MA score (n¼ 3) as the threshold of the best number of (d)nts. “DF2_60 (d)nts.csv” for the (d)nt sorting and “Best x (d)nts”
for data optimization were, respectively, labeled with blue and green text boxes filled in both (A) and (B).

Li et al. . doi:10.1093/molbev/msz276 MBE

1226

https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz276#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz276#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz276#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz276#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz276#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz276#supplementary-data
Deleted Text: machine learning
Deleted Text: gradient boosted regression trees (
Deleted Text: )
Deleted Text: multilayer perceptron (
Deleted Text: )
Deleted Text: random forest (
Deleted Text: )
Deleted Text: <italic>-</italic>
Deleted Text:  to 
Deleted Text: -
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz276#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz276#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz276#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz276#supplementary-data
Deleted Text: p
Deleted Text: -
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz276#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz276#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz276#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz276#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz276#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz276#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz276#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz276#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz276#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz276#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz276#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz276#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz276#supplementary-data
Deleted Text: h
Deleted Text: a
Deleted Text: b
Deleted Text: c
Deleted Text: n
Deleted Text: c
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz276#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz276#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz276#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz276#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz276#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz276#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz276#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz276#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz276#supplementary-data


segments. Interestingly, the PA sequences of A(H1N1)pdm09
were clustered into the avian sequence group, thought dis-
tinctive from other human sequences and avian sequences, as
indicated previously (Smith et al. 2009).

An SVC was used to predict the human adaptation of all
IAV sequence samples, with the optimized (d)nts, with the
same number of tail (d)nts in the sorted list as control. The
true negative rate and the true positive rate for the control
(d)nts were 64.76% and 95.58%, respectively, for the PB2 seg-
ment (upper-left panel, fig. 5A); their average AUC for the 5-
fold tests was 0.861 6 0.004 (upper-right panel, fig. 5A).
However, the true negative/positive rates for the optimized
(d)nts for the PB2 segment were 98.45% and 94.10%, respec-
tively (lower-left panel, fig. 5A), and the average AUC in-
creased to 0.995 6 0.001 (lower-right panel, fig. 5A). As
indicated in figure 5B–F, the prediction and the probability
of the optimized (d)nt-based SVC was markedly higher than
that of the control (d)nt-based SVC. High performance with
the optimized (d)nts was also obtained with the other three
supervised learning models (GBRT, RF classifier, and MLP

classifier) (supplementary Figs. 16–18, Supplementary
Material online, respectively).

The human adaptation of the sequence-resampled se-
quence set from the United States and all-sequence set was
predicted (with an SVC probability threshold of 0.5) by the
above-mentioned SVC model. Then, the association of such
adaptation was analyzed with sequence labels, such as sub-
type and host. Regardless of the other labels, the H1N2 sub-
type was highly adaptive to humans (approximately 75% by
both sequence sets, the left and right parts in fig. 6A), as well
as the designated human-adaptive H3N2 and H1N1 subtypes.
There were 10% or more human-adaptive sequences for
H2N2 and H11N9, mixed or H4N8 sequences in the
sequence-resampled sequence set from the United States
(left part of fig. 6A), and H16N3 and H4N6 in the all-
sequence set (right part of fig. 6A). In terms of the host,
4.4% or 2.5% human sequences, mainly from human-
infected AIVs, were not adaptive to humans (fig. 6B), and
almost 70% of swine sequences were human-adaptive sets
(fig. 6B). Surprisingly, 16.4% and 19.4% of the turkey sequences

FIG. 2. Optimization by SVC with the most different (d)nts between human and avian virus segments. The sorted 60 (d)nts were successively
put into the accumulating feature list for the SVC (random state ¼ 1 and cv ¼ 5); the MA of the three cross-validation scores (cross_val
importance) (MA3) and the cross_val importance itself for each segment were curved (A–F). The first 9, 12, 11, 13, 10, 9 (d)nts in each list were
defined as the best features for PB2, PB1, PA, HA, NP, and NA (G), respectively, when the cross_val importance curve crossed the MA3 curve. (H)
Boxplot of the best 9 (d)nts for the PB2 segment; the Mann–Whitney U test was performed between the two groups for each (d)nt, and the P-
value is indicated.
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from the two sets were human-adaptive sets, ranking first for
avian hosts; more than 10% sequences were human-adaptive
sets from other birds, such as American black ducks, shore-
birds, gulls, blue-winged teal, and quails in either sequence set
(fig. 6B).

