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The emergence of multidrug resistance to aminoglycosides in K. pneumoniae isolates is a growing con-
cern, especially during pandemic Coronavirus disease 2019 (COVID-19). The study identifies antibiotic
resistance in K. pneumoniae isolated from tertiary hospitals during pandemic COVID-19. Among 220 clin-
ical isolates, the total rate of K. pneumoniae was found to be 89 (40.5%). Phenotyping results confirmed
the resistance of aminoglycoside antibiotics in 51 (23.2%) of K. pneumoniae isolates. PCR results confirmed
the existence of one or more aminoglycoside genes in 82.3% of the 51 isolates. The rmtD gene was the
highest-detected gene (66.7%), followed by aac(6')-Ib (45.1%), aph(3’)-la (45.1%), rmtB (29.4%), armA
(21.6%), aac(3)-1I (7.8%), and rmtA (3) (11.8%). Significantly, higher resistance strains showed a higher
prevalence (61.5%) of aminoglycoside genes (p < 0.05). During COVID-19, there is a higher risk of acquir-
ing MDR bacterial infections, so the monitoring of multidrug resistant bacteria must be continuously
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undertaken to implement effective measures in infection control and prevention.

© 2021 Elsevier Ltd. All rights reserved.
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1. Introduction

The high number of the admitted pandemic Coronavirus disease
2019 (COVID-19) patients to hospital wards and intensive care
units (ICU) may be accompanied by secondary bacterial infections,
thus patients may be given an additional empirical broad-
spectrum antibiotic (e.g. aminoglycosides). It was reported that
co-infection was found in 7-14% of patients admitted to the hospi-
tals [1]. Nosocomial infections are mostly caused by Staphylococ-
cus, Escherichia coli, Acinetobacter spp., Pseudomonas spp, and
Klebsiella pneumonia [2]. Klebsiella is a Gram-negative bacterium
that can cause nosocomial infections. These isolates can carry vir-
ulence plasmids that harbor resistant genes (such as aminogly-
coside resistant genes) with higher frequency which may result
in disseminated infections (e.g. liver, lungs, and eyes) [3,4]. Some-
times viral agents can be associated with secondary K. pneumo-
niae infection (pneumonia) as a part of nosocomial infections
which may lead to high mortality as a result of co-existence with
respiratory diseases [5]. As a result, K. pneumoniae bacteria may
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develop into the so called multiple drug resistant (MDR) K. pneu-
moniae and hence the aminoglycosides are antibiotics that have
good antibacterial activity. They act by inhibiting the synthesis of
proteins inside bacteria by attaching to the amino group site of
16 S RNAs inside subunits of the 30S ribosome, which may make
being coded by the genes difficult, making them unread and
inhibiting translocation [6,7]. Inactivating enzyme production in
these bacteria is the most known resistance mechanism to amino-
glycosides [7]. Enzymes that are responsible for modifying amino-
glycosides (AMEs) include O-adenyltransferases (ANT), (N-
acetyltransferases (AAC), and O-phosphotransferases (APH)), and
they are encoded through DNA molecules known as plasmids.
Known AME-encoding genes are aac(3)-1I, aac(6’)-I, ant (3”)-I,
aph(3’)-1I, and ant(2”)-1 in K. pneumoniae. Other mechanisms
include uptake reduction or decreasing cell permeability besides
methylating 16S RNA in ribosomes. Such a reaction may be
enhanced and regulated by the rmtA gene. The second mechanism
is decreased drug quantity inside cells. Aminoglycoside resistance
is independent (i.e, inactivating enzymes), which can also be seen
in K. pneumoniae . This resistance is characterized by involving all
other types of aminoglycosides because of an efflux system that
reduces the quantity of amino-glycosides [8]. Enzymes aac(6')-,
aac(3)-1I, aph(3')-II, ant (3)-I, and ant(2)-1 are responsible for
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resistance to aminoglycosides with variable degrees [7]. The out-
break of MDR K. pneumoniae during pandemic COVID-19 has been
reported in many parts of the world [9-11], but very few
laboratory-based reports have been published [12-16]. The pre-
sent study was carried out to identify antibiotic resistance amino-
glycoside in K. pneumoniae isolated from tertiary care hospitals
during current pandemic COVID-19.

2. Materials and methods
2.1. Sample identification

A stock of 220 Gram-negative isolates were collected from 5
tertiary hospitals in Makkah, Saudi Arabia in the period of January
2020 to January 2021, Bacterial isolates were identified with a
Viteck-2 Compact System using AST-GNI cards (Biomerieux). Den-
siCHEK Plus was established within a 0.5 McFarland standard in a
0.48% sterile sodium chloride solution [17-23] . Bacterial suspen-
sion was manually loaded using cards of a VITEK 2 system. The sys-
tem automatically filled each test card, sealed it, and incubated it
for a period of about 3 h. The system then analyzed the data after
repeated kinetic fluorescence measurement before automatic
result reporting.

2.2. Antibiotic-Susceptibility tests

The Standards Institute (CLSI) [12]. The turbidity of each inocu-
lum was adjusted to a 0.5 McFarland standard. For phenotypic
screening, antimicrobial susceptibility was done by using antimi-
crobial discs such as AK (30 pg), GN (10 pg), TOB (10 pg), amoxi-
cillin clavulanic acid (AMC) ((20/10 pg), ciprofloxacin (CIP)
(5 pg), cefepime (CPM) (30 pig), imipenem (IMP; 10 pg), cefotaxime
(CTX; 30 pg), ampicillin (AMP; 10 ng), aztreonam (ATM; 30 pg),
and cefuroxime (CXM; 30 pg) (Table 1). The isolates were classified
as susceptible, intermediate, or resistant to each antibiotic accord-
ing to CLSI guidelines [12].

2.3. PCR analysis

The cooled in ice and then centrifuged at 3000 g for 10 s. The
upper layer containing DNA was used for PCR. at 94 °C for 4 min,
30 amplification (shown in Table 2) for 30 s, 72 °C for 1 min (exten-
sion), and 72 °C.

2.4. Statistical analysis

We using SPSS software (v.25, IBM, United States). The chi-
squared test was used to compare between different variables,
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Table 2
Frequency of the isolates used in the
study.
Species
K. pneumoniae 89 (40.5%)
E. coli 58 (26.4%)
K. oxytoca 8 (3.6%)
A. baumannii 19 (8.6%)
Chr. indologenes 6 (2.7%)
P. aeruginosa 23 (10.5%)
Pr. mirabilis 9 (4.1%)
Enterobacter spp. 8 (3.6%)
220 (100%)

3. Results

A total number of 220 of clinical specimens (Gram-negative
bacteria) were collected from 5 tertiary hospitals in Makkah, Saudi
Arabia. They were obtained from patients of various body sites. The
majority of isolated strains were K. pneumoniae 89 (40.5%), fol-
lowed by E. coli 58 (26.4%) and P. aeruginosa 23 (10.5%) (Table 2).
The antimicrobial susceptibilities of the isolates are shown in
Table 3. Phenotyping results confirmed the resistance of two or
more aminoglycoside antibiotics in 51 (57.3%) out of the 89 K
pneumoniae isolates (Table 4). All the 51 isolates showed multidrug
resistance phenotypes. Resistance rates for amoxicillin clavulanic
acid, ciprofloxacin, cefotaxime, ampicillin, aztreonam, and cefurox-
ime antibiotics were 100%, while resistance rates for cefepime and
imipenem antibiotics were 98% and 74.5%, (Table 3). while single
genes were detected in 7 (13.8%), as shown in Table 3. The rmtD
gene was the highest-detected gene 34 (66.7%), followed by aac
(6')-Ib 23 (45.1%), aph(3')-la 23 (45.1%) isolates, rmtB 15 (29.4%),
npmA 19 (27.3%), armA 11 (21.6%), aac(3)-II 4 (7.8%), and rmtA
(3) 6 (11.8%) isolates, as shown in Figs. 1 and 2. No rmtC gene
detected in the studied isolates. Significantly, higher-resistance

4. Discussion

The COVID-19 pandemic may lead to emergence to another
pandemic, that of MDR bacteria. The emergence of K. pneumoniae
strains resistant to aminoglycoside has widely in hospitals may
lead to difficulties in treatment, pneumoniae infections during the
COVID-19 pandemic. The total rate of K. pneumoniae in our study
was 89 (40.5%). Phenotyping results confirmed the resistance of
two or more aminoglycoside antibiotics in 51 (57.3%) out of the
89 K. pneumoniae isolates. Worldwide, aminoglycoside-resistant
rate of K. pneumoniae has increased reported during the pandemic,
and since then is known to break out in many countries [19,20].

The isolates of the present Almost 100% of the isolates were
resistant to amoxicillin clavulanic acid, ciprofloxacin, cefotaxime,
ampicillin, aztreonam, and cefuroxime. In Saudi Arabia, amikacin
with gentamycin and tobramycin are common aminoglycosides
for enterobacteria treatments [21-33]. In a study conducted at

Table 1

The primers used in PCR reaction in results.
No. Primer Sequence Size AT. Gene Refs.
1 16SrDNA-F AGA GTT TGA TCM TGG CTC AG 1500 55 16S rDNA [14]
2 16SrDNA-R ACG GHT ACC TTG TTA CGA CTT
3 aac(3)-11-F ATATCGCGATGCATACGCGG 877 56 aac(3)-I1 [16]
4 aac(3)-11-R GACGGCCTCTAACCGGAAGG
5 aph(3')-la-F CGAGCATCAAATGAAACTGC 623 50 aph(3’)-la [17]
6 aph(3’)-la-R GCGTTGCCAATGATGTTACAG
7 rmta-f CTA GCG TCC ATC CTT TCC TC 635 58 rmtA (3) [18]
8 rmta-r TTT GCT TCC ATG CCC TTG CC
9 rmtB-F GCT TTC TGC GGG CGA TGT AA 173 55 rmtB [18]
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Table 3

Antimicrobial-susceptibility patterns of aminoglycoside-resistant K. pneumoniae.
Antibiotic Sensitive Intermediate Resistant
Amikacin 0 (0%) 0 (0%) 51(100%)
Gentamicin 1(2%) 0 (0%) 50 (98%)
Tobramycin 0 (0%) 1(2%) 0 (98%)
Ciprofloxacin 0 (0%) 0 (0%) 1 (100%)
Cefepime 0 (0%) 2 (4%) 9 (96%)
Imipenem 11 (21.5%) 2 (4%) (74 5%)
Cefotaxime 0 (0%) 0 (0%) 1 (100%)
Ampicillin 0 (0%) 0 (0%) 1 (100%)
Aztreonam 0 (0%) 0 (0%) 1 (100%)
Cefuroxime 0 (0%) 0 (0%) 51(100/)

Table 4

Frequency of phenotypic and genotypic aminoglycoside-resistant K. pneumoniae.
Species Phenotypic Genotypic

Single Combined Total

K. pneumoniae 51 (57.5%) 7 (13.7%) 35 (68.6%) 42 (82.3%)

Makkah, amikacin was the most effective against the common
Gram negative bacteria, while high antimicrobial resistance was
observed to routine antibiotics [22]. The emergence of
Aminoglycoside-Resistant K. pneumoniae strains during pandemic
COVID-19 has been described in many studies, whereas MDR Kleb-
siella pneumoniae may be associated with both COVID-19 ICU and
non-COVID-19 ICU patients [9-11]. may be the reason for elevated
resistance rates [23-33]. Arteaga-Livias et al.2021 suggested that
cross contamination via the hands of the staff and the limitation
of an inappropriate use of PPE might facilitate the spread of MDR
bacteria amid pandemic COVID-19 [24]. Our results showed that
mainly seven different kinds of PCR patterns were revealed in 42
(82.3%) of the K. pneumoniae isolates. Resistance against aminogly-
cosides may be associated with the broad prevalence of plasmids
among K. pneumoniae, which become sources of resistance acquisi-
tion through lateral gene transfer. Modifications made by AME
genes decrease the binding affinity of drugs for their targets and
hence lead to a loss in antibacterial effects [25]. Among these, rmtD
is the most predominant type, This may be explained by antibiotic
stress in Makkah hospital settings specially during mass gatherings
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Fig. 2. Detection of aminoglycoside resistant genes.

(pilgrimage) that may facilitate the prevalence and coexistence of
resistance genes within K. pneumoniae isolates. In conclusion, the
frequency aminoglycoside-resistant K. pneumoniae in Makkah hos-
pitals was highly resistant to amikacin, gentamicin, and tobramy-
cin, and multiple-resistant to amoxicillin clavulanic acid,
ciprofloxacin, cefotaxime, ampicillin, aztreonam, and cefuroxime.
so the monitoring of Multidrug resistant bacteria must be contin-
uously undertaken to implement effective measures in infection
control and prevention.
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