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Simple Summary: The neuroendocrine differentiation of tumors is considered to influence the tumor
microenvironment through the secretion of various hormones or growth factors. However, cases of
neuroendocrine and non-neuroendocrine neoplasms are difficult to compare because of the potential
differences in systemic and local immune environments. The analysis of mixed neuroendocrine
non-neuroendocrine neoplasms, in which neuroendocrine and non-neuroendocrine components
are present in the same tumor, could provide important insights into the effects of neuroendocrine
differentiation on tumor microenvironments. However, to the best of our knowledge, this has not
been reported yet. Here, we compared the status of the tumor tissue microenvironment, including
the infiltrating lymphocytes present, in the neuroendocrine and non-neuroendocrine areas of the
same tumor. Factors related to neoangiogenesis and the suppression of tumor immune reactions were
more abundant in neuroendocrine than in non-neuroendocrine areas. Therefore, neuroendocrine
and non-neuroendocrine tumors differ with respect to the characteristics of both tumor cells and the
tumor microenvironment.

Abstract: The tumor microenvironment is considered to play a pivotal role in various human malig-
nancies. Neuroendocrine and non-neuroendocrine neoplasms are considered to have different tumor
microenvironments. However, owing to differences in the systemic and/or local immune statuses,
tumor microenvironments in different patients may be difficult to compare. Mixed neuroendocrine
non-neuroendocrine neoplasms (MiNENs), although rare, could be useful for exploring the effects
of neuroendocrine differentiation on the tumor microenvironment, because both neuroendocrine
and non-neuroendocrine components are present in the same tumor. Here, we examined 33 cases
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of histologically confirmed MiNENs and evaluated the influence of neuroendocrine differentiation
on the tumor microenvironment by comparing tumor-infiltrating lymphocytes, tumor-associated
macrophages, and other relevant factors in the two components the same tumor. The immunore-
activity of those examined above was evaluated quantitatively. The values of vasohibin-1-positive
density (p < 0.0001) and immunoreactivity (p < 0.0001) (representing the neoangiogenesis status)
were significantly higher in neuroendocrine as compared to non-neuroendocrine areas of the same
tumors. In addition, the Foxp3/CD8 (p = 0.0717) and the PD-1/CD8 ratios (p = 0.0176) (representing
tumor immunity suppression) tend to increase in neuroendocrine carcinomas. Immunoreactivity of
CD163, a marker of M2-like macrophages, was also higher in the neuroendocrine areas. Our findings
indicate that neuroendocrine and non-neuroendocrine tumors differ from each other with respect to
the characteristics of both tumor cells and the tumor microenvironment.

Keywords: mixed neuroendocrine non-neuroendocrine neoplasms; tumor microenvironment; tumor
infiltrating lymphocyte; neuroendocrine differentiation; angiogenesis; immune suppression

