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Optical coherence 
tomography‑based deep‑learning 
model for detecting central serous 
chorioretinopathy
Jeewoo Yoon1,8, Jinyoung Han1,8, Ji In Park2, Joon Seo Hwang3, Jeong Mo Han4, 
Joonhong Sohn5, Kyu Hyung Park6 & Daniel Duck‑Jin Hwang5,7*

Central serous chorioretinopathy (CSC) is a common condition characterized by serous detachment 
of the neurosensory retina at the posterior pole. We built a deep learning system model to diagnose 
CSC, and distinguish chronic from acute CSC using spectral domain optical coherence tomography 
(SD-OCT) images. Data from SD-OCT images of patients with CSC and a control group were analyzed 
with a convolutional neural network. Sensitivity, specificity, accuracy, and area under the receiver 
operating characteristic curve (AUROC) were used to evaluate the model. For CSC diagnosis, our 
model showed an accuracy, sensitivity, and specificity of 93.8%, 90.0%, and 99.1%, respectively; 
AUROC was 98.9% (95% CI, 0.983–0.995); and its diagnostic performance was comparable with VGG-
16, Resnet-50, and the diagnoses of five different ophthalmologists. For distinguishing chronic from 
acute cases, the accuracy, sensitivity, and specificity were 97.6%, 100.0%, and 92.6%, respectively; 
AUROC was 99.4% (95% CI, 0.985–1.000); performance was better than VGG-16 and Resnet-50, and 
was as good as the ophthalmologists. Our model performed well when diagnosing CSC and yielded 
highly accurate results when distinguishing between acute and chronic cases. Thus, automated deep 
learning system algorithms could play a role independent of human experts in the diagnosis of CSC.

Central serous chorioretinopathy (CSC), an eye disease characterized by a serous detachment of the neurosensory 
retina at the posterior pole1,2, is the fourth most common retinopathy following age-related macular degenera-
tion (AMD), diabetic retinopathy, and branch retinal vein occlusion3,4. The majority of patients are men with 
decreased and/or distorted vision together with altered color sensitivity5, and CSC is associated with a decrease 
in the patient’s quality of life6,7. Multimodal imaging is important for accurately diagnosing CSC. Using multiple 
modalities such as fluorescein angiography (FA), indocyanine green angiography (ICGA), optical coherence 
tomography (OCT), and fundus autofluorescence (AF) can help practitioners to distinguish CSC from other 
retinal diseases with similar clinical features2. Among these modalities, OCT is noninvasive and does not require 
contact, and is often used to evaluate the structural abnormalities associated with CSC. Previous studies have used 
OCT to investigate the detailed changes in retinal pigment epithelium (RPE) and outer retina morphology2,8–11. 
Additionally, OCT can both assess and quantify the presence of subretinal fluid (SRF), which can facilitate esti-
mation of the episode duration and help determine the subsequent treatment strategy2.

Although there has been much effort applied to assess CSC using OCT12–17, to the best of our knowledge, 
no study has reported the use of deep learning techniques to distinguish acute CSC from chronic CSC. When 
diagnosing CSC, it is important to evaluate the chronicity of the disease to either determine the treatment 
plan or predict the prognosis. Acute CSC usually has a self-limited natural course, whereas chronic CSC with/
without sustained sensory retinal detachment (SRD) may already involve irreversible poor vision or need active 
intervention, such as focal laser treatment, intravitreal anti-vascular endothelial growth factor injections, or 
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photodynamic therapy; all of these are aimed at preventing permanent visual disturbance that can reduce the 
patient’s quality of life.

Here, we propose and evaluate a deep learning systems (DLS) model for diagnosing CSC and its chronicity 
using OCT images. Recent advances in DLS techniques such as convolutional neural networks (CNNs) have 
provided an alternative method to characterize medical image data18–20. In ophthalmology, previous studies have 
reported the high accuracies possible when using CNN-based models for the detection of CSC from fundus 
photographs, detection and classification of diabetic retinopathy from fundus photographs, detection of AMD 
from fundus photographs or OCT, visual field examination of glaucoma patients, and the grading of pediatric 
nuclear cataracts4,20–25. In this study, we propose a DLS model that uses OCT scans to distinguish between eyes 
with CSC and normal healthy eyes. In addition, the model distinguishes between acute and chronic CSC.

Results
A total of 2,360 images from the 220 participants were included in the study. The mean age of the participants 
in the normal group was 43.32 ± 13.68 years and that in the CSC group was 46.92 ± 9.54 years. Men constituted 
79.03% and 79.75% of the participants in the normal and CSC groups, respectively. Detailed information of the 
data used in this study is shown in Table 1.

Model performance.  The results from the proposed model are shown in Table 2. There were 29 cases in 
which our model incorrectly judged CSC as normal; Table 3 shows six representative examples. Of these 29 
cases, three were acute CSC with SRF and the remaining 26 cases were chronic CSC without SRF. The AUROC 
(Fig. 1), was 98.9% (95% confidence interval [CI], 0.983–0.995), which was less than that of VGG-16 (99.4%) 
but better than that of Resnet-50 (97.2%). The AUROC of the model for distinguishing chronic from acute CSC 
was 99.4% (95% CI, 0.985–1.000), which was better than that of both VGG-16 (97.4%) and Resnet-50 (94.2%) 
(Fig. 2).

Table 1.   Baseline characteristics of patients who had undergone macular OCT. OCT, optical coherence 
tomography; CSC, central serous chorioretinopathy; SD, standard deviation.

Normal

CSC

Acute CSC Chronic CSC Total

Image, no 900 466 994 1460

Patients, no 62 52 106 158

Age(yrs), mean (SD) 43.32 (13.68) 44.87 (8.48) 48.06 (9.94) 46.92 (9.54)

Gender, no (%)

Male 49 (79.03) 40 (76.92) 86 (81.13) 126 (79.75)

Female 13 (20.97) 12 (23.08) 20 (18.87) 32 (20.25)

Eye, no. (%)

Right 34 (54.84) 22 (42.31) 57 (53.77) 79 (50)

Left 28 (45.16) 30 (57.69) 49 (46.23) 79 (50)

Table 2.   The sensitivity, specificity, and accuracy of the model for diagnosing CSC and classifying acute and 
chronic CSC OCT images. CSC, central serous chorioretinopathy; OCT, optical coherence tomography. a The 
sensitivity of the classifier for detecting CSC eyes was 90.0%, the specificity was 99.1%, and the accuracy was 
93.8%. b The sensitivity of the classifier for detecting chronic CSC was 100.0%, the specificity was 92.6%, and 
the accuracy was 97.6%.

Normal versus CSCa

Predicted normal Predicted CSC

Actual
Normal 208 2

Actual
CSCa 29 260

Acute CSC versus chronic CSCb

Predicted acute CSC Predicted chronic CSC

Actual
Acute
CSC

88 7

Actual
Chronic
CSCb

0 194
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Performance comparison with ophthalmologists.  The performances of the ophthalmologists are 
shown in Figs. 1 and 2. Their classification accuracies for diagnosing CSC were between 84.6%–97.6%, and for 
distinguishing chronic from acute CSC were 90.7%–98.3%, whereas our model had accuracies of 93.8% and 
97.6%, respectively. Therefore, our model’s performance was comparable in diagnosing CSC, and comparable 
or better in distinguishing acute from chronic CSC with the performance of the ophthalmologists. The Kappa 
coefficients for the two human experts was 0.855 (P < 0.001) in diagnosing CSC, and 0.887 (P < 0.001) in distin-
guishing chronic from acute CSC, showing good agreement. There were 11 cases of inconsistency in which the 
two experts differed in distinguishing chronic from acute CSC cases, which our model classified correctly.

Grad class activation mapping.  Representative heat maps produced from the two classifications by the 
Grad-CAMs are shown in Fig. 3. The heat maps highlighted regions that were comparable with the region that 
retina specialists usually consider when diagnosing CSC. This shows that our model uses a similar approach in 
assessing CSC images.

Discussion
In this study, we built a DLS model and investigated its performance in using SD-OCT images to diagnose CSC 
and distinguish chronic CSC from acute CSC. Several studies12–17 have previously analyzed CSC using OCT, 
however most of these were for segmentation, rarely for classification (Table 4). Our model showed promising 
performance in diagnosing CSC and performed well in distinguishing between acute and chronic CSC, where 
its performance was either comparable to, or better than, experienced retina doctors. This study is the first to 
evaluate the performance of a DLS model that classifies acute and chronic CSC using OCT.

There were 29 false negatives where the model incorrectly classified CSC images as normal, which resulted 
in a relatively low sensitivity (90%). This could be due to the following reasons. First, there is no universally 

Figure 1.   Performances of the model in classifying CSC and normal eyes. (a) ROC curve comparison with two 
popular CNN-based architectures: VGG-16 and Resnet-50. The AUROC of our model was 0.989%, which is 
slightly lower than VGG-16 and higher than Resnet-50. (b) Performance comparison between our model and 
ophthalmologists. The blue line (ROC curve) is created by sweeping a threshold over the predicted probability 
for a specific clinical diagnosis. The asterisk denotes our model’s performance with the optimal threshold. (c) 
An expanded version of (b). (d) Sensitivity, specificity, and accuracy of our model and five ophthalmologists 
including two human experts. The accuracy is the number of true positives and the number of true negatives 
divided by the total number of test images. AUROC, area under the receiver operating characteristic curve; 
CNN, convolutional neural network; CSC, central serous chorioretinopathy; ROC, receiver operating 
characteristic.
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accepted classification system for CSC, nor is there a consensus on what constitutes chronic CSC26,27. In this 
study, chronic CSC without SRD was included in the chronic CSC group, and some chronic CSC images without 
SRF could be confused as normal. Twenty-six out of the 29 false negatives were chronic CSC, and none of these 
26 cases had SRF on the images. If we had only considered CSC cases with SRF when training and testing the 
model, it is likely that there would have been fewer false negatives, which would consequently have improved 
the performance of our model. Second, we used randomly selected non-centered image cuts as well as five cen-
tered image cuts showing the typical CSC pattern. Therefore, even if the centered image cuts of an OCT volume 
revealed prominent acute or chronic CSC characteristics, the non-centered image cuts may have shown similar 
characteristics to normal eyes, resulting in the misjudgment. Interestingly, all except four of the false negative 
cases were non-centered images.

From a clinical perspective, it is important that a classification model shows a high sensitivity by reducing 
false negatives. If a normal case is incorrectly classified as CSC, i.e. a false positive, it may increase the burden on 
the healthcare system. However, if a CSC case is incorrectly classified as normal, i.e. a false negative, it can cause 
a serious problem for the patient; irreversible visual impairment and visual function deterioration may occur if 
the appropriate treatment is not initiated quickly. Therefore, we plan to improve the performance (especially the 
sensitivity) of our model on SRF-free and non-centered OCT images, even though the accuracy of our current 
model was comparable to that of the ophthalmologists.

Our model had a better sensitivity and accuracy than most of the ophthalmologists in distinguishing between 
acute and chronic CSC, and correctly classified 11 cases that two ophthalmology experts differed on. This implies 
that the model can provide useful information for diagnosis even when human experts with good agreement 
give differing interpretations. Therefore, our model performed promisingly in distinguishing chronic from acute 
CSC, and demonstrated a unique potential for using DLS technology to assess CSC based on OCT.

Improvements in OCT technology have increased the number of OCT images that are generated, subsequently 
increasing the amount of OCT data to be analyzed and pushing the limits of clinical capacity. Therefore, image 
analysis using DLS is expected to contribute increasingly in the future. CNNs are popular neural networks with 

Figure 2.   Performances for acute CSC vs chronic CSC classification. (a) ROC curve comparison with 
two popular CNN-based architectures: VGG-16 and Resnet-50. The AUROC of our model was 0.994%, 
which outperforms both VGG-16 and Resnet-50. (b) Performance comparison between our model and 
ophthalmologists. The blue line (ROC curve) is created by sweeping a threshold over the predicted probability 
for a specific clinical diagnosis. The asterisk denotes our model’s performance with the optimal threshold. (c) An 
expanded version of (b). (d) Sensitivity, specificity, and accuracy of our model and five ophthalmologists. Our 
model’s performance is better than most of the ophthalmologists. AUROC, area under the receiver operating 
characteristic curve; CNN, convolutional neural network; CSC, central serous chorioretinopathy; ROC, receiver 
operating characteristic.



5

Vol.:(0123456789)

Scientific Reports |        (2020) 10:18852  | https://doi.org/10.1038/s41598-020-75816-w

www.nature.com/scientificreports/

many layers that perform particularly well in image recognition19. Our CNN included an iterative convolutional 
layer structure responsible for extracting local features of the image, and a pooling layer that summarized the 
features of each region. Unlike conventional machine learning classifiers, the CNN can use these automatically 
extracted features to accurately classify an image. By applying a CNN model to OCT images, both classifica-
tion and segmentation can be performed. In classification, the model predicts the class for an unlabeled image, 
whereas in segmentation, the model tries to predict the class of a pixel in an image, and not the entire image. 
Hence, the final output of the model in the segmentation task can be an image comprising a set of labeled (or clas-
sified) pixels. In this study, we conducted two binary classification tasks. To feed our DLS CNN, we preprocessed 
the OCT images in two steps: cropping and resizing. We cropped the original OCT images to remove unnecessary 
parts, and then resized the cropped image to an input size of 224 × 224 pixels for our model, which is widely used 

Figure 3.   Heat maps for the classification models by Grad-CAM. (a) A heat map for the model classifying 
normal and CSC OCT images; (b), (c) Heat maps for the model classifying acute and chronic CSC. The Grad-
CAM was able to identify pathologic regions on the OCT, which are presented as a heat map. CSC, central 
serous chorioretinopathy; Grad-CAM, gradient weighted class activation mapping; OCT, optical coherence 
tomography.

Table 3.    Examples of decisions made by the model and five human experts. The six images were false negatives 
detected by our model in normal versus CSC classification. CSC, central serous chorioretinopathy. R1, R3 and 
R4 denote ophthalmology residents with less than 1 year, 3 years, and 4 years of experience, respectively. E1 and 
E2 refers to ophthalmology experts with more than 10 years of experience. GT denotes the ground truth.

Model Normal Normal Normal Normal Normal Normal

R1 CSC CSC Normal Normal Normal CSC

R3 Normal CSC CSC Normal Normal CSC

R4 CSC CSC CSC CSC CSC CSC

E1 CSC CSC CSC Normal CSC CSC

E2 Normal Normal CSC Normal CSC Normal

GT CSC CSC CSC CSC CSC CSC
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in CNN architectures. To build a robust model applicable to a variety of input images, we performed an image 
augmentation process in the training phase. When we initially trained the model without data augmentation, 
we found that in some instances images that were tilted were misclassified. To address this issue, we randomly 
rotated, changed the brightness, and horizontally flipped the images, and subsequently only included augmented 
images in the training phase. This augmentation notably improved the performance of our model, confirming that 
the preprocessing methods that we used were effective, especially when dealing with a relatively small data set.

We showed that the Grad-CAM can correctly identify the pathologic region of an OCT image. The purpose 
of using Grad-CAM is to identify and specify the parts of an image that affect the probability scores of each 
class. The heat map of the regions activated by the model can identify and quantify differences, highlighting the 
important areas in the classification process. In clinical practice, we often observe CSC cases where the time 
alone cannot fully explain the chronicity of the disease. For example, some patients possess acute CSC findings 
even though their symptoms are more than 1 year old, while others have chronic CSC findings with extensive 
atrophic changes in the macula, despite their symptoms being less than 1 month old. Therefore, evaluating CSC 
chronicity with OCT as a biomarker alongside the time (actual onset time or time when the patient’s symptoms 
were present), is more reliable than judging by the time alone.

In our study, we only used OCT images without information on the time variables in the proposed model. 
The highlighted part in the heatmap generated from GRAD-CAM refers to the location that is activated when 
the model classified a specific class (i.e., normal vs. CSC or acute CSC vs. chronic CSC). Such heatmaps are often 
beneficial when interpreting what the model considers for decision making. As shown in Fig. 3, the highlighted 
area on the heatmap presents all the inner retina, outer retina, and choroid layer, which includes the location 
of several known OCT biomarkers, including alteration of the RPE and outer retina morphology2,8–11. Hence, 
we believe that using Grad-CAM during the learning process with OCT images (without any information on 
time) can provide useful detailed biomarkers for evaluating chronicity. Additionally, where many OCT images 
obtained by frequent examinations with long-term follow-up require analysis, the Grad-CAM result could be 
used to shorten the analysis time, avoid oversight, and help ophthalmologists arrive at a consistent prognosis.

This study has some limitations. First, the variety and number of OCT images available were limited. External 
validation is necessary in future studies because all the images in this study were acquired from a single institu-
tion. However, the dataset was sufficient to demonstrate the feasibility of our DLS model to diagnose CSC and 
distinguish chronic from acute CSC using OCT images. Second, the model could be extended toward predicting 
future disease progression through a series of OCT images. In addition to determining the current status by 
viewing the latest image, the extended model could predict the future progression or chronicity using the longi-
tudinal image data of CSC patients. Recurrent neural networks and long-short term memory can be used in such 
sequential predictions. Third, since we did not find any similar investigations using OCT images to classify CSC 
from normal retinas and chronic from acute CSC, we could not compare performance with previous studies. 
Regardless of the above limitations, the developed model demonstrates a reasonable and promising performance 
and suggests the need for further investigations on its potential impact in clinical practice.

In our study, we developed and evaluated a deep learning model that can diagnose CSC and distinguish its 
chronicity using SD-OCT images, which can be clinically useful in either determining the treatment plan or 
predicting prognosis. In clinical practice, a patient may present several macular diseases (e.g., CSC, AMD, etc.) 
at the same time. In addition, even if only one macular disease is present, the patient may potentially possess 
several other typical macular diseases such as AMD, DR, and RVO in addition to CSC. Therefore, developing a 
model that can identify each macular disease and its severity is crucial from a clinical perspective. Such a model 
can be useful in simultaneously assessing the presence or absence of several macular diseases, and help with the 
correct diagnosis.

Table 4.   Summary table for describing prior studies that applied the machine learning methods in assessing 
CSC using OCT images. CSC, central serous chorioretinopathy; OCT, optical coherence tomography; FCN-
MLS, fully convolutional network + multiphase level set; DA-FCN, double-branched and area constraint fully 
convolutional network; LCLS, locally-adaptive loosely coupled level set; SVM, support vector machine; CNN, 
convolutional neural network; FC, fully connected.

Authors Year OCT machine Test images Task Model Remarks

Ruan et al14 2019 Cirrus SD-OCT 1280 Retinal layer segmentation CNN
FCN-MLS Deep learning

Xiang et al15 2019 Cirrus HD-OCT 4000 48 Retinal layer segmentation Random forest classifier Feature engineering

Gao et al16 2019 unknown 52 OCT volumes Subretinal fluid segmentation CNN
DA-FCN Deep learning

Novosel et al17 2016 Spectralis OCT 10 Retinal layer and fluid Segmenta-
tion LCLS Probabilistic framework

Syed et al12 2016 Topcon 3D TD-OCT 90 OCT volumes Classification CSC versus ME 
versus Normal SVM Feature engineering

Khalid et al13 2017 Topcon 3D OCT-2000 2819 Classification CSC versus ME 
versus ARMD versus Normal SVM Feature engineering

Our study 2020 Spectralis OCT 788 Classification CSC versus normal 
and acute CSC versus chronic CSC

CNN Custom deep neural net-
work using 13 CNN layers and 4 
FC layers

Deep learning
Interpret the results with Grad-
CAM
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In summary, we developed a DLS CNN model that performed well at diagnosing CSC and distinguishing 
chronic CSC from acute CSC without a segmentation algorithm. The process for assessing CSC needs to maxi-
mize its capacity to process the increasing number of images from participants who have examinations, with 
high accuracy. Automation of the classification process using DLS models may improve patients’ quality of life 
by improving prognosis and may save cost and time for both healthy people and patients with CSC.

Methods
This study was conducted in line with the Helsinki Declaration of 1964. The Ethics Committee of Hangil Eye 
Hospital approved the research protocols and their implementation. The committee waived the requirement for 
obtaining informed consent given that this was a retrospective observational study of medical records and was 
retrospectively registered.

Data collection and labelling.  We analyzed the records of patients who visited Hangil Eye Hospital 
between January 2017 and January 2020. We used spectral domain (SD)-OCT (Heidelberg Spectralis, Heidel-
berg Engineering, Heidelberg, Germany) images of normal participants, and of patients with CSC. Of the 220 
patients enrolled at the outpatients’ clinic during that period, 158 were diagnosed with CSC and 62 were normal 
healthy patients who were assigned to the control group. All CSC cases were diagnosed by means of fundus 
examinations, FA, ICGA, and OCT images by independent retinal specialists. A confocal scanning laser oph-
thalmoscope (Heidelberg Retina Angiograph, HRA; Heidelberg Engineering, Heidelberg, Germany) was used 
to perform simultaneous FA and ICGA on all CSC cases. One eye per patient was selected for this study, with 
one visit per patient. Our analysis excluded data that showed the presence of other potentially conflicting retinal 
pathologies such as AMD, polypoidal choroidal vasculopathy, pachychoroid neovasculopathy, and pachychoroid 
pigment epitheliopathy. We randomly selected 5–10 non-centered image cuts from the 25 volume scan image 
cuts for each OCT volume, as well as five centered image cuts showing the typical CSC pattern.

Acute CSC: Acute CSC was diagnosed based on the presence of serous detachment of the neurosensory retina 
involving the macula as demonstrated by OCT, and leakage at the level of the RPE on FA. Only classic, acute 
CSC with a symptom duration of less than 3 months since the first episode, was included in the acute CSC group.

Chronic CSC: Based on the Daruich and colleagues’ classification scheme27, chronic CSC was diagnosed 
according to the RPE status and was defined as chronic chorioretinopathy with widespread RPE decompensa-
tion, with/without SRD, and with/without an active leakage site. As their definition, chronic CSC was diagnosed 
when extensive RPE atrophy findings were observed regardless of SRF.

Categorization: Categorization was performed by two retina specialists (JSH and DDH) who examined all 
images obtained by OCT, FA, and ICGA multimodal imaging methods, and reviewed the medical charts. In 
cases of disagreement, a third retina specialist (JMH) confirmed the discrepancy and discussed the case with 
the other specialists. After a discussion, all discrepancies were resolved by consensus.

Data preprocessing.  To use the SD-OCT images as input for a DLS CNN, we first removed the unneces-
sary parts (such as the company logo) from the original 596 × 1264 pixel SD-OCT images, which resulted in 
380 × 764 pixel RGB images. We subsequently down-sampled the 380 × 764 pixel cropped images to 224 × 224 
pixel RGB images, which were fed into the DLS CNN. Images of 224 × 224 pixel RGB are a widely-used image 
standard for classification models such as VGG-1628 and Resnet-5029. To avoid overfitting30, we performed a data 
augmentation process to build a robust model from a variety of input images. The data augmentation process 
included random horizontal image flips, random brightness changes from 0.7 to 1.3, and random rotations of the 
image of up to 15°. This data augmentation process was only applied in the training phase.

Model architecture.  To classify a given OCT image as either CSC or normal, we built a DLS model based 
on the CNN architecture. As shown in Fig. 4, the proposed model comprised 13 CNN layers with a rectified lin-
ear unit (ReLU) activation function31, four max pooling layers, two dropout layers, and four fully connected (FC) 
layers. The dropout layer helped our model to avoid overfitting28, and the FC layers formed a traditional multi-
layered perceptron32. The final output layer with a soft-max activation function was used to predict the binary 
classification result. The proposed CNN used 118,132,802 trainable parameters. The proposed architecture was 
also used to classify whether a CSC OCT image was either acute or chronic; the last output layer with the soft-
max activation function in the model was replaced for the binary classification between acute and chronic CSCs. 
We considered applying the transfer learning method to our model as other researchers have done33,34; however, 
we decided not to use it because it performed poorly on our dataset.

Gradient weighted class activation mapping.  To visualize the pathologic region of an OCT image in 
the classification process, we applied gradient weighted class activation mapping (Grad-CAM)35 to generate a 
heat map of activated regions. Grad-CAM uses the gradients of the target label (e.g., CSC) with respect to feature 
maps of the convolutional layer to highlight important regions in the image when predicting the target label. The 
heatmap illustrates the area of the image that the model uses for its classification.

Experiment setup.  The data were randomly split into a training (1,861) and test set (499). The test set was 
used only for the final evaluation of the model performance; no single patient case existed in both sets. To diag-
nose CSC, the training and test sets were split CSC/normal 1,171/690, and 289/210, respectively. To classify the 
CSC cases the acute/chronic split of the training and test sets were 371/800, and 95/194, respectively.
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To compare our model’s performance with DLS architectures reported previously, including VGG-1628 (VGG 
with 16 layers) and Resnet-5029 (Resnet with 50 layers), we used our training and test sets on these models. All 
models were trained with a batch size of 64, epochs of 50, and with Adam optimization (learning rate 0.0001). 
To evaluate our model from a clinical perspective, the classification results for the test set (788 images) were 
compared with those made by five ophthalmologists, including three ophthalmology residents and two experts, 
each having more than 10 years clinical experience at an academic ophthalmology center.

Statistical analysis.  To measure the performance of the model, the sensitivity, specificity, accuracy, and 
the area under the receiver operating characteristic (ROC) curve (AUROC)36 were determined. Cohen’s Kappa 
coefficients were used to rate the agreement level between the two experts.

Data availability
The data are not available for public access because of patient privacy concerns, but are available from the cor-
responding author on reasonable request.

Received: 11 June 2020; Accepted: 7 October 2020
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