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Abstract: A sensitive dual-gas sensor for the detection of CH4 and C2H6 is demonstrated. Two tunable
semiconductor lasers operating at 1.653 µm (for CH4 monitoring) and 1.684 µm (for C2H6) were used
as the light source for spectroscopic measurements of CH4 and C2H6. Long-path absorption in a
home-made compact dense-pattern multipass cell (Leff = 29.37 m) was employed, combined with
wavelength modulation and second harmonic detection. Simultaneous detection of CH4 and C2H6

was achieved by separated wavelength modulations of the two lasers. Modulation frequencies and
amplitudes were optimized for sensitivity detection of CH4 and C2H6 simultaneously. The dual-gas
sensor exhibits 1σ detection limits of 1.5 ppbv for CH4 in 140 s averaging time and 100 ppbv for C2H6

in 200 s.

Keywords: gas sensor; methane; ethane; wavelength modulation spectroscopy; multipass
absorption cell

1. Introduction

Natural gas is the third largest source of thermal energy in the world, accounting for 22.1% of
primary energy consumption after petroleum (31.9%) and coal (27.1%). The methane (CH4) content in
natural gas reaches over 90%. Biogas, which contains mainly CH4, is a naturally occurring gas that
forms from the breakdown of organic matter in the presence of anaerobic bacteria. CH4 is also a main
greenhouse gas, whose greenhouse effect is 25 times higher than that of carbon dioxide (CO2). Ethane
(C2H6) is the second largest component in natural gas, accounting for about 5–10%. It can be used
as an indicator to discriminate whether the measured leaking gas is from natural gas, underground
biogas, or other combustible gas. Monitoring C2H6 can be applied to diagnose leaking natural gas
pipelines [1–6].

Laser spectroscopy-based gas sensors is an effective tool for environmental monitoring, medical
diagnosis, industrial process control, food industry, and pollution monitoring [7], and includes
quartz-enhanced photoacoustic spectroscopy (QEPAS) [8–10], off-axis integrated cavity output
spectroscopy (OA-ICOS) [11], and tunable diode laser absorption spectroscopy (TDLAS) with a
multipass cell. In general, long-path absorption is combined with wavelength modulation to
improve measurement sensitivity and precision [12,13]. Krzempek demonstrated C2H6 concentration
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measurement based on 2f wavelength modulation spectroscopy (WMS) using a continuous-wave
(CW) distributed feedback diode laser emitting in the mid-infrared near 3.36 µm. A 1σ minimum
detectable concentration of 740 pptv with a 1 s lock-in amplifier time constant was achieved [14].
Zheng and co-workers utilized two CW interband cascade lasers (ICLs) operating at 3291 nm (CH4)
and 3337 nm (C2H6) for the simultaneous measurement of CH4/C2H6 in the mid-infrared. Detection
limits of ~1.7 ppbv for CH4 in 9 s and ~0.36 ppbv for C2H6 in 65 s [15] were achieved. Li et al.
realized ppbv-level measurement of C2H6 using 3.34 µm CW-ICL-based WMS with a detection limit
of ~1.2 ppbv in a 4 s averaging time [16].

Though C2H6 absorption intensity is relatively weak in the near-infrared spectral region [17,18],
the photonic devices in this spectral region have the characteristics of being low cost and relatively
mature. Therefore, it is of great significance to develop a high-sensitivity dual-gas sensor for CH4/C2H6

by TDLAS for leakage detection applications [19].
In this paper, we report on the development of an optical sensor for the simultaneous

measurement of CH4 (at 1.653 µm) and C2H6 (at 1.684 µm) based on long-path absorption in a
newly home-made dense-pattern multipass cell combined with wavelength modulation and second
harmonic detection [20].

2. Basics of Wavelength-Modulation Spectroscopy

Wavelength-modulation spectroscopy (WMS) is a spectroscopic measurement technique widely
used for trace gas measurements in harsh environments owing to its high noise-rejection capability
over direct absorption spectroscopy. Only a brief description of some of the fundamental theory will be
given here to explain certain experimental choices (e.g., modulation index) made in this study [21–23].
The instantaneous laser frequency with sinusoidal modulation can be written as:

ν(t) = ν0 + ∆v cos(ωt) (1)

where ν0 (cm−1) is the center laser emission frequency, ω is the angular frequency, and ∆ν (cm−1) is
the modulation depth.