1. Introduction

Neuroendocrine neoplasm (NEN) is a malignant neoplasm derived from neuroen-
docrine cells distributed in different organs [1,2]. NENs are currently classified as well-
differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine
carcinomas (NECs) [3]. NETs and NECs are further classified as G1/G2/G3 and small/large
cell carcinomas, respectively, based on their mitotic rate (mitoses/mm2) or Ki-67 index (%)
in the former and morphological features in the latter [3,4]. Composite tumors with
neuroendocrine and non-neuroendocrine differentiation, including adenocarcinomas or
squamous cell carcinomas, are extremely rare. The World Health Organization (WHO) ini-
tially defined these tumors as mixed adenoneuroendocrine carcinoma, a composite tumor
comprising NEN and adenocarcinoma components [5–8]. These composite tumors were
subsequently termed mixed neuroendocrine non-neuroendocrine neoplasms (MiNENs)
in the WHO 2019 classification, based on the presence of at least 30% of either component
in the same tumor [9]. MiNENs have also been reported to show clinical prognosis or
outcomes similar to pure NEC, but this could be different among the organs in which they
occur [10–13]. In addition, despite complete resection, MiNENs often recur after surgery
and frequently develop therapeutic resistance to post-operative chemotherapy, owing to
the different responses of the neuroendocrine and non-neuroendocrine components to
chemotherapeutic regimens [9]. Various factors and components of the tumor microenvi-
ronment, including neoangiogenesis and the status of tumor-infiltrating lymphocytes (TILs)
and tumor-associated macrophages (TAMs) related to tumor immunity, have been reported
to play important roles in the clinical and/or biological behavior of cancer cases [14–20].
For example, the increased infiltration of CD8-positive lymphocytes into tumor tissues was
reported to be associated with better clinical outcome of the patients, whereas that of CD4-
and Foxp3-positive lymphocytes with their worse prognosis [21–27]. da Silva et al. also
reported no significant differences in the intra-tumoral CD3- and CD8-positive lymphocyte
infiltration status between gastrointestinal and pancreatic NETs [25]. However, the status
of infiltrating lymphocytes and macrophages has not been well studied in gastrointestinal or
pancreatic NECs. The tumor microenvironment has been considered to be influenced not
only by the characteristics of carcinoma cells but also by the cross-talk between carcinoma
and stromal cells, although various systemic factors could influence the tumor microenviron-
ment. Therefore, it is generally difficult to compare the tumor microenvironments among
different cases of NETs and non-NETs. In this regard, MiNENs could be an ideal model for
exploring the influence of neuroendocrine differentiation on the tumor microenvironment,
because both components are concurrently present in the same tumor of the same patient. In
this study, we immunolocalized the factors associated with the tumor microenvironment in
MiNENs and evaluated the influence of neuroendocrine differentiation on TILs, TAMs, and
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other molecules present in the tumor microenvironment by separately examining the tumor
microenvironment of the two different areas above. Results firstly revealed that the neuroen-
docrine and non-neuroendocrine components of MiNENs were substantially different in the
status of the factors associated with their corresponding tumor microenvironment.

2. Materials and Methods
2.1. Tissues and Patient Characteristics

In our present study, we evaluated 33 cases of gastroenteropancreatic (GEP)-MiNEN,
where the patients underwent surgical resection between January 2001 and June 2021,
after careful histopathological confirmation including immunohistochemistry. All non-
neuroendocrine components in those cases were either adenocarcinomas or mucinous
carcinoma. We excluded the cases where patients had received neo-adjuvant chemotherapy
prior to surgery or where squamous cell carcinoma was the non-NEC component. These
cases were retrieved from the surgical pathology files of Tohoku University Hospital, Sendai,
Japan; Miyagi Cancer Center, Natori, Japan; Osaki Municipal Hospital, Osaki, Japan; Sendai
Medical Center, Sendai, Japan; Sendai Open Hospital, Sendai, Japan; Japanese Red Cross
Ishinomaki Hospital, Ishinomaki, Japan; and Kesennuma Citizen Hospital, Kesennuma,
Japan. Tissues fixed in 10% formalin and embedded in paraffin blocks were retrieved
and carefully re-examined, with emphasis on the adherence to the stringent criteria for
MiNENs. Based on their definition, all neuroendocrine or NEN components were NECs.
The non-NEC components examined included adenocarcinomas, squamous cell carcinomas,
and mucinous carcinomas. The NEC components of the cases were carefully identified
based on the immunolocalization of neuroendocrine markers (at least one positive among
synaptophysin, chromogranin A, or insulinoma-associated 1). These neuroendocrine
markers were also reported to be abundant in some NECs, which was consistent with the
results of our present study [28]. The histologically identified transition between tumor
cells with neuroendocrine and non-neuroendocrine differentiation was carefully evaluated
in all 33 cases. The details of the neuroendocrine and non-neuroendocrine components
examined in this study are summarized in Table 1. The research protocol of the study was
approved by the ethical committee of Tohoku University School of Medicine (accession
number 2020-1-889) and other institutions.