Additionally, when both the segment and subtype labels
were taken into account, more different details appeared in
such adaptations. As indicated in figure 7A, most of the
human-adaptive sequences (more than 50%) from swine
were H3 or H1 in the hemagglutinin subtype and were N1
or N2 in neuraminidase subtype, with H3N8 as an exception.
For avian sequences, H11N9, H4N8, H16N3, H3N2, H4N6,
H5N2, H1N1, and H3N8 were at the top of the list (fig. 7B).

Human Adaptation of Avian and Swine IAVs before
and after the 2009 H1N1 Influenza Pandemic
A(H1N1)pdm09 viruses, also known as swine-origin IAVs
(H1N1) (S-OIVs), first emerged in North America (Smith
et al. 2009) and spread all over the world within the following
6 months (Swerdlow et al. 2011; Fineberg 2014). Origins and
evolutionary genomics of S-OIVs have been well identified
(Garten et al. 2009; Smith et al. 2009). Given the high impor-
tance in influenza pandemics of swine as a mixer for human
and avian IAVs (Vijaykrishna et al. 2011; Nelson et al. 2015),
we analyzed the worldwide distribution of human-adaptive
swine and avian sequences before the 2009 H1N1 influenza
pandemic. It was indicated that North America and East Asia
were the high-risk areas of human-adaptive swine sequences
(table 1) for the six IAV segments, based on the human ad-
aptation ratio. Notably, the United States is ranked first
for the absolute number of human-adaptive sequences
for each segment. East Asia, particularly Hong Kong and
mainland China, had larger human adaptation ratios.
Human-adaptive avian sequences are dominantly distrib-
uted in the United States and China (table 1).
Interestingly, the United States still led the world in the
number or proportion of human-adaptive sequences for
the five segments (table 1), except NA (maximum in
China) (table 1). Accordingly, such distribution bias of
human-adaptive swine and avian sequences was consis-
tent with the origin of each segment for the 2009 H1N1
pandemic (Smith et al. 2009).

Furthermore, the hierarchical clustering analysis of the S-
OIVs with the IAVs before 2009 was performed based on the
SVC model-characterized (d)nts by random sampling 1,000
samples from the total samples. As indicated (supplementary
fig. 19A, Supplementary Material online), the S-OIV
(A(H1N1)pdm09) PB2 sequences were clustered most closely
with the PB2 sequences from several avian viruses (H6N8,
H11N2, H11N9, and mixed subtypes) in Delaware in 1994
and 1995 and then with the avian and swine viruses
(H1N1, H3N2, and H5N2) in Delaware and other US states
in the 2000s. S-OIV PB1 was most closely clustered with the
human H3N2 viruses before or after 2000 in the United States
(supplementary fig. 19B, Supplementary Material online). The
close clustering with various subtypes of avian/swine viruses
mainly in the United States and sporadically in East Asia for
the PA segment (supplementary fig. 19C, Supplementary
Material online) and the neighboring with swine H1N1,
H1N2, and H3N2 viruses in the United States /Asia/Europe
for the HA, NP, and NA segments were indicated (supple-
mentary fig. 19D–F, Supplementary Material online). Such
kinds of clustering for the six segments were also indicated
by the other nine rounds of hierarchical clustering analysis
with random-resampled sequences (random state ¼ 2–10)
(supporting data for supplementary fig. 19, Supplementary
Material online). Interestingly, the results were consistent
with a previous evolutionary analysis with full cDNA sequen-
ces (Smith et al. 2009). Moreover, as indicated by the human
adaptation probability in each clustering hierarchy (the last
floating number in each sequence name, supplementary fig.
19, Supplementary Material online), almost all of the

FIG. 3. PCA analysis of the optimized (d)nts for the PB2 and PB1
segments between human and avian IAV sequences. The optimized
9 and 12 (d)nts for the PB2 (A) and PB1 (B) segments, respectively,
were converted into two principal components and were then plot-
ted with pairplot (seaborn package, Python) (lower-left panel and
upper-right panel in each figure subpart). The distribution of princi-
pal components 1 (PCA_1) and 2 (PCA_2) of avian (blue) and human
(orange) sequences were indicated by kernel density estimation
(KDE) (upper-left panel and lower-right panel in each figure subpart),
and the separability between avian and human sequences was shown
for the PB2 (A) and PB1 (B) segments with the pair plots and KDE.
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A(H1N1)pdm09-neighboring avian or swine sequences were
predicted by our model to be human-adaptive sequences.

The influence of the 2009 H1N1 influenza pandemic on
the human adaptation of avian and swine IAVs post-2009 was
also evaluated. As indicated in table 2, all six segments of avian
sequences decreased in terms of the human adaptation ratio,
although the adaptive sequence number increased. In partic-
ular, the adaptive sequences of PB1, PA, and HA increased
much more (over the median level). For swine viruses, all six
segments of the sequences, particularly for NA, PA, and HA
(over the median level), increased in terms of both the human
adaptation ratio and adaptive sequence number.

Discussion
IAVs must acquire sufficient human adaptation before they
can promote human pandemics. To date, there has been no
universal definition of IAVs’ human adaptation, although nu-
merous human-adaptive viral determinants have been
reported (Taubenberger and Kash 2010; Bouvier 2015; Long
et al. 2019). In the present study, we defined it as the capa-
bility to infect humans easily, to transmit among populations
efficiently, and to be virulent to some degree to humans.
Accordingly, the human-adaptive IAVs were limited to the
H3N2 and H1N1 viruses, either of which can continuously

cause endemics or even pandemics in humans (Ren et al.
2016), whereas other subtypes of avian IAVs (Yang et al.
2007; Rudge and Coker 2013; Hu et al. 2014) were classified
into the avian-adaptive group. There might be a concern
about a selection bias of the human adaptation criteria. If
so, the “human adaptation” label for the four segments
(PB2, PB1, PA, and NP) would be wrongly associated with
“H3N2” or “H1N1,” which would be inconsistent with the
“true” human adaptation of these segments. Under such
circumstances, the “true” human-adapted PB2, PB1, PA,
and NP sequences of the human-adaptive H2N2 virus (Cox
and Subbarao 2000) might be underestimated, and the host
adaptation of the four segments of swine H1N2 virus would
not be correctly predicted. However, high HA and NA of the
human adaptation frequencies were unanimously predicted
for the PB2, PB1, PA, and NP sequences for both the H2N2
and H1N2 viruses. Interestingly, since 2005, dozens of human
H1N2 infection cases have been reported in the United States
(Pulit-Penaloza et al. 2018) and the Netherlands (Meijer et al.
2018); the high human adaptation of the H1N2 virus was also
experimentally supported (Pulit-Penaloza et al. 2018).
Therefore, the IAV human adaptation criteria are acceptable
to some degree, according to the existing human-adapted
IAVs.

FIG. 4. Heatmap and hierarchical clustering of human and avian IAV PB2 sequences based on the Euclidean distance of the optimized (d)nts. The 61
PB2 sequence samples were randomly (random state ¼ 1) selected from PB2 (3.59&) and then clustered with a heatmap and hierarchical
clustering for PB2 based on the Euclidean distance of the optimized 9 (d)nts; the sequence identity and (d)nts were clustered. Standardized scaling
was performed for data with the function (x-x.mean)/x.std. The color in the heatmap presented the value for each (d)nt on the x-axis, as shown by
the color bar in the upper-left corner. The hierarchical relationships for the sampled sequences and (d)nts are indicated on the left and upper sides,
respectively, in each image. The red-blue column to the left of the heatmap was utilized to show the human (red) and avian (blue) groups.

Predicting Human-Adaptive IAVs from Nucleotide Compositions . doi:10.1093/molbev/msz276 MBE

1229

Deleted Text: ,


In the last few decades, the overwhelming majority of
studies on viral determinants have focused on protein levels
for virus infection, transmission, virulence, and host adapta-
tion. In particular, distinct protein signatures for host tropism
(Eng et al. 2016) and avian-to-human transmission (Qiang
et al. 2018) have been recognized with ML methods.
Recently, accumulating reports found a significant influence
of synonymous viral nucleotide or dinucleotide mutation on
the virus response to the host’s innate immune system
(Takata et al. 2017) on virus virulence (Atkinson et al. 2014;
Tulloch et al. 2014) and virus replication (Witteveldt, Martin-
Gans and Simmonds 2016). Here, we compressed the full-
length coding information of the six segments into the count-
ing information of 12 nts and 48 dnts, all of which were sorted
according to their classification importance with the PCA/
SVC method. Optimization is one of the crucial parts of ma-
chine/deep learning. A moving average (MA; Kashyap 1982),
also known as the rolling mean, was utilized here to optimize
the number of features for the ML models, with the crossing
of the MA with its MA3 value as a cutoff point, at which the
number of (d)nts was the best.

Interestingly, the counting information of each mono-
or dinucleotide varied in the importance of each segment.
Besides, 9–13 optimized (d)nts were enough to predict
the human adaptation for each of the six segments. Given
the high performance in the avian/human adaptation
classification, no other optimization methods were ex-
plored here.

The species-specific (Glass et al. 2007) and virus-family-
specific (Di Giallonardo et al. 2017) dinucleotide composition
has been computationally explored for viruses. The genomic
dinucleotide composition of RNA viruses is useful for predict-
ing viral reservoir hosts and arthropod vectors (Babayan et al.
2018). Therefore, we speculated here that the mono-/dinu-
cleotide composition should be another critical genomic fea-
ture, and we assume here that there should be a species
selection bias of IAV nucleotides/dinucleotides. Taking PB2
as an example, the frequency of T, C, A, or G at the first
position and G at the third position within a codon, the
odds ratios of ct_N3M1, ag_N12 and at_N12 determined
the human adaptation of IAVs. According to the eukaryotic
codon list (Shu 2017), every amino acid is coded by one (for
methionine and tryptophan) to six trinucleotide codons (for
leucine, serine, and arginine); six (phenylalanine, leucine, ser-
ine, tyrosine, cysteine, and tryptophan), five, seven, and five
types of amino acids were respectively dependent on the
nucleotides of T, C, A, and G, at the first nucleotide position
within a codon, 4–7 types of amino acids were dependent on
the four types of nucleotides at the first nucleotide position,
and 13–15 types of amino acids were dependent on the four
types of nucleotides at the third nucleotide position.
Therefore, each mononucleotide feature is theoretically asso-
ciated only with 5–15 possible amino acids (the stop codon is
not considered). Accordingly, every dinucleotide is associated
with 1–4 types of amino acids (Shu 2017). Therefore, the
nucleotide composition was associated only with the amino

FIG. 5. The prediction of human adaptation classes (true/false) and the human adaptation probability by the SVC model, with optimized (d)nts for
each segment. The human adaptation classes (true/false) and the human adaptation probability of avian and human sequences were predicted by
the SVC with the optimized (best) 9–13 (d)nts for the six segments, with the same optimized-(d)nt number tail (worst) (d)nts as the control. The
confusion matrix for human adaptation class prediction, the ROC curve and the area under the ROC curve (AUC) for the SVC model with the
worst or best (d)nts are indicated, respectively, for PB2 (A), PB1 (B), PA (C), HA (D), NP (E), and NA (F).
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acid compositional information, with less than 50% probabil-
ity. Thus, we speculated that the genomic composition of
mono-/dinucleotides is another essential genomic character-
istic of IAVs and is probably biologically associated with the
host adaptation of IAVs.

An A(H1N1)pdm09 virus caused the latest worldwide in-
fluenza pandemic (Swerdlow et al. 2011; Fineberg 2014). Here,
our results regarding the high human adaptability of swine
IAVs before 2009 in the United States precisely predicted the

high risk of these IAVs. Of course, a possible underestimation
of human-adaptive swine viruses/sequences was not ex-
cluded in many high-risk developing countries, such as
China and Vietnam, due to a likely undeveloped monitor-
ing/detection program for swine influenza. However, a
marked lower human adaptation of the swine IAV sequence
was also indicated by our model in the area of the European
Union, which is the second largest pig plantation area, with
twice as much pig production in this area in 2018 than the

FIG. 6. The distribution of the subtypes and hosts of human-adaptive IAV sequences before the 2009 influenza pandemic. The human adaptation
was predicted by the SVC model with a probability threshold of 0.5. The total number of sequences, the number of human-adaptive sequences,
and the human adaptation ratio are quantitatively presented by the size of the red and green circles and the height of the blue histogram in polar
coordinates. The labels of the top 20 subtypes (A) or the top 20 hosts (B) for the US-resampled sequences (left part of A/B) or for all IAV sequences
(right part of A/B) are indicated. The subtypes and hosts are listed in descending order.
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United States (https://www.statista.com/statistics/273232/
net-pork-production-worldwide-by-country/). Moreover, the
2009 H1N1 pandemic was not initiated in China, although
pork production in China is 4-fold that of the United States.

This phenomenon implies that our results might reveal the
“true” severity of swine infection of human-adaptive swine
viruses in the United States rather than in other areas before
2009.

FIG. 7. The prediction of the human adaptation of swine and avian IAV sequences before the 2009 influenza pandemic. Human-adaptive swine (A)
and avian (B) IAV sequences before the 2009 influenza pandemic were predicted by the SVC model with a probability threshold of 0.5. The total
number of sequences, the number of adaptive sequences, and the human adaptation ratio are represented by the orange, blue, and yellow
histograms, respectively. The human adaptation ratio is also presented as a floating number above the stacked histogram. IAV subtypes are
indicated by the labels along the x-axis.

Table 1. Human Adaptation for Swine and Avian IAV Sequences before the 2009 H1N1 Influenza Pandemic in Different Countries/Areas.

Host Country/Area, Adaptation ratio (%) (Number of adaptive/total sequences)

PB2 PB1 PA HA NP NA

Swine JP 100.0 (20/20) US 99.2 (397/400) JP 100.0 (19/19) DK 100.0 (21/21) JP 100.0 (20/20) DK 84.2 (32/38)
HK 69.7 (85/122) JP 94.7 (18/19) UK 96.9 (62/64) UK 97.2 (69/71) US 97.3 (427/439) KR 68.8 (22/32)
CN 57.7 (45/78) CA 91.7 (44/48) IT 94.7 (18/19) JP 93.1 (27/29) CA 91.7 (44/48) IT 57.5 (23/40)
US 32.6 (125/384) KR 82.1 (23/28) HK 91.9 (136/148) IT 90.5 (38/42) KR 83.3 (20/24) CA 55.3 (26/47)
CA 31.1 (14/45) HK 78.1 (121/155) TH 77.8 (7/9) DE 87.8 (36/41) HK 78.6 (125/159) UK 53.0 (35/66)
KR 19.4 (6/31) CN 60.0 (48/80) CN 66.7 (42/63) CA 78.0 (39/50) CN 60.8 (59/97) JP 42.9 (12/28)
UK 11.1 (7/63) UK 9.2 (6/65) KR 59.3 (16/27) HK 60.2 (100/166) IT 19.4 (6/31) US 36.6 (158/432)
IT 7.4 (2/27) IT 7.4 (2/27) DE 52.6 (10/19) CN 59.6 (68/114) UK 12.1 (8/66) DE 32.6 (14/43)
FR 6.2 (1/16) ES 0.0 (0/16) US 48.6 (192/395) US 59.2 (274/463) FR 5.9 (1/17) CN 27.2 (25/92)
DE 0.0 (0/25b) DE 0.0 (0/33) CA 42.2 (19/45) TH 48.4 (15/31) DE 0.0 (0/30) HK 16.8 (46/274)

Avian US 8.4 (190/2,266) CA 3.5 (17/479) US 33.2 (758/2,286) AUS 51.2 (22/43) US 1.7 (33/1,935) JP 7.0 (3/43)
CN 5.0 (27/542) US 2.2 (51/2,282) CA 28.9 (129/446) DE 36.6 (15/41) HK 1.6 (1/63) CN 5.7 (23/407)
CA 3.4 (16/474) CN 0.4 (2/534) NL 26.7 (58/217) RU 19.5 (8/41) CA 0.2 (1/417) TH 3.0 (1/33)
HK 3.2 (2/62) VN 0.0 (0/89) AUS 17.0 (8/47) CA 18.2 (87/478) IT 0.0 (0/79) TW 2.6 (1/39)
JP 3.1 (2/65) IT 0.0 (0/91) TW 8.1 (3/37) US 17.5 (352/2,008) VN 0.0 (0/92) HK 1.9 (1/52)
NL 0.4 (1/225) NL 0.0 (0/219) CN 6.8 (30/440) JP 14.3 (10/70) NL 0.0 (0/209) US 1.7 (17/976)
AUS 0.0 (0/47) SE 0.0 (0/237) DE 6.2 (2/32) NL 13.4 (28/209) SE 0.0 (0/232) SE 1.6 (1/62)
RU 0.0 (0/47) \ \ IL 5.4 (2/37) HK 9.4 (6/64) CN 0.0 (0/522) NL 0.9 (1/106)
TH 0.0 (0/54) \ \ JP 4.8 (3/63) SE 8.5 (20/236) \ \ CA 0.5 (1/184)
IT 0.0 (0/82) \ \ HK 3.1 (2/64) TW 7.7 (3/39) \ \ IL 0.0 (0/36)

Countries/areas were abbreviated as Australia: AUS, Canada: CA, China: CN, Spain: ES, France: FR, Germany: DE, Denmark: DK, Hong Kong, China: HK, Israel: IL, Italy: IT, Japan: JP,
South Korea: KR, Netherlands: NL, Russia: RU, Sweden: SE, Taiwan, China: TW, Thailand: TH, United Kingdom: UK, USA: US, Vietnam: VN.

Li et al. . doi:10.1093/molbev/msz276 MBE

1232

https://www.statista.com/statistics/273232/net-pork-production-worldwide-by-country/
https://www.statista.com/statistics/273232/net-pork-production-worldwide-by-country/
Deleted Text: four


In summary, the human-adaptive and avian-adaptive nu-
cleotide compositions of influenza A viruses (IAVs) were de-
termined with supervised/unsupervised ML methods. ML,
based on human-adaptive nucleotide composition, per-
formed well in predicting the human adaptation of IAVs be-
fore the 2009 H1N1 pandemic. This approach might be
promising for the prediction of the risk of an influenza pan-
demic and global vulnerability to influenza.

Materials and Methods

Sequence Data Processing
Full-length coding sequences of the first six IAV segments of
PB2, PB1, PA, HA, NP, and NA (the M and NS segments are
not included due to their short length) were utilized for the
nucleotide composition analysis. In total, 115,917 human se-
quence samples, 76,538 avian sequences, and 35,569 swine
sequences, up to December 31, 2018, were downloaded from
the Influenza Research Database (IRD) (Zhang et al. 2017) or
from the Global Initiative on Sharing All Influenza Data
(GISAID) database (Shu and McCauley 2017). The ID, strain
name, sequence length, and other labels were extracted from
the definition content of sequence file in FASTA format via a
Python script (Script-1, supplementary data, Supplementary
Material online). The ID number and other labels are listed in
the supplementary data, Supplementary Material online. The
composition of mononucleotide (nt, T, C, A, and G) and
dinucleotides (dnts, 16 types of combination of every two
nts) were counted and calculated according to formulas 1
and 2/3 (Script-2, supplementary file, Supplementary Material
online) for each of the three types of nucleotide positions
within a trinucleotide codon (Karlin and Mrazek 1997). In
total, there were 60 (d)nts, including the frequency of 12 types
of nts (freqxn) and the relative frequency of 48 types of dnts
(qxnyn

).

freqxn ¼
RxnP4
i¼1 xn

; ðxn ¼ T; C; A or G;

n ¼ codon nt position 1; 2; or 3Þ

(1)

freqxnym ¼
RxnymP16
i¼1 xnym

; ðx; y ¼ T; C; A or G;

m ¼ nþ 1 for m � 3; m ¼ n� 2

for m ¼ 4;

n ¼ codon nt position 1; 2; or 3Þ
(2)

qxnyn
¼ freqxnym

freqxn�freqym
; ðxn ; ym ¼ T; C; A or G;

n ¼ codon nt position 1; 2; or 3;

m ¼ nþ 1 for m � 3; m ¼ n� 2 for m ¼ 4Þ
(3)

Sequences with duplicate ID, incorrect labels, or out-of-
length ranges were excluded, and the remaining 217,549
sequences are listed in supplementary table 1,
Supplementary Material online. To avoid a country/area
bias for ML modeling, due to the overwhelming majority of
US samples, we randomly resampled the US sequences, with
the United States to China ratio of approximately 1:1 for each
segment (Script-3, supplementary file, Supplementary
Material online), via the pandas.DataFrame.sample (Python)
model. In total, 46,042 randomly resampled human-adaptive
sequences and 46,488 human-inadaptive avian sequences
were utilized for feature extraction and model building.
Human-originated H5N1, H7N9, and other subtypes were
excluded from the human adaptation set and were not in-
cluded in the avian set for model building.

Table 2. Human Adaptation Changes in Avian, Swine, and Human IAVs after the 2009 H1N1 Influenza Pandemic.

Segment Period/Change Adaptation Ratio (%) (adaptive/total sequences) and the Change (%)

Avian Swine Human

PB2 Before 2009 5.4 (249/4,608) 35.6 (311/873) 87.3 (3,397/3,893)
2009–2018 2.6 (334/12,846) 35.9 (1,574/4,379) 95.6 (16,415/17,179)
Change 251.85 0.84 9.51

PB1 Before 2009 1.91 (88/4,610) 71.2 (664/933) 93.2 (3,627/3,890)
2009–2018 1.87 (236/12,598) 84.5 (3,734/4,421) 97.6 (16,456/16,856)
Change 22.11 18.68 4.72

PA Before 2009 22.7 (1,019/4,487) 64.7 (549/849) 95.9 (3,633/3,790)
2009–2018 19.0 (2,351/12,398) 84.2 (3,508/4,168) 98.2 (16,550/16,856)
Change 216.30 30.14 2.40

HA Before 2009 14.0 (604/4,314) 66.7 (753/1,129) 94.5 (4,809/5,091)
2009–2018 11.5 (1,398/12,158) 79.4 (7,234/9,113) 97.7 (27,508/28,158)
Change 217.86 19.04 3.39

NP Before 2009 1.1 (47/4,133) 72 (717/996) 95.7 (3,517/3,676)
2009–2018 0.6 (65/11,005) 83.8 (3,709/4,427) 98 (14,101/14,385)
Change 245.45 16.39 2.40

NA Before 2009 2.4 (58/2,379) 35.8 (429/1,200) 93.6 (3,544/3,787)
2009–2018 1.4 (109/7,734) 54.8 (4,648/8,482) 97.8 (19,944/20,386)
Change 241.67 53.07 4.49
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The Phylogenetic Analysis of Randomly Sampled
Human/Avian IAV Sequences Using the Maximum
Likelihood Method
In total, 59–61 sequence samples were randomly selected
(random state ¼ 1) from each segment sequence set
(3.59–5.01% of the total sequences) via
pandas.DataFrame.sample (Python). Then, MEGA (MEGA
7.0.26, Kumar et al. 2016) was utilized to build a maximum
likelihood tree with the Tamura–Nei model (Tamura and Nei
1993) for PB2 (A) and the other five segments (B–F). The
parameters were set as follows: uniform rates among sites,
gaps complete deletion, the ML heuristic method set to the
nearest-neighbor interchange, and with making the initial
tree automatically (default—NJ/BioNJ) as an initial tree.
Multiple and pairwise alignments were performed with
ClustalW with a gap-opening penalty of 15, a gap extension
penalty of 6.66, an IUB DNA weight matrix, and a transition
weight of 0.5 before a phylogenetic tree was built. Another
two rounds of random resampling were performed from each
segment sequence set with the same sampling ratio as men-
tioned above, and the maximum likelihood tree was built
with the same parameters.

Machine Learning Analysis
ML analysis was performed with Python. The Scikit-learn
package (version ¼ 0.18.1, https://scikit-learn.org/stable/#)
was utilized for PCA (sklearn.decomposition.PCA) analysis
and the supervised ML methods of SVC, GBRT, MLP classifier,
and RF classifier from the submodel of sklearn.svm.SVC,
sklearn.ensemble.GradientBoostingClassifier, sklearn.neural_
network.MLPClassifier, and sklearn.ensemble.Random
ForestClassifier, respectively. The data were split with
StratifiedKFold from sklearn.model_selection (n_splits¼ 5,
random_state¼ 1, shuffle ¼ True) into five training/test
sets before supervised learning was implemented (Script-4,
supplementary file, Supplementary Material online). The
SciPy package (cluster.hierarchy, version ¼ 0.19.0, https://
www.scipy.org) was utilized to build a hierarchical clustering
of the IAV sequences based on the Euclidean distance be-
tween/among sequences.

PCA is a widely utilized unsupervised ML model for con-
structing a low-rank model of a data matrix. For the following
(d)nt sorting, an orthogonal transformation by PCA (Jolliffe
and Cadima 2016) was performed to convert every four
(d)nts with possible correlations into one principal compo-
nent, with the most significant possible variance (formula 4).
For the evaluation of the separability between avian and hu-
man sequences, PCA was also utilized to transform the infor-
mation of all (60) or the optimized (d)nts into two principal
components.

Hierarchical clustering is another important unsupervised
ML method for hierarchical cluster analysis. Strategies for hi-
erarchical clustering generally fall into two types: “bottom-up”
approaches, by which each observation starts from a lower
cluster and then are clustered with its paired cluster(s) in a
higher hierarchy; and “top-down” approaches, by which all
the observations start from the top cluster and then are split

into lower hierarchies recursively down the hierarchy axis. For
the hierarchical clustering of the IAV sequences based on all
of or the optimized (d)nts, the Euclidean distance was calcu-
lated and utilized as a hierarchical clustering scalar (formula 5).

minimize kA� XYk2
F ¼

Xm

i¼1

f
Xn

j¼1

Aij � xiyj

� �2g;

s:t: X�Rm�k; Y�Rk�n; k < m or n

(4)

ka� b2k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ai � bið Þ2
s

;

a; b ¼ avian; human d ntð Þ; 1 � n � 60

(5)

An SVC, also known as a support vector machine or a
support vector network (Noble 2006), is one of the most
popular supervised learning models for classification and re-
gression analysis. An SVM training algorithm builds a model
that assigns new samples to one category or another, making
it a nonprobabilistic binary linear classifier (Noble 2006)
(formula 6). The other three ML models were the GBRT
MLP classifier and RFC classifier algorithms, by which a pre-
diction is made to evaluate the probability of human adap-
tation for each sequence. The GBRT algorithm, also known as
gradient tree boosting, is a greedy generalized boosting model
for differentiable loss functions.

min
w;b

1

2
kx2k; s:t: yi xTxi þ b

� �
� 1; i ¼ 1; 2; . . . ; 60

(6)

Feature Extraction
To evaluate the importance of each (d)nt, we first sorted the
(d)nts with a PCA/SVC combined model. Three thousand
and five hundred and forty iterations of PCA/SVC analysis
were performed to transform every four (d)nts into one PCA
component, which was then utilized for the SVC classification
of the avian and human IAV sequences. Thus, the 60 (d)nts
were sorted according to their average area under the curve
(AUC) (a) of the repeated above-mentioned PCA/SVC anal-
ysis. Supervised ML models (GBRT, MLP, RFC, and SVC) were
utilized to evaluate the efficiency of the sorted (d)nts as hu-
man/avian classification features. Accumulated (d)nts, from 1
to 60 from the sorted list, were input into each of the four
models, and the Cross_val score was utilized as an efficiency
indicator. The optimized ML (d)nt number was defined as the
number of the accumulated (d)nts, with which the Cross_val
score did not increase as much as the (d)nt number accu-
mulation, was evaluated by the MA strategy (Slawnych et al.
2009) and was determined at the crossing point of the
Cross_val score curve with its MA3 curve.

Data Availability
Original sequence data are available from the Influenza
Research Database (IRD, up to December 31, 2018) (Zhang
et al. 2017) via the website of www.fludb.org and from
the Global Initiative on Sharing All Influenza Data (GISAID)
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(Shu and McCauley 2017) via the website of www.gisad.org.
All the original data for the results are available online: https://
github.com/Jamalijama/Predict_IAV_Host.

Code Availability
The source code for the present study is available online:
https://github.com/Jamalijama/Predict_IAV_Host.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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