The time-dependent transmission coefficient τ(ν) can be expanded in a Fourier cosine series:

τ[ν(t)] = τ[ν0 + ∆v cos(ωt)] =
n=+∞

∑
n=0

Hn(ν0, ∆v) cos(nωt) (2)

where Hn (ν0, ∆ν) is the n-th component of the Fourier series, which can be expressed as:

H0(ν0, ∆v) =
1

2π

π∫
−π

τ(ν0 + ∆v cos θ)dθ (n = 0) (3)

Hn(ν0, ∆v) =
1
π

π∫
−π

τ(ν0 + ∆v cos θ) cos(nθ)dθ (n > 0) (4)

In practice, second harmonic is usually used for the detection (n = 2):

H2(ν0, ∆v) =
1
π

π∫
−π

τ(ν0 + ∆v cos θ) cos(2θ)dθ (n = 2) (5)

In the case of trace gas absorption described by the Beer-Lambert law [24] (α(ν)L << 1 ),
the transmission can be simplified as:

τ(ν) =
Iout(ν)

Iin(ν)
= exp[−α(ν)L] ≈ 1 − α(v)L = 1 − N0SCLχ(v − v0) (6)
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where Iout(ν) and Iin(ν) are the transmitted and incident light intensities at frequency ν, respectively, L is
the optical absorption path length in [cm]. α(ν) = σ(ν)N0C = χ(ν − ν0)SN0C (at standard temperature
and pressure) is the absorption coefficient of the target gas with concentration C (mixing ratio) and the
Loschmidt constant N0 = 2.6868 × 1019 molecule/cm3. σ(ν) = χ(ν − ν0)S is the absorption cross-section
of the target gas with S the line strength in [cm−1/(molecules/cm−2)] and χ(ν − ν0) the absorption
line shape function. ν0 is the central frequency of the absorption line.

From Equations (5) and (6), the Fourier series of the second harmonic can be expressed as:

H2(ν0, ∆v) =
−N0SCL

π

π∫
−π

χ(ν0 + ∆v cos θ) cos(2θ)dθ (7)

According to Equation (7), the harmonic signal is hence proportional to the concentration of the
gas. In addition to the absorption parameters, the WMS-2f signal also depends on the modulation
depth ∆ν. The WMS-2f signal can be maximized by choosing the optimal modulation index m, which is
defined as:

m = ∆ν/∆νD (8)

where ∆νD [cm−1] is the full width at half maximum (FWHM) of the absorption line shape, and the 2f
signal amplitude is maximized at a modulation index m = 2.2 [25,26].

In addition, the background signal is caused by the 2f residual–amplitude–modulation (2f-RAM)
signal in the presence of linear intensity modulation [27]. In the present work, we use the second
harmonic signal deducting the background to determine the concentrations of CH4 and C2H6.

3. Experimental Details

3.1. Design of the Dual-Gas Sensor for CH4 and C2H6

The developed dual-gas sensor is shown in Figure 1. Two tunable distributed feedback (DFB)
diode lasers operating at 1.653 µm and 1.684 µm were used for the measurements of CH4 and C2H6,
respectively. The temperature and current of both lasers were controlled by laser diode controllers
LDC501 (Stanford Research Inc., Sunnyvale, CA, USA). Both lasers currents were scanned by feeding
an external voltage ramp at a rate of 1 Hz from a function generator (RIGOL DG4162). Wavelength
modulations (6 kHz for CH4 and 0.6 kHz for C2H6) were achieved through the modulation of each
laser current via a sine form wave from lock-in amplifiers #1 and #2 (SR 830 DSP, Stanford Research
Systems), respectively. The voltage ramp and the sine wave were combined with a home-made adder
before being coupled to the laser diode controllers.
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Figure 1. Schematic diagram of the dual-gas sensor. Laser #1 and #2: lasers for CH4/C2H6; DWBC: 
single mode standard coupler; CL: collimator; FL: focusing lens; IGA: InGaAs detector. 
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with the maximum insertion loss 0.3 dB/km. The output beams were collimated through a single fiber 
optical collimator with the beam diameter not exceeding 0.35 mm and then injected into a home-

Figure 1. Schematic diagram of the dual-gas sensor. Laser #1 and #2: lasers for CH4/C2H6; DWBC:
single mode standard coupler; CL: collimator; FL: focusing lens; IGA: InGaAs detector.
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The two laser beams were coupled together into a 2 × 1 single mode standard coupler (DWBC)
with the maximum insertion loss 0.3 dB/km. The output beams were collimated through a single fiber
optical collimator with the beam diameter not exceeding 0.35 mm and then injected into a home-made
multipass absorption cell. The multipass cell consisted of two 2” silver-coated concave spherical
mirrors separated by a distance of 12 cm, which was similar to that previously reported in [20]. An
effective optical path of 29.37 m was achieved with 243 multiple reflections of laser beam inside the cell.