2.2. Immunohistochemistry

One representative tissue section containing adequate NEN and non-NEN compo-
nents was selected in all the cases examined after careful histological evaluation and
the corresponding serial tissue sections (thickness: 3–4 µm) were prepared. The slides
were deparaffinized with xylene and dehydrated using graded ethanol solutions. The
immunohistochemistry protocols used in this study are summarized in Table 2.
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Table 1. Summary of the clinicopathological characteristics of the patients with mixed neuroendocrine
non-neuroendocrine neoplasm in this study.

Number of Patients GEP 33

Age (Years) Mean (Range) 72 (56–86)

Sex (%)
Male (%) 26 (79)

Female (%) 7 (21)

Tumor Location (%)
Foregut (%) 27 (82)
Midgut (%) 2 (6)
Hindgut (%) 4 (12)

Treatment (%)
Operation (%) 31 (94)

ESD (%) 2 (6)

Histopathological Type (NEC) (%) Small cell type (%) 20 (60)
Large cell type (%) 13 (40)

Histopathological Type (non-NEC) (%)

well differentiated (%) 14 (42)
moderately differentiated (%) 13 (40)

poorly differentiated (%) 5 (15)
mucinous (%) 1 (3)

Lymphatic Invasion (%) ly− (%) 13 (40)
ly+ (%) 20 (60)

Venous Invasion (%)
v− (%) 13 (40)
v+ (%) 20 (60)

pT (%) T1-2 (%) 22 (67)
T3-4 (%) 11 (33)

pN (%) pN− (%) 17 (52)
pN+ (%) 16 (48)

Abbreviations: GEP gastroenteropancreatic.

Table 2. Summary of the immunohistochemistry protocols used in this study.

Antibody Vendor Host Antigen
Retrieval Dilution Buffer

pH

Reaction Time
of Primary
Antibody

Secondary
Antibody

CD3 DAKO Rabbit AC, 121 ◦C, 5 min Ready to use 9.0 4 ◦C, overnight EnVision
FLEX

CD4 Nichirei Mouse AC, 121 ◦C, 5 min 1/80 9.0 4 ◦C, overnight Histofine

CD8 DAKO Mouse AC, 121 ◦C, 5 min 1/50 7.0 4 ◦C, overnight EnVision
FLEX

CD34 Nichirei Mouse none 1/200 none 4 ◦C, overnight Histofine
CD68 DAKO Mouse Trypsin (37 ◦C, 15 min) 1/200 none 4 ◦C, overnight Histofine

CD163 Leica
microsystem Mouse AC, 121 ◦C, 5 min 1/600 6.0 4 ◦C, overnight Histofine

Foxp3 Abcam Mouse AC, 121 ◦C, 5 min 1/200 6.0 4 ◦C, overnight Histofine
PD-1 Abcam Mouse AC, 121 ◦C, 5 min 1/100 6.0 4 ◦C, overnight Histofine

PD-L1 Roche, sp263 Rabbit unknown RTV unknown unknown

VENTANA,
Optiview

DAB
Universal Kit

SYN DAKO Mouse AC, 121 ◦C, 5 min 1/300 6.0 4 ◦C, overnight Histofine

ChgA Agilent
technologies Rabbit Microwave (210 W, 15 min) 1/1500 6.0 4 ◦C, overnight Histofine

INSM1 Santacruz Mouse AC, 121 ◦C, 5 min 1/200 6.0 4 ◦C, overnight Histofine

Ki-67 DAKO Mouse PT Link (97 ◦C, 20 min),
Target Retrieval Solution Ready to use High pH 20 min, room

temperature
EnVision

FLEX
VASH-1 Donated Mouse AC, 121 ◦C, 5 min 1/400 8.0 4 ◦C, overnight Histofine

Abbreviations: CD cluster of differentiation, AC autoclave, PD-1 programed cell death-1, PD-L1 programmed cell
death ligand-1, SYN synaptophysin, ChgA chromogranin A, INSM1 insulinoma-associated 1, VASH-1 vasohibin-1.
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2.3. Evaluation of Immunoreactivity

