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Abstract

Aims

Ischaemic heart disease is most prevalent in the ageing population and often exists with

other comorbidities; however the majority of laboratory research uses young, healthy animal

models. Several recent workshops and focus meetings have highlighted the importance of

using clinically relevant models to help aid translation to realistic patient populations. We

have previously shown that mice over-expressing the creatine transporter (CrT-OE) have

elevated intracellular creatine levels and are protected against ischaemia-reperfusion

injury. Here we test whether elevating intracellular creatine levels retains a cardioprotective

effect in the presence of common comorbidities and whether it is additive to protection

afforded by hypothermic cardioplegia.

Methods and Results

CrT-OEmice and wild-type controls were subjected to transverse aortic constriction for two

weeks to induce compensated left ventricular hypertrophy (LVH). Hearts were retrogradely per-

fused in Langendorff mode for 15minutes, followed by 20minutes ischaemia and 30minutes

reperfusion. CrT-OE hearts exhibited significantly improved functional recovery (Rate pressure

product) during reperfusion compared toWT littermates (76% of baseline vs. 59%, respectively,

P = 0.02). Aged CrT-OEmouse hearts (78±5 weeks) also had enhanced recovery following 15

minutes ischaemia (104%of baseline vs. 67%, P = 0.0007). The cardioprotective effect of hypo-

thermic high K+ cardioplegic arrest, as used during cardiac surgery and donor heart transplant,

was further enhanced in prolonged ischaemia (90minutes) in CrT-OE Langendorff perfused

mouse hearts (76% of baseline vs. 55% of baseline as seen inWT hearts, P = 0.02).

Conclusions

These observations in clinically relevant models further support the development of modula-

tors of intracellular creatine content as a translatable strategy for cardiac protection against

ischaemia-reperfusion injury.
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Introduction
Decades of research investigating strategies that can reduce the damaging effects of ischaemic
heart disease have led to the identification of numerous pre-clinical therapeutic targets. Effec-
tive treatment of acute myocardial infarction (AMI) involves the rapid reperfusion of the
ischaemic myocardium; however reperfusion can paradoxically lead to further myocardial
damage known as ischaemia-reperfusion injury (IRI) [1]. Upon reperfusion, the acutely ischae-
mic myocardium is subjected to several rapid biochemical and metabolic changes including
generation of reactive oxygen species, overload of intracellular Ca2+ and rapid restoration of
physiological pH which interact to mediate cardiomyocyte death through opening of the mito-
chondrial permeability transition pore (mPTP) [1].

Energetic deficits are one of many confounding factors that can contribute to IRI. The crea-
tine kinase system acts as an energy buffer for the rapid regeneration of ATP when energy
demand surpasses supply [2] (e.g. during ischaemia), and deficiency of this system is detrimen-
tal to functional recovery following ischaemia [3,4]. Simply increasing creatine intake does not
significantly elevate creatine levels in the adult heart [5], and for this reason our laboratory pre-
viously created mice that genetically over-express the specific plasma-membrane creatine
transporter (CrT). These mice have elevated myocardial creatine [Cr] and phosphocreatine,
which protected against IRI in both in vivo and ex vivo models [6].

Despite the successful application of strategies that initiate cardioprotective signalling in the
laboratory [7], both pharmacological and non-pharmacological approaches frequently lose
efficacy in the clinical setting [8]. This loss of translation was the focus of a recent European
Society of Cardiology (ESC) working group position paper, which highlighted the essential use
of more complex experimental models to help bridge the gap between bench and bedside [9].
One of the main issues raised was the use of inappropriate pre-clinical cell/animal models in
cardioprotection studies. Pre-clinical laboratory investigations should try to reflect the clinical
scenario, in which patients presenting with AMI undergoing revascularisation are of both gen-
ders and of older age with many co-morbidities, e.g. hypertension, obesity, and left ventricular
hypertrophy (LVH) [10].

Moreover, clinical translation will require creatine elevation prior to ischaemic challenge,
e.g. before elective surgery. Any benefit should therefore be additive to that afforded by stan-
dard cold hyperkalaemic cardioplegia, which electromechanically arrests the heart in diastole
to reduce myocardial metabolic demand. While this strategy prolongs tolerance to ischaemia,
there remains room for improvement since some degree of reperfusion injury is still observed
in the human heart [11].

To address these concerns we therefore performed isolated perfused heart experiments to
determine whether the cardioprotective effect observed in young CrT over-expressing mice
(CrT-OE) persists in the presence of ‘comorbidities’. Here we demonstrate that post-ischaemic
functional recovery was improved commensurate with myocardial creatine levels in ageing
hearts and in hearts with compensated LVH. Furthermore, we show for the first time that ele-
vating intracellular creatine is additive to standard hypothermic cardioplegia in promoting
functional recovery.

Materials and Methods

Animals
This investigation was approved by the Committee for Animal Care and Ethical Review at the
University of Oxford and conforms to the UK Animals (Scientific Procedures) Act, 1986,
incorporating Directive 2010/63/EU of the European Parliament. Creatine transporter
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overexpressing mice (CrT-OE) were bred in house and backcrossed with C57BL/6J mice for
greater than 10 generations as previously described [6,12], the Tg46 strain and their wild-type
(WT) littermates were used for all experimental procedures. A subset of CrT-OE and WTmice
were aged in house to 78 ± 5 weeks. Creatine levels in WT and transgenic mice were confirmed
in post-mortem LV tissue using HPLC as previously described [13]. All mice were group
housed with chow ad libitum which is naturally creatine-free (Teklad global 16% rodent diet,
2916, Harlan UK), in a controlled environment in specific pathogen-free cages under a 12 h
light-dark cycle, at 21–22°C.

Aortic banding surgery
CrT-OE/WT male (n = 21) and female (n = 18) mice (22 ± 1g, aged 21.9 ± 0.8 weeks) were
anaesthetised with isoflurane in 100% O2, intubated, and a trans-sternal thoracotomy per-
formed. The transverse aorta was dissected and a 7–0 polypropylene monofilament suture
(Prolene, W8725) tied against a modified 27-gauge needle as described by Lygate, 2006[14] to
produce transverse aortic constriction (TAC) for a period of 2 weeks. Mice were given peri-
operative subcutaneous buprenorphine (0.8mg/kg) for pain relief.

Echocardiography
Echocardiography was used to confirm the degree of left ventricular (LV) hypertrophy follow-
ing approximately 10 days of band placement. Mice were lightly anaesthetised using 1–1.5%
isoflurane, kept warm on a homeothermic blanket and imaged using a VisualSonics Vevo 2100
with 22–55 MHz transducer. B-mode trans-thoracic short-axis images were obtained at the
papillary muscle level to measure diastolic myocardial cross-sectional area (CSA) as a marker
of LVH and fractional area change (FAC) as a measure of function. A subset of WT mice were
imaged before surgery to confirm 2 weeks of TAC was sufficient to cause significant hypertro-
phy of the LV.

Ischaemia/reperfusion recovery ex vivo
All mice were anesthetized with sodium pentobarbital (55 mg/kg I.P.) and heparin (300 IU).
Hearts were rapidly excised, cannulated and perfused in Langendorff constant pressure mode
at 80mmHg with oxygenated (95% O2/5% CO2) Krebs-Henseleit buffer at 37°C (mM): NaCl
118, KCl 4.7, MgSO4.7H2O 1.2, NaHCO3 25, KH2PO4 1.2, Glucose 11, CaCl2.H2O 1.8. LV
function was assessed in spontaneously beating hearts using a water-filled intraventricular bal-
loon connected to a pressure transducer (ADinstruments Ltd). The left ventricular end-dia-
stolic pressure (LVEDP) was set to 5.4 ± 0.5 mmHg and heart rate (HR) and left ventricular
systolic pressure (LVSP) measurements collected. These parameters were used to calculate left
ventricular developed pressure (LVDP), (LVSP—LVEDP = LVDP) and subsequently rate pres-
sure product (RPP) in the heart (HR � LVDP = RPP). Function was continually recorded with
parameters averaged at 5 to 10 min intervals throughout the ischaemia-reperfusion protocol.
Hearts in the TAC and cardioplegia groups were excluded if they did not attain good baseline
ex vivo function: exclusion criteria RPP<15000 mmHg�bpm and/or LVDP<50 mmHg at the
end of the stabilisation period [15]. Exclusion criteria was lowered to RPP<10000 mmHg�bpm
in aged hearts. In addition, hearts were excluded from analysis if they failed to make any func-
tional recovery. This applied to n = 3WT hearts that did not recover following cardioplegic
arrest; inclusion or exclusion of these hearts did not affect our findings. CrT-OE andWTmice
were used in the experimental protocols outlined below and the left ventricle subsequently snap
frozen in liquid nitrogen and stored at -80°C for subsequent biochemical analysis.
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TAC
Fourteen days post TAC surgery all hearts that were excised (WT; n = 9 female, n = 12 male.
CrT-OE; n = 9 female, n = 9 male) had the aortic band visibly intact. Following cannulation,
hearts were stabilised for 15 min, subjected to global ischaemia for 20 min and reperfused for
30 min. Four male WT hearts and one male CrT-OE heart did not meet the minimum baseline
function criteria and were therefore excluded from the study.

Ageing
Hearts from aged WT and CrT-OE mice (78 ± 5 weeks) were stabilised for 15 minutes, sub-
jected to global ischaemia for 15 minutes and reperfused for 30 minutes (WT; n = 5 female,
n = 6 male. CrT-OE; n = 11 female, n = 11 male). Hearts that did not meet minimum baseline
function criteria were excluded from the study (1 male WT, 5 male CrT-OE and 4 female
CrT-OE). In initial experiments, hearts were subjected to 20 minutes of global ischaemia, how-
ever hearts did not recover sufficiently, and therefore the ischaemic time was reduced. The
aged heart has been previously shown to have an increased susceptibility to ischaemic time
[16,17]. Unfortunately, LV creatine values were not available for all hearts in this study due to
a problem with sample storage, therefore no correlation analysis was performed (hearts lost
fromWT; n = 7 and CrT-OE; n = 5).

Cardioplegia
Hearts excised fromWT and CrT-OE (30.6 ± 6 weeks) were stabilised for 15 minutes and
arrested using St Thomas’ 2 cardioplegic solution (mM): NaCl (120), NaHCO3 (10), KCl (16),
MgCl2.6H2O (16), CaCl2 (1.2) for 6 min (WT; n = 9 female, n = 7 male. CrT-OE; n = 8 female,
n = 9 male). Hearts that did not meet the minimum function criteria during stabilisation were
excluded from the study (2 male CrT-OE and 3 female CrT-OE). Hearts with the cannula
intact were removed from the perfusion rig and submerged into cardioplegic solution for 90
minutes global ischaemia at 4°C. The intraventricular balloon was repositioned into the LV
cavity and LVEDP reset to 5–10mmHg, hearts were reperfused for 30 minutes at 37°C.

Statistical Analysis
All experiments and analysis were performed by a single perfusionist blind to the genotype and
creatine levels. Data are expressed as mean ± SEM. Statistical comparison between two groups
at a single time point was by Student’s t-test. A two-way repeated measures (mixed model)
ANOVA with a Bonferroni correction for multiple comparisons was used to statistically com-
pare groups at multiple time points. Differences were considered significant when p<0.05. All
figures show data expressed as percentage of baseline (average of 3 stabilisation time points, i.e.
first 15 min) with mean values for the raw data provided in the supporting information S1 File.

Results

Cardioprotection in presence of left ventricular hypertrophy
A subset of WT mice (n = 4) received an echocardiogram prior to surgery and again at 10 days
after TAC surgery. Compensated LVH was confirmed by a 27% increase in myocardial cross-
sectional area (P = 0.02) in the absence of changes in FAC (P = 0.78). All other WT and
CrT-OE mice were imaged at a single time-point approximately 10 days following TAC. There
were no significant differences in echocardiographic measures of LVH or in vivo function
(Table 1). Langendorff-perfused WT and CrT-OE hearts were subjected to 20 minutes global
ischaemia and 30 minutes reperfusion. At baseline there were no significant differences in any
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functional parameters (Table A in S1 File)). During the last 20 minutes of reperfusion CrT-OE
hearts had enhanced recovery of RPP and LVDP compared to WT hearts (Fig 1A and 1B).
During ischaemia, no pressure is developed, so LVSP simply reflects diastolic pressure, which
was higher in WT hearts suggesting greater ischaemic contracture (Fig 1D). Upon reperfusion,
the recovery of LVSP was significantly higher (Fig 1C). These trends persisted throughout
reperfusion, although did not reach statistical significance at later time-points. HR was
unchanged in both groups (Fig 1E). LV creatine values correlated with recovery of cardiac
function following ischaemia-reperfusion, Pearson r = 0.57, P = 0.0005 (Fig 1F).

Cardioprotection in old age
Langendorff perfused hearts from aged CrT-OE mice (78 ± 5 weeks) had a significantly
improved recovery of cardiac function (RPP) and developed pressure (LVDP) following 15
min ischaemia compared to aged WT hearts (Fig 2A & 2B). LV end-diastolic pressure
increased to a greater extent during ischaemia in WT hearts but recovered to similar levels dur-
ing reperfusion (Fig 2C & 2D). HR was unchanged in both groups (Fig 2E). There were no dif-
ferences in baseline function between the groups (Table B in S1 File).

Creatine elevation is additive to cardioplegic protection
Cardioplegia-induced cardioprotection was enhanced in CrT-OE hearts subjected to 90 min
ischaemia followed by reperfusion. RPP and LVDP were significantly improved during reper-
fusion, whereas all other functional parameters were not affected (Fig 3, raw data Table C in S1
File.) Of note, we took a conservative approach to exclude 1 male WT heart and 2 female WT
hearts that did not recover following 90 min ischaemia from the analysis. Inclusion of these 3
data points strengthened the significance of the results. All CrT-OE hearts recovered and were
included. Correlation analysis showed a relationship between LV total creatine and recovery of
cardiac function, Pearson r = 0.44, P = 0.04.

Discussion
This study builds upon previous work published by our laboratory that showed elevation of
intracellular [Cr] by overexpression of the CrT protected young, healthy, mice against IRI,
both in terms of cardiomyocyte survival in vivo and improved functional recovery ex vivo.
This was attributed to increased phosphocreatine (PCr) buffer capacity, elevated myocardial

Table 1. Cardiac function and physiological parameters following transverse aortic constriction.

WT (17) CrT-OE (17)

Physiological parameters Male (8) Female (9) Male (8) Female (9)

Body weight (g) 29.1 ± 1.0 23.7 ± 0.9 28.8 ± 0.9 23.5 ± 0.9

LV weight (mg) 151 ± 10 121 ± 7 164 ± 3 138 ± 6

LV/ BW ratio 5.19 ± 0.28 5.12 ± 0.29 5.72 ± 0.14 5.89 ± 0.22

LV total creatine (nmol/mg protein) 80 ± 6 (59–102) 66 ± 4 (43–82) 185 ± 16*** (137–263) 142 ± 7*** (120–187)

Cardiac Function (Echocardiography)

HR (bpm) 488 ± 26 464 ± 16 494 ± 30 487 ± 15

Myocardial cross sectional area(mm2) 15.93 ± 0.83 12.32 ± 0.62 15.43 ± 0.54 13.16 ± 0.43

Fractional area change (%) 42.9 ± 6.0 38.1 ± 3.0 32.4 ± 3.3 33.5 ± 2.2

Mean values ± SEM 10 days post TAC surgery for Echocardiography and 14 day post TAC for physiological parameters in WT and CrT-OE mice.

***P<0.001 versus WT mice

doi:10.1371/journal.pone.0146429.t001
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glycogen, improved ‘energy reserve’ and the ability of creatine to reduce the open probability of
the mitochondrial permeability transition pore [6]. Cardioprotective strategies that are successful
in the laboratory frequently get ‘lost in translation’ when trialled in the clinic [18], and in the cur-
rent study, we therefore sought to extend these observations into mice with pre-existing comor-
bidities. We demonstrate for the first time that elevating intracellular [Cr] retains its beneficial
effect in aged and compensated hypertrophied hearts. Moreover increasing myocardial [Cr]
enhances the protective effect already afforded by cardioplegia during prolonged ischaemia.

Fig 1. Functional recovery following ischaemia in hypertrophied hearts. Isolated hearts were perfused for 15 min at baseline, 20 min no flow ischaemia
(grey) and 30 min reperfusion, with hypertrophied CrT-OE hearts (n = 17) showing improved functional recovery compared to hypertrophiedWT hearts
(n = 17). (a) rate pressure product, RPP; (b) left ventricular developed pressure, LVDP; (c) left ventricular systolic pressure, LVSP; (d) left ventricular end-
diastolic pressure, LVEDP; (e) heart rate, HR. (f) Pearson's correlation analysis indicates a positive relationship between functional recovery and total
creatine levels (WT hearts are black circles and CrT-OE white). Data shown as mean values ± SEMComparisons between groups by two-way repeated
measures (mixed model) ANOVA with a Bonferroni Post-hoc test. *P<0.05, **P<0.01, ***P<0.001.

doi:10.1371/journal.pone.0146429.g001
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Rapid revascularization of ischaemic regions within the heart by thrombolysis or primary
percutaneous coronary intervention remains at the clinical forefront to effectively treat AMI
[18,19]. Pre-existing hypertrophy has been associated with a significantly worse prognosis in

Fig 2. Functional recovery following ischaemia in ageing hearts. Isolated hearts were perfused for 15 min at baseline, 15 min no flow ischaemia (grey)
and 30 min reperfusion, when hearts from aged CrT-OE mice (n = 13) had improved functional recovery compared to agedWT hearts (n = 10). (a) rate
pressure product, RPP; (b) left ventricular developed pressure, LVDP; (c) left ventricular systolic pressure, LVSP; (d) left ventricular end-diastolic pressure,
LVEDP; (e) heart rate, HR. Data shown as mean values ± SEM. Comparisons between groups by two-way repeated measures (mixed model) ANOVA with a
Bonferroni Post-hoc test. *P<0.05, **P<0.01, ***P<0.001

doi:10.1371/journal.pone.0146429.g002
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patients recovering from AMI [20,21]. The deleterious effects of ischaemia may be more pro-
nounced in the hypertrophied heart, in part because the capillary network is unaltered despite
increased myocyte volume (and metabolic requirements), resulting in a greater distance for
oxygen diffusion [22]. This phenomenon has also been observed in the murine TAC model
[23], which we used at two weeks post-surgery since we have previously shown this to result in
robust hypertrophy without deterioration in cardiac function [14]. Major differences in

Fig 3. Functional recovery following hypothermic cardioplegic arrest. Isolated hearts were perfused for 15 min at baseline, then cardioplegic arrest for
90 min at 4°C (grey), and 30 min reperfusion, when CrT-OE hearts (n = 12) had improved functional recovery compared to WT hearts (n = 13). (a) rate
pressure product, RPP; (b) left ventricular developed pressure, LVDP; (c) left ventricular systolic pressure, LVSP; (d) left ventricular end-diastolic pressure,
LVEDP; (e) heart rate, HR. (f) Pearson's correlation analysis indicates a positive relationship between functional recovery and total creatine levels (WT hearts
are black circles and CrT-OE white). Data shown as mean values ± SEMComparisons between groups by two-way repeated measures (mixed model)
ANOVA with a Bonferroni Post-hoc test. *P<0.05, **P<0.01

doi:10.1371/journal.pone.0146429.g003
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starting baseline function would have made our results difficult to interpret. We observed
greater functional recovery following ischaemia in CrT-OE hearts despite slightly more pro-
nounced LVH and a trend for lower baseline in vivo function.

It should be noted that previous work from our laboratory has shown that very high myo-
cardial [Cr] may itself cause LV hypertrophy and dysfunction [12], and defined the safe “thera-
peutic” level at up to 100% above wild-type [6]. Since we did not prospectively exclude very
high [Cr] levels in the current experiments, the higher proportion of transgenic mice excluded
in the ageing and cardioplegia studies may simply reflect those animals with pathologically
high levels of [Cr] (i.e.>100% above WT). It is conceivable that very high [Cr] may be detri-
mental in the long-term, but remain beneficial in the context of acute ischaemia. This is sup-
ported by the positive linear correlations we observed between [Cr] and functional recovery,
particularly in the TAC experiment which included a number of hearts within the high (detri-
mental) [Cr] range. Since the adverse effects of high [Cr] are driven by an inability to keep the
total creatine pool adequately phosphorylated [12], we speculate that it may be possible to
extend the “therapeutic” range by simultaneously increasing activity of creatine kinase (CK). In
this context it is notable that over-expression of CK in mouse heart also protects against IRI
[24].

We also performed experiments in mice aged 18 months since the ageing heart is known to
have altered cardiac substrate metabolism [25], is more susceptible to ischaemic damage [26],
and is less amenable to conditioning strategies [27,28]. The maturational rate in mice ranges
from 150x faster than humans in the first month of life to 25x faster beyond 6 months. By 18
months, virtually all biomarkers of ageing are evident and mice are classed as old age, equiva-
lent to 56–69 years in humans [29]. This corresponds well with the median age for first AMI,
which is 56 years for men and 65 years for women [30].

Cold, cardioplegic arrest of the heart remains the gold standard for effective myocardial pro-
tection during cardiac surgery [31] and heart transplantation [32], however the heart is not
completely protected against ischaemic damage. Cold St Thomas’ solution #2 protects the
myocardium via hypothermia and electromechanical arrest using high concentrations of K+

and Mg2+ ions to reduce metabolic demand and prolong ischaemic tolerance [31]. In this con-
text, elevation of intracellular [Cr] had an additive cardioprotective effect. We took the conser-
vative approach of excluding three wild-type hearts that failed to show any recovery upon
reperfusion, so this effect size may be an underestimation. Previous studies have shown that
supplementation of cardioplegic solutions with exogenous phosphocreatine can significantly
improve myocardial protection, e.g. in pigs [33] and in patients [34] undergoing coronary
artery bypass surgery, and in ex vivo rat hearts [35]. However, it should be noted that phospho-
creatine is not a substrate for cellular uptake via the CrT [36]. These beneficial effects are pro-
posed to result from enhanced plasma membrane stabilisation [37] and not elevation of
intracellular [Cr] as in the current study. The capability to enhance protection above that
already reported for cardioplegia alone is an important finding that could translate into the
clinical environment to improve patient outcomes following cardiac surgery.

Limitations
During ischaemia, the heart undergoes many metabolic changes including a reduction in intra-
cellular PCr [38]. We did not measure PCr in this study but from previous studies we know
that myocardial PCr levels were on average 49% higher in CrT-OE mice [6]. Instead we mea-
sured total [Cr] which includes PCr using HPLC at the end of perfusion experiments. WT val-
ues were comparable to historical values for freshly harvested LV tissue confirming total [Cr]
was not lost over the experimental timeframe. The findings presented in this study are from ex
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vivo not in vivo experimental approaches and ideally we would have both. This reflects the lim-
itations of having sufficient numbers of aged animals and the welfare implications of combin-
ing TAC surgery with ischaemia-reperfusion surgery. Furthermore, we did not perform
tetrazolium staining in our ex vivo hearts since the period of reperfusion was insufficient for
complete washout of NADH from necrotic tissue, which would lead to under-estimation of
infarct sizes [39]. It is therefore not possible for us to determine whether the protective effect of
elevating creatine was due to increased cell survival or improved contractile function. However,
our previous study showed that both aspects play a role in cardioprotection in CrT-OE mice
[6].

Conclusions
We have shown that elevating creatine levels in the mouse heart improves functional recovery
following ischaemia-reperfusion even in the presence of old age or LVH. Both conditions pre-
viously associated with loss of cardioprotective efficacy. Furthermore, elevating intracellular
creatine is additive to standard hypothermic cardioplegia for recovery from prolonged ischae-
mia. Together these findings support the development of small molecule activators that
increase intracellular Cr [40], which would be necessary for testing in large animal models and
ultimately translation to the clinic. Such compounds would increase myocardial [Cr] with
potential for beneficial effects when given prior to elective cardioplegic surgery, donor explant
or in patients deemed at high risk of AMI.
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