The transmitted beam was detected with an indium gallium arsenic photodetector (PDA20CS-ES)
via a focusing lens (f = 30 mm) as shown in Figure 2. The signal detected by the photodetector was
sent to lock-in amplifiers #1 and #2, respectively, for demodulations at 6 kHz for CH4 and 0.6 kHz for
C2H6, so as to distinguish the signals from different lasers and realize simultaneous detection of CH4

and C2H6. The demodulated signals were subsequently digitalized with a data acquisition card (DA,
NI-USB-6212) and displayed on a laptop via LabVIEW interface.
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Figure 2. Photograph of the dual-gas sensor associated with a beam pattern (shown with a red laser)
on one mirror of a home-made dense-pattern multipass cell.

3.2. Spectral Line Selection

C2H6 shows an unresolvable absorption band near 1.684 µm [28,29]. There is no information on
its spectral line parameters in the common database (such as HITRAN) for ethane in the near-infrared.
In order to determine the laser temperature and the current corresponding to the maximum ethane
absorption, 10,000 ppm ethane gas was filled in the multipass cell at a pressure of 0.5 atm. Direct C2H6

absorption spectrum was obtained by a wavelength scan of the 1.684 µm DFB laser across the C2H6

absorption lines, as shown in Figure 3. The laser temperature and the current needed to probe the
strong absorption band of C2H6 near 1.684 µm were found to be 31 ◦C and 78 mA, respectively.

While the best CH4 absorption lines within the spectral tuning range of the used 1.653 µm diode
laser are the R3 triplet of the 2ν3 band near ~6046.95 cm−1, they have the highest line intensities
and are free of interference from other molecules (such as H2O and CO2). The R3 triplet of the 2ν3

band at ~6046.95 cm−1 was selected for the measurement of CH4 concentration. Figure 4 shows an
absorption spectrum of 492 ppm CH4 at a pressure of 0.5 atm. The laser center current was set at 85 mA
with a temperature set at 22 ◦C for targeting the selected CH4 absorption lines. The amplitude of the
triangular ramp was 1.3 V, which scanned the laser diode current from 52.5 to 117.5 mA (50 mA/V).

The calibration curves of laser current vs. frequency were realized with the help of a wavelength
meter (Bristol 621).
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Figure 4. Absorption spectrum of methane near 6046.95 cm−1. Left axis: laser current (vs. laser 
frequency); Right axis: absorbance of the methane absorption line. 
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Figure 4. Absorption spectrum of methane near 6046.95 cm−1. Left axis: laser current (vs. laser
frequency); Right axis: absorbance of the methane absorption line.

4. Results and Discussions

4.1. Optimization of Modulation Amplitude for WMS

In WMS, the second harmonic (2f) signal amplitude depends on the modulation amplitude [30].
In order to obtain optimal modulation amplitude for maximum second harmonic signals, a mixture of
200 ppm CH4 and 300 ppm C2H6 in nitrogen was prepared using a gas diluter (Environics SERIES
4000) and then filled in the multipass cell at 1 atm. The 2f signals of 200 ppm CH4 and 300 ppm C2H6

at different modulation amplitudes were investigated. The measured results of the 2f signals versus
the modulation amplitudes are shown in Figure 5. As can be seen, the optimal modulation amplitude
was 0.25 V for CH4 and 0.36 V for C2H6. The optimal modulation amplitude of the sine wave for CH4

detection was found to be 0.25 V, and the corresponding laser wavelength modulation amplitude was
∆νm ≈ 0.2921 cm−1. According to the HITRAN database, the 200 ppm CH4 line width (HWHM) of
the targeted absorption lines was ∆νD ≈ 0.1316 cm−1. The optimal modulation amplitude ∆νm ≈ 2.22
∆νD for wavelength modulation with second harmonic demodulation was basically consistent with
the theoretical result ∆νm = 2.2 ∆νD [25,26].
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4.2. Optimization of Modulation Frequency and Phase for WMS

In addition to the modulation amplitude, the modulation frequency and phase may also affect
the amplitude of the second harmonic signal [31,32]. Under the condition of the optimal modulation
amplitude, the effects of the modulation frequency and phase on the second harmonic signal amplitude
were investigated, experimentally. Figure 6 shows the phase effect and Figure 7 shows the modulation
frequency effect. The optimal phase was found to be −140◦ for both CH4 and C2H6 detections.
The optimal modulation frequency was 6 kHz for CH4 detection and 0.6 kHz for C2H6 detection.
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4.3. Investigation on the Potential Cross-Talk

Two lasers operating at different wavelengths were injected into the same absorption cell. It might
cause cross-talk effects between two signals if the selection of the modulation frequencies is not
appropriate [33]. For example, cross-talk occurs when modulation frequencies are fixed at 6 kHz for
CH4 and at 5.8 kHz for C2H6 detection, as shown in Figure 8. The cross-talk effect was determined by
the low-pass filter of the lock-in amplifier. The amplitude of the sinuous residual was determined by
the stopband edge and the response of the filter.
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Figure 8. Second harmonic signals of CH4 modulated at 6 kHz (a) and C2H6 modulated at 5.8 kHz (b)
showing cross-talk induced interference fringes superimposed on the second harmonic signal.

Figure 9 shows the experimental study of the cross-talk effects in the simultaneous detection
of CH4 (190 ppmv) and C2H6 (170 ppmv). In order to verify that there is no cross-talk between
two signal channels, two lasers work simultaneously under wavelength modulation at their specific
optimal modulation frequencies, i.e., 6 kHz for CH4 and 0.6 kHz for C2H6. Figure 9a plots the
second harmonic signals of CH4 with and without the operation of the laser for C2H6 detection. The
amplitude of the CH4 signal was 7.931 mV when the two lasers were on. When the C2H6 laser was
turned off, the amplitude of the CH4 signal was 7.926 mV. The difference between the peak heights of
the CH4 second harmonic signals was about 0.06%. Figure 9b compares the case for C2H6 detection.
The amplitude of the C2H6 signal was 4.873 mV when the two lasers worked together. When the CH4

laser was turned off, the amplitude of the C2H6 signal was 4.865 mV. The deviation between the peak
heights of C2H6 second harmonic signals was 0.16%. It can be concluded that the cross-talk effects can
be ignored when the two lasers are both operational at their specific optimal modulation frequency in
the present work.
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Figure 9. Comparison of the second harmonic signal amplitudes with two lasers on and only one laser
on. (a) Methane detection and (b) ethane detection.

The optimal parameters used for the present work are listed in Table 1 and are the default values
in the subsequent experimental measurements.

Table 1. Optimal modulation amplitude, phase, and frequency of CH4 and C2H6.

Target Gas Optimal Modulation
Amplitude

Optimal Modulation
Phase

Optimal Modulation
Frequency

CH4 0.25 V −140◦ 6 kHz
C2H6 0.36 V −140◦ 0.6 kHz

4.4. Baseline Removal

Using WMS could significantly reduce the 1/f noise. However, when the baseline is not a “linear”
ramp, the derivation cannot remove such “curve shape” baseline [27]. In the present work, the baseline
of the sensor was investigated using high purity (99.99%) nitrogen (N2) filled in the multipass cell. The
N2 background baselines were measured in the CH4 and C2H6 channels as shown in Figure 10a,b,
respectively. In the present work, the 2f signals of CH4 and C2H6 were obtained by subtracting the N2

background baselines. As an example, Figure 11a shows a 0.6 ppm CH4 signal, obtained directly from
the lock-in amplifier associated with the baseline. Figure 11b shows the 2f signal of 0.6 ppmv CH4

after subtracting the baseline shown in Figure 10a.
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4.4. Baseline Removal 

Using WMS could significantly reduce the 1/f noise. However, when the baseline is not a “linear” 
ramp, the derivation cannot remove such “curve shape” baseline [27]. In the present work, the 
baseline of the sensor was investigated using high purity (99.99%) nitrogen (N2) filled in the multipass 
cell. The N2 background baselines were measured in the CH4 and C2H6 channels as shown in Figure 
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Based on the results shown in Figure 12a,b, the second harmonic amplitudes vs. different 
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Figure 11. (a) 2f signal of 0.6 ppmv CH4 associated with baseline and (b) 2f signal of 0.6 ppmv CH4

after subtracting the baseline.

The standard reference gases of 492 ppmv CH4 and 500 ppmv C2H6 were mixed with high purity
nitrogen to obtain a gas mixture with concentrations ranging from 10 ppmv to 100 ppmv. A gas dilution
system (Model 4000, Environics Inc., Tolland, CT, USA) was used to make these mixtures. The second
harmonic signals of CH4 and C2H6 at different concentrations and under normal atmospheric pressure
are plotted in Figure 12a,b.
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Based on the results shown in Figure 12a,b, the second harmonic amplitudes vs. different 
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for calibration of the measured 2f signal amplitudes to their corresponding concentrations.  

Figure 12. Second harmonic signals of CH4 (a) and C2H6 (b) at different concentrations ranging from
10 ppmv to 100 ppmv.

Based on the results shown in Figure 12a,b, the second harmonic amplitudes vs. different
concentrations are plotted in Figure 13a,b for CH4 and C2H6, respectively. Good linear correlations are
observed with a correlation coefficient of 99.97% for CH4 and 99.98% for C2H6, which can be used for
calibration of the measured 2f signal amplitudes to their corresponding concentrations.
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Figure 14. Time series measurements of CH4 (a) and C2H6 (b). Allan deviation plots for the CH4 (c) 
and the C2H6 (d) measurements. 

4.6. Simultaneous Detection of Methane and Ethane Leakage 

The sensor performance was evaluated by simultaneous detection of methane and ethane 
leakage with the current locked at the absorption peak, respectively. The outside air was pumped 
into an airbag (60 cm × 80 cm) and then injected into the gas cell through a long sampling tube. 

Based on the calibration curves shown in Figure 13, measured second signals of CH4 and C2H6 
can be converted to their corresponding concentrations.  

Time series measurements of the test are plotted in Figure 15. Methane and ethane in air were 
measured in the period of t1. The atmospheric CH4 concentration of about 2.1 ppmv was observed, 
while the C2H6 concentration in ambient air was lower than the detection limit of the current sensor 
and was not observed. CH4 and C2H6 were then added in the airbag and changes in the concentrations 

Figure 13. 2f signal amplitudes vs. gas concentrations of CH4 (a) and C2H6 (b).

4.5. Allan Deviation

In order to determine the sensor stability and limit of detection (LoD), analyses of Allan variance
were carried out. Figure 14a,b plot time series measurements of CH4 and C2H6 at a constant
concentration of 2 ppmv and 32 ppmv diluted with the concentration 2.1 ppmv of CH4 and 500 ppmv
of C2H6 standard gas, respectively. The corresponding Allan deviations as a function of the averaging
time t are plotted in Figure 14c,d. Allan variance analysis shows that the measurement precision of the
developed dual-gas sensor was ~20 ppbv for CH4 and 1.2 ppmv for C2H6 with an acquisition time of
1 s. A detection limit of 1.5 ppbv for CH4 could be achieved by averaging in 140 s and 100 ppbv could
be achieved for C2H6 by averaging 200 s.
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and the C2H6 (d) measurements.

4.6. Simultaneous Detection of Methane and Ethane Leakage

The sensor performance was evaluated by simultaneous detection of methane and ethane leakage
with the current locked at the absorption peak, respectively. The outside air was pumped into an
airbag (60 cm × 80 cm) and then injected into the gas cell through a long sampling tube.

Based on the calibration curves shown in Figure 13, measured second signals of CH4 and C2H6

can be converted to their corresponding concentrations.
Time series measurements of the test are plotted in Figure 15. Methane and ethane in air were

measured in the period of t1. The atmospheric CH4 concentration of about 2.1 ppmv was observed,
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while the C2H6 concentration in ambient air was lower than the detection limit of the current sensor and
was not observed. CH4 and C2H6 were then added in the airbag and changes in the concentrations of
CH4 and C2H6 were observed in the period of t2. The CH4 concentration varied from 2.1 to 14.1 ppmv
and the C2H6 concentration varied from 0 to 344.7 ppmv. Subsequently, we stopped the “leakage”
of CH4 / C2H6 and flushed only air into the absorption cell; the concentrations of CH4 and C2H6

returned to their atmospheric levels (t3).
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It is worth noting that the minimum detection limit of the commercial PGC ethane analyzer
(Schutz, German) is 10 ppmv. The present experimental results of simultaneous detection of methane
and ethane demonstrate the real potential of the developed dual-gas sensor of CH4/C2H6 for use in
leakage detection.

5. Conclusions and Outlook

In this paper, we demonstrated a compact dual-gas sensor for monitoring CH4 and C2H6 based
on wavelength modulation spectroscopy coupled to a compact home-made dense-pattern multipass
cell using a single photodetector. Detection limits were 1.5 ppbv for CH4 by averaging 140 s and
100 ppbv for C2H6 by averaging 200 s. The developed dual-gas sensor can be used to distinguish
between natural gas and biogas, which has strong potential for gas sensing applications in natural gas
pipeline leakage analysis.
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