All the slides with immunohistochemical staining were digitally scanned using the
Nanozoomer S360 (C13220-01, Hamamatsu Photonics, Shizuoka, Japan) for digital image
analyses (DIA). DIA was subsequently performed using the HALO® Membrane v1.7
(Indica Laboratories, Corrales, NM, USA). In this study, we excluded the areas containing
necrosis and lymph follicles as well as those containing less than 100 cells in the field. The
representative immunoreactivity obtained is illustrated in Figure 1a–m. The CD3, CD4,
CD8, CD68, CD163, PD-1, and Foxp3 immunoreactivities were tentatively examined in
three different areas (×200: 0.75 mm2 circle), with the highest positive cell counts observed
in both invasive margins and intra-tumoral areas, following which the average in all the
cases examined was calculated (Figure 2) [29]. We applied nuclear segmentation and
quantification algorithms to evaluate CD3, CD4, CD8, and PD-1 immunoreactivity [30,31].
Cytoplasm segmentation quantification algorithms were used to evaluate the CD68 and
CD163 immunoreactivity [32]. Nuclear segmentation quantification algorithms were also
applied to evaluate Foxp3 immunoreactivity [33]. PD-L1 immunoreactivity was interpreted
as positive if immunoreactivity was observed in the membrane in more than 1% of the
total tumor area. CD34 immunoreactivity was evaluated in terms of micro-vessel density
(MVD) in five different tumor areas (×200: 0.75 mm2 circle) [34]; the number of the vessels
with vascular endothelial cells positive for CD34 was determined, and the area with
the highest MVD was tentatively selected [34]. Vasohibin-1 (VASH-1) immunoreactivity
was determined by counting the number of the vessels with vascular endothelial cells
expressing VASH-1 in the MVD area (VASH-1 density), and the ratio of VASH-1 density
to MVD (VASH-1 expression: VASH-1/MVD) was calculated [34]. Only the CD34- and
VASH-1-positive vasculature was quantified using a combination of DIA and manual
methods in this study. Ki-67 labeling index of each component is summarized in Figure 3.
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horizontal: NEC). Non-NEC: 1–99%, NEC: 21–98%.

2.4. Statistical Analysis

In all immunohistochemical evaluations, the impact of neuroendocrine differenti-
ation on the tumor immune microenvironment in a single patient was analyzed using
the Wilcoxon signed-rank test. For pathological cancer-positive lymph nodes (pN) and
vessel invasion, the association with each antibody-positive lymphocyte and macrophage
was analyzed using the χ2 test. The correlation between the number of CD163-positive
macrophages infiltrating each region and angiogenesis (indicated by CD34 and VASH-1
expression) was analyzed using the t-test. Statistical significance was tentatively set at
p < 0.05. All statistical analyses were performed using JMP Pro (Ver 16.0.0, SAS Institute,
Cary, NC, USA).
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3. Results
3.1. Clinicopathological Characteristics in the Cases Examined

The clinicopathological characteristics of the cases examined are summarized in
Table 1. The sites of GEP-MiNENs were as follows: foregut in 27 (82%), midgut in two
(6%), and hindgut in four (12%) cases. The non-NEC components of MiNENs examined
in this study included well-differentiated adenocarcinomas in 14 (42%), moderately dif-
ferentiated adenocarcinomas in 13 (40%), poorly differentiated adenocarcinoma in five
(15%), and mucinous carcinoma in one case (3%). Both lymphatic and venous invasions
were histologically detected in 20 (60%) cases, and lymph node metastasis was detected in
16 cases (48%).

3.2. Difference in TILs between NEC and Non-NEC Components in Intra-Tumoral Areas and
Invasive Margins

The details of TILs and TAMs between NEC and non-NEC components in each
intra-tumoral area and invasive margin are summarized in Figure 4a There were no signifi-
cant differences in the abundance of CD3-, CD4-, CD8-, and Foxp3-positive lymphocytes
between the NEC and non-NEC components. The number of PD-1-positive lympho-
cytