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Abstract: Hepatocellular carcinoma (HCC) is among the most lethal cancer types despite great 
advancement in overall survival of the patients over the last decades. Surgical resection or partial 
hepatectomy has been approved as the curative treatment for early-stage HCC patients however only up to 
30% of them are eligible for the procedures. Natural killer (NK) cells are cytotoxic lymphocytes recognized 
for killing virally infected cells and improving immune functions for defending the body against malignant 
cells. Although autologous NK cells failed to demonstrate significant clinical benefit, transfer of allogeneic 
adoptive NK cells arises as a promising approach for the treatment of solid tumors. The immunosuppressive 
tumor microenvironment and inadequate homing efficiency of NK cells to tumors can inhibit adoptive 
transfer immunotherapy (ATI) efficacy. However, potential of the NK cells is challenged by the transfection 
efficiency. The local ablation techniques that employ thermal or chemical energy have been investigated 
for the destruction of solid tumors for three decades and demonstrated promising benefits for individuals 
not eligible for surgical resection or partial hepatectomy. Irreversible electroporation (IRE) is one of the 
most recent minimally invasive ablation methods that destruct the cell within the targeted region through 
non-thermal energy. IRE destroys the tumor cell membrane by delivering high-frequency electrical energy 
in short pulses and overcomes tumor immunosuppression. The previous studies demonstrated that IRE 
can induce immune changes which can facilitate activation of specific immune responses and improve 
transfection efficiency. In this review paper, we have discussed the mechanism of NK cell immunotherapy 
and IRE ablation methods for the treatment of HCC patients and the combinatorial benefits of NK cell 
immunotherapy and IRE ablation. 
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Introduction

Hepatocellular carcinoma (HCC), most common type of 
liver cancer, makes up to 85% of liver cancer diagnoses (1). 
As mainly occurring due to liver cirrhosis caused by hepatitis 
and alcoholic cirrhosis, HCC is ranked as the fourth leading 
cause of cancer-related deaths worldwide (2). Despite 
potential prevention of the risk factors that cause HCC, 
HCC surveillance has limited availability and restricts the 
implementation of probable curative treatment options 
for HCC patients (2). Surgical resection and partial 
hepatectomy remain effective curative treatments for 
early-stage HCC patients, according to the Barcelona-
Clinic Liver Cancer (BCLC) disease classification (3). 
However, only up to 30% of the patients are surgical 
candidates due to multiple lesions related to chronic liver 
disease (4). Systemic chemotherapy increases the median 
survival time of the patients with advanced HCC by 
about three months (5,6). 

Natural killer (NK) cells are cytotoxic innate immune 
cells that are specialized in defense against tumors and 
they constitute the first line of defense against invading 
neoplastic cells. Early studies utilizing autologous NK cell-
based adoptive transfer immunotherapy (ATI) have failed to 
demonstrate significant clinical benefit due to the circulation 
of the NK cells in the bloodstream instead of tumor 
structures (7). However, allogeneic adoptive transfer of NK 
cells collected from healthy individuals to cancer patients 
is assumed to be a promising approach for the treatment of 
solid tumors including unresectable liver tumors (7,8). Yet, 
critical barriers, e.g., tumor immunosuppression must be 
overcome to achieve prominent therapeutic outcomes. 

Hepatic tumor ablation, including radiofrequency 
ablation (RFA), microwave ablation (MWA), or cryoablation, 
has shown great promise for complete remission in patients 
with HCC smaller than 3 cm in diameter (9). However, the 
efficacy of these methods is challenged by location, size, and 
the number of tumors due to the “heat-sink” effect in which 
blood flow causes a cooling effect reducing the volume of 
ablated tumor region located near major blood vessels (10). 
Irreversible electroporation (IRE), a non-thermal tissue 
ablation technique, instigates cell death within the tumor 
structure and preserves the extracellular matrix, and induces 
minimal inflammation (11,12). Unlike other ablation 
techniques, IRE induces immunogenic cell death with 
the use of high voltage low-energy direct current pulses 
delivered to the treatment region with great precision 
while preserving vital structures such as the extracellular 

matrix and blood vessels within the treatment region 
(13,14), which is ideal for stimulating local inflammation 
and promoting NK cell infiltration into tumors. With the 
advent of immunotherapy for liver tumors, there is an 
increasing clinical interest in understanding the potential 
combination of NK cell treatment with the IRE ablation 
method to maximize therapeutic responses. In this review, 
we summarize the current investigations of NK cell-
based immunotherapy and IRE ablation method as well as 
combination therapy (NK plus IRE) for the treatment of 
HCC patients.

We present the study in accordance with the Narrative 
Review reporting checklist (available at https://dx.doi.
org/10.21037/atm-21-539).

Methods

For this study, we searched the PubMed and Web of 
Science databases for articles published in English during 
the last 20 years until August 1, 2020. The selected relevant 
articles were reviewed and reported in this manuscript.

NK cell-based immunotherapy 

NK cells, an essential part of the innate immunity, are 
expressed as a member of lymphocytes that fight against 
tumor cells without prior sensitization (15) and are 
frequently located in the peritoneal cavity, bone marrow, 
liver, lung, lymph nodes, peripheral blood, spleen, and 
thymus (16). NK cells account for 20–30% of the hepatic 
lymphocytes in healthy human liver tissue as well as 
10% of the lymphocytes in lungs (17). NK cells induce 
apoptosis of tumor cells through various functional 
mechanisms such as producing cytotoxic granules loaded 
with granzyme and perforin, death receptor-mediated 
apoptosis, secreting cytoplasmic granules, and antibody-
dependent cellular cytotoxicity (18). Moreover, NK 
cells are suitable immunotherapeutic targets for cancer 
treatment, e.g., adoptive cell transfer and antibody-based 
strategies (19). Therefore, researchers have focused on the 
administration of NK cells for cancer immunotherapy. The 
activation of NK cells is administered by inhibitory and 
activating receptor signals in which NK cell activation leads 
to the release of granules by causing cytotoxicity with the 
downregulation or absence of self major histocompatibility 
complex (MHC) class I molecules in encountered cells 
(Figure 1) (20,21).

Several studies have reported that the malfunction of 
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NK cells was associated with the progression and metastasis 
of different types of cancers in both animal models and 
clinical studies (22-24). Particularly, increasing functional 
impairment and reduced proliferation of NK cells during 
hepatocarcinogenesis has been reported in a review 
article by Sun et al. (25). Meanwhile, Cai et al. observed 
a significant reduction of intrahepatic NK cells and a 
dramatic level of reduction in peripheral NK cells in HCC 
patients compared to healthy subjects (26). The ratio of NK 
cell reduction became more noticeable in the later stages of 
the HCC disease indicating the migration of NK cells to tumor 
regions (27,28). In addition, frequency and cytolytic activity of 
NK cells have been damaged during liver cancer (25). Several 
approaches have been adopted to improve the efficacy 
of NK cell-based immunotherapy by overcoming the 
lack of functioning or reduced level of NK cell presence, 
e.g., increasing cytotoxicity of NK cells using cytokine 
treatment, modulating the cytotoxic function of NK cells 
using antibodies, boosting NK cell-activating receptors, 
adoptive transfer of NK cells. 

The first FDA-approved cytokine, interleukin 12, 
improves the cytotoxicity of the NK cells while it also 
improves the regulatory T (Treg) cells, which can diminish 
the efficacy of the NK cells (29). The study conducted by 
Barajas et al. demonstrated the possibility of treating HCC 
with the injection of adenovirus expressing IL-12 activating 
NK cells and inhibiting angiogenesis (30). On the other 
hand, Levin et al. suggested a strategy for the modification 
of IL-2 to prevent activation of Treg cells while maintaining 
an increase of cytotoxicity of NK and CD8+ T cells (31). An  
in vivo study showed successful results in improving cytotoxic 
T cell expansion and therefore antitumor responses. 
Moreover, in vitro experiments, showed enhanced IL-2 

potency, and regulated cell specificity was observed. Pillet 
et al. demonstrated the potential of IL-15 for improving 
NK cell activity and increasing the cytotoxicity of NK 
cells and CD8+ T cells without simulating Treg cells (32).  
Furthermore, several studies investigated the strategies 
utilizing cytokine gene therapies in animal models for the 
proliferation and activation of NK cells (33-40). Tatsumi 
et al. demonstrated that intrahepatic injection of alpha-
galactosylceramide-pulsed dendritic cells into the liver 
efficiently activated NK cells while inducing complete 
tumor rejection and increasing long-term survival benefits 
in a murine CMS4 tumor model (33). Leboeuf et al. have 
shown that human allogeneic suicide gene-modified killer 
cells exhibit cytotoxicity towards HCC mostly controlled 
by NK and NK T cells (34). Lo et al. highlighted the 
potential of IL-12 cytokines for the regulation of hepatic 
T cells, NK cells, and NK T cells in addition to reducing 
hepatic metastasis and improving survival with adeno-
associated virus serotype 8/IL-12 treatment (35). The 
study of Gonzalez-Carmona et al. demonstrated that 
transduction of tumor-associated antigen-pulsed dendritic 
cells with a CD40L-encoding adenovirus provided 
significantly improved tumor infiltration with CD4+, CD8+ 
T, and NK cells (36). Abushahba et al. demonstrated that 
the antitumor activity of type III interferon (IFN-λ) was 
similar or better compared to type I interferon (IFN-α) 
without a direct effect on NK cells (37). Moreover, Ebert 
et al. showed a strong IFN-α response as well as antiviral 
activity in liver cells introduced by 3p double-stranded RNA 
(3p-RNA) activated retinoic acid-inducible protein I (38). 
Guo et al. targeted Pim-3 gene by constructing a dual-
function small hairpin RNA (shRNA) vector containing an 
shRNA for proliferation and inhibition of apoptosis (39).  

Figure 1 The activation of natural killer cells is controlled by the signals from inhibitory and activation receptors. NK cell activation is 
restricted as self MHC class I molecules are recognized by inhibitory NK cell receptors. In the case of downregulation or absence of self 
MHC class I molecules in encountered cells, NK cell activation leads to the release of granules by causing cytotoxicity. NK, natural killer; 
MHC, major histocompatibility complex.
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Besides, the study of Han et al. demonstrated that 5'-end 
triphosphate hepatitis B virus X gene RNAs prevented 
replication of hepatitis B virus by strong expression of 
IFN-α and proinflammatory cytokines as well as activation 
of the retinoic acid-inducible gene I (40). These studies 
supported the potential benefits of using NK cells as a 
treatment approach and suggested further investigation 
before performing clinical trials. 

The transfer of the autologous or allogeneic peripheral 
blood NK cells is another approach that has gained 
researchers’ attention on cancer immunotherapy (18,41). 
The efficacy of transplanted NK cells is associated with 
killing specificity, in vivo activity, and persistence. Several 
studies emphasized that autologous NK cells could not 
demonstrate clinical benefits in the long-term since their 
anti-tumor activity is limited by the inhibitory signal 
transmitted by self MHC molecules (42,43). Parkhurst et al. 
used adoptively transferred in vitro activated autologous 
NK cells for the treatment of patients with melanoma 
and renal cell carcinoma following the lymphodepleting 
chemotherapy regimen (42). Despite no significant clinical 
benefit adoptively transferred NK cells were in peripheral 
circulation but they could not kill tumor cells in vitro 
without IL-2 reactivation. Sakamoto et al. treated locally 
advanced and/or metastatic digestive cancer patients 
using NK cells expanded ex-vivo with the simulation of 
peripheral blood mononuclear cells with OK432, IL-2, 
and modified FN-CH296 induced T cells (43). In addition 
to good-toleration of the treatment without severe adverse 
effects, they observed significantly increased cytotoxicity 
in the peripheral blood until four weeks after treatment 
which suggested the potential for evaluation of the 
approach in further clinical trials. Allogeneic NK cell 

infusion demonstrated an improved clinical outcome for 
the treatment of late-stage cancer patients including HCC 
(44,45) in which the procedure for NK cell isolation, 
expansion, and purity was critical for successful results (7).  
Moreover, a preclinical study performed by Su et al. 
demonstrated that further improvement can be observed 
with a transcatheter intra-hepatic infusion of NK cells 
for the treatment of HCC (46). The results emphasized 
the significantly increased number of CD56+ NK cells 
in the treatment group compared to the control group 
in addition to reduced tumor volume growth in treated 
subjects (Figure 2). 

The potential benefits of chemotherapy for augmenting 
NK cell efficacy have been investigated by several groups 
(5,47-49). Sorafenib, an FDA-approved multi-kinase 
inhibitor, is a standard treatment providing survival benefits 
for advanced HCC patients (5). As targeting vascular 
endothelial growth factor receptor and platelet-derived 
growth factor receptor, Sorafenib suppresses tumor cell 
proliferation and angiogenesis in addition to an increased rate 
of apoptosis in solid tumor models (5). In HCC, Sorafenib 
inhibits serine-threonine kinases Raf-1 and vascular 
endothelial growth factor pathways that administer cellular 
signaling for the molecular pathogenesis of HCC (50-53). 
Sprinzl et al. demonstrated that Sorafenib induces NK cell 
antitumor response through the proinflammatory activity of 
tumor-associated macrophages (47). In addition, Kamiya et al.  
demonstrated that anti-HCC cytotoxicity of NK cells was 
improved in HCC cell line exposed to 5 µmol/L of Sorafenib 
for 48 hours (48) which suggests potential for combined 
benefits of chemotherapy and immunotherapy (49). Other 
clinical trials have been conducted to evaluate the efficacy 
and safety profile of the NK cells in HCC patients and are 

Figure 2 Natural killer (NK)-based adoptive transfer immunotherapy (ATI) outcome in a rat model of hepatocellular carcinoma (HCC). 
(A) The tumor volume changes after 8 days of NK cell infusion. (B,C,D) Representative CD56-stained histology slices corresponding to 
subjects from the control group with transcatheter intra-hepatic arterial (IHA) saline (B), intravenous (IV) NK cell (C), and transcatheter 
IHA NK cell infusion after 8 days of infusion (D). (E) The IHA NK cell infusion group had a significantly (P<0.0001) improved number of 
CD56+ NKs compared to the control group. (B,C,D) Scale bars =100 µm. [Adapted from Su et al. (46), Copyright 2018 by John Wiley & 
Sons Ltd.]
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schematized in Table 1. The outcome of these clinical studies 
will reveal better understanding of the immunotherapeutic 
mechanism of NK cell-based therapy for HCC and further 
advancement of the clinical strategies. 

IRE ablation 

Surgical resection and partial transplantation are preferred 
curative options for patients with HCC. However, they 
are directly affected by several factors including but not 
limited to tumor location and stage, patient condition, and 
liver functions. Therefore, a limited number of patients are 
suitable for these treatment approaches. The local ablation 
techniques, using thermal or chemical energy, have been 
developed in the last three decades and demonstrated 
benefits for the patients who are not suitable surgical 
candidates (3,54). In addition, ablation methods became a 
recommended treatment approach for very early (tumor 
diameter <2 cm) and early-stage (tumor diameter <3 cm) 
HCC following the meeting of the European Association 
for the Study of the Liver in 2017 (3,55). RFA, first utilized 
in the 1990s, became the first line of ablation methods, 
later followed by MWA and cryoablation. Briefly, RFA 
utilizes thermal energy delivered to targeted lesions 
through radiofrequency electrodes placed under imaging 
guidance to destroy malignant tissues. During RFA, 
electric current leads to necrosis and cell death while high 
temperature (60–100 ℃) (56,57) limits the efficacy due to 
local tissue charring and heat-sink effects (56). To overcome 
these limitations, it was suggested to cool the electrodes 
internally and use multiple electrodes in the bipolar mode, 
despite the increased risk of bleeding and adjacent organ 
damages. In MWA, the heat generated by microwave 
energy is utilized to destroy targeted tissues similarly to 
RFA, but with fewer limitations (58). The design of the 
microwave antenna can elicit even heat transfer within 
the targeted region. Nevertheless, MWA has not replaced 
RFA despite proven benefits in comparison studies (59-61).  
Cryoablation, eliciting tumor necrosis, and cell death 
through freezing, is susceptible to the cool sink effect 
which limits its efficacy (57,62). The limitations of these 
methods derived the clinical need for implementation 
of a nonthermal source for ablation of the tissue while 
eliminating heat-sink effect and allowing safe utilization of 
the method closer to large vessels. 

IRE, a non-thermal and minimally invasive ablation 
method, is  a relatively new ablation method that 
incorporates delivery of high-frequency electrical energy 

in short pulses to malignant tissues (63,64). IRE leads 
to abnormal transmembrane electrical potential which 
increases the permeability of the cell membrane and causes 
irreversibly open plasma membranes leading to apoptosis 
(65-67). Compared to the alternatives, destruction of 
the cells without thermal features enables the potential 
application of IRE procedure without damaging close 
tissues, e.g., vessels, nerves, or ducts (12). Moreover, 
boundary between treated and untreated tissue region 
after the procedure can lead to a better evaluation of 
the treatment response by allowing easier monitoring 
and controlling the procedure (68). The reversible 
electroporation (RE) and IRE zones generated by IRE 
ablation can be visualized in which IRE zone includes dead 
cells and RE zone represents the less affected peripheral 
region (Figure 3). In magnetic resonance imaging (MRI), 
IRE zone was observed as hyperintense on T1w and T2w 
images due to the coagulative necrosis while RE zone is 
described as hypointense on T1w and hyperintense T2w 
MRI images (69). 

The safety profile of the IRE ablation methods has 
been investigated by several studies (70-76). Dollinger  
et al. analyzed the effects of IRE on vascular structures by 
examining subacute (1 and 3 days) and midterm (average 
5.7 months) follow-up data (70). In their study, vascular 
changes were detected in 19 vessels among 194 venous 
structures located in a 1 cm distance ablation zone in 
which IRE was performed on 84 hepatic lesions. The 
follow-up investigation demonstrated partial or complete 
vascular recovery on 9 of 14 cases, concluding that vascular 
structures located close to the IRE ablation zone were 
lightly affected. Another study investigated the injury of bile 
ducts following IRE procedure in which 55 bile ducts were 
examined within a 1 cm distance of 53 hepatic tumors (71). 
The follow-up MRI analyses showed that 8 of 55 bile ducts 
had a narrowing, 7 had dilation while no adverse events 
were observed on the remaining 40 bile ducts. In addition, 
a recent review showed that IRE is a safe alternative to 
perform at the tissues close to the critical structures with a 
lower risk of collateral damage compared to other ablation 
methods (37). 

The efficacy of IRE was reported in studies using different 
animal models (12,77-80). Guo et al. performed IRE on thirty 
Sprague-Dawley rats with HCC and used MRI for evaluation 
of the therapeutic response 14 days after completion of the 
procedure (77). Their results suggested that IRE is an efficient 
method to ablate liver tumor tissue as a potential candidate 
for HCC treatment. Lee et al. assessed the effectiveness of 
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Figure 3 The representation of irreversibly and reversible electroporated zones after the irreversible electroporation (IRE) ablation 
procedure. Complete cell death occurs within the irreversible electroporation zone while cells in the peripheral region are minimally affected 
and demonstrate recovery after IRE ablation. 

the IRE ablation by performing a procedure on healthy 
liver tissue of sixteen Yorkshire pigs (12). They did not 
observe any complications following the IRE procedure for 
55 ablation zones of 16 subjects which suggested IRE as a 
safe and effective ablation approach for necrosis. In another 
experiment, potential clinical translation of the IRE ablation 
method was investigated using VX2 liver tumor model with 
single or multiple ablations on twenty New Zealand white 
rabbits (80). Several studies focused on immediate therapeutic 
response following IRE in animal models (78,81-87). Zhang 
et al. investigated the changes using MRI after IRE with 
different voltages in a rat liver model (78). Additional studies 
demonstrated that other imaging modalities (ultrasound, 
contrast-enhanced computed tomography (CT), diffusion-
weighted MRI, and contrast-enhanced MRI) have the 
potential for early assessment of IRE treatment effects 
by visualizing immediate changes following the ablation 
(81-85). More recently, an advanced MRI technique was used 
on VX2 rabbit HCC model to differentiate IRE regions from 
reversibly electroporated (RE) zones which will be beneficial 
for intraprocedural assessment (86,87). The results further 
emphasize the potential of immediate evaluation of RE regions 
using MRI to determine the treatment strategy (Figure 4). 

The clinical outcome of IRE ablation in patients 
with solid tumors has also been performed (73,88-98). 
Thomson et al. investigated the safety of the IRE technique 

in a single-center prospective non-randomized study 
including 38 patients with advanced liver, kidney, or lung 
malignancies and unresponsive to alternative therapies (73).  
The results demonstrated that IRE is a safe ablation 
method in clinical usage for cancer treatment. Cannon et al. 
performed a clinical investigation to evaluate the efficacy of 
IRE on hepatic tumors (88). Of 44 patients undergoing IRE 
treatment, five patients had 9 adverse effects which were 
classified as unrelated (leukocytosis, urinary tract infection), 
indirectly related (dehydration, biliary stent occlusion, 
cholangitis, and acute renal failure), procedure-related 
(neurogenic bladder, abdominal pain, and flank pain) and 
all these effects were resolved in 30 days. Moreover, the 
study results completed by Sugimoto et al. suggested that 
IRE was well tolerated by the patients with small tumor 
size and satisfactorily controlled disease (91). Eller et al. 
performed the IRE procedure on 14 patients who were not 
surgical candidates and had lesions near large vessels (92). 
Ten of the 14 patients were successfully treated without 
local recurrence at least for a mean of 388±160 days. In 
addition, Niessen et al. discussed that patients with larger 
tumor volume may be poor candidates for IRE treatment 
due to the association of tumor volume and early disease 
recurrence observed in their study (93). More recent studies 
also demonstrated that IRE is a safe and efficient alternative 
ablation method for patients with unresectable tumors (96-98). 

Reversible electroporation

Irreversible electroporation
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Currently, there are completed and ongoing clinical trials 
for the assessment of efficacy and feasibility of the IRE 
ablation method in the treatment of HCC (Table 2). The 
comprehensive evaluation of the IRE procedure during 
these clinical trials will further present evidence for efficacy 
and safety-profile of IRE as well as advance our knowledge 
of the tumor response following ablation. 

IRE plus NK cell-based treatment 

Previous studies have demonstrated the clinical benefits 
of the IRE ablation procedure by highlighting advantages 
compared to thermal ablation methods including a high 
ablation rate and recurrence-free disease period not 
affected by blood flow (10,64,88,89,99,100). However, 
several studies have demonstrated possible advancements 
for this local ablation method for the efficient treatment of 
cancer patients (101-104). Particularly, a preclinical study 
completed by Neal et al. suggested that immunocompetent 
subjects may have a better IRE therapeutic response 
compared to immunodeficient subjects (105). Therefore, 
boosting the immune system of the candidate patients 
remains important for improved IRE treatment outcomes. 
As an essential element of the innate immune system, NK 
cells are one of the most promising therapeutic agents 
to perform following IRE ablation for the treatment of 
solid tumors. Lin et al. investigated the safety and clinical 
efficacy of this potential combinative approach for the 
treatment of advanced-stage pancreatic cancer patients with 

unresectable tumors (106). Throughout this clinical trial, 
patients had local or systemic adverse effects measured as 
grade 1 (nausea andhaoba emesis, 7.04%; puncture point 
pain, 29.58%; fatigue, 22.54%, fever, 30.99%) or grade 2 
(duodenum and gastric retention, 4.23%, transient reduction 
of intraoperative blood pressure, 25.35%; white cell count 
reduction, 18.31%), and all of these side effects were resolved 
on the same day with symptomatic treatments without any 
complications. In addition, median progression-free survival 
and overall survival of the patients treated with a combination 
of IRE ablation and NK cell-based immunotherapy were 
significantly improved in stage III pancreatic cancer patients 
as well as median overall survival of stage IV patients was 
extended. The clinical efficacy of combination treatment for 
stage IV HCC was initially reported by Alnaggar et al. (45).  
In this study, twenty patients only received an IRE ablation 
while the remaining twenty patients additionally received 
NK cell-based immunotherapy 4–6 days after IRE 
ablation. The procedures were completed without severe 
complications and patients with mild adverse effects treated 
with symptomatic management. The study showed that 
patient cohort that received combination treatment had 
significantly improved median overall survival (10.1 months)  
compared to patients treated with a single therapy  
(8.9 months, P=0.0078). Moreover, observation data 
acquired 3 months following the treatments demonstrated 
a significant difference in tumor size among the groups 
(IRE: 2.68±1.01 vs. NK-IRE: 2.31±0.68 P<0.05), and 
combination group obtained a higher disease control rate 

Figure 4 Magnetic resonance imaging (MRI) and histology-based irreversible electroporation (IRE) and reversible electroporation (RE) 
areas. (A) Representative postcontrast T1-weighted MRI where the reversibly electroporated zone is outlined in yellow and the peripheral 
reversibly electroporated zone in green. (B) H&E-stained histology slide, corresponding regions were demonstrated in which the necrotic 
(irreversible) center is marked in yellow and the enhanced rim is emphasized in green. [Adapted from Figini et al. (87). Copyright 2018 by 
John Wiley & Sons Ltd.].
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than IRE group. A recent comprehensive study reported 
the safety and short-term efficacy of the IRE plus NK cell-
based immunotherapy for the treatment with unresectable 
primary liver cancer patients enrolled in the first clinical 
trial (NCT03008343) in collaboration with Fuda Cancer 
Hospital and Shenzhen Hank Bioengineering Institute (107).  
The results demonstrated that performing NK cell-
based immunotherapy following IRE ablation generates 
a synergistic effect that significantly reduces the number 
of tumor cells in circulation and improved the immune 
functions of the patients. The researchers stated that 
88.9% of the patients treated with the combination therapy 
demonstrated clinical response while 68.2% of the patients 
treated with only IRE ablation in three months post-
treatment. Moreover, significantly improved progression-
free and overall survival was observed for the patients 
receiving combination treatment. 

Conclusions

During the past  few decades ,  many studies  have 
demonstrated the potential benefits of immunotherapy 
for the treatment of solid tumors. As a key agent of the 
innate immune system, NK cells have great promise for 
fighting against tumor cells. Adoptive transfer of NK cells 
has further emphasized the potential benefits for cancer 
patients with solid tumors. However, immunosuppressive 
tumor microenvironment and inadequate homing efficiency 
of NK cells to tumor tissues (particularly following systemic 
administration) have inhibited ATI efficacy. As a minimally 
invasive non-thermal ablation technique, IRE instigates 
cell death within the applied region with minimal damage 
to the perpendicular region. The destruction of the tumor 
microenvironment by IRE enables overcoming tumor 
immunosuppression. Recent studies have demonstrated that 
a combination of IRE and NK cell-based immunotherapy 
has the potential to improve patient survival in the 
advanced-stage liver and pancreatic cancers. Besides, several 
studies that combine other immunotherapeutic methods 
with IRE ablation method have presented promising 
outcomes for the treatment of pancreatic tumors in which 
comprehensive reports will be beneficial for the researchers 
with the focus of cancer research (108-112). The data to 
be acquired from future studies will further emphasize the 
benefits of utilizing combination treatment of patients with 
HCC and also support the findings for assessment of long-

term clinical response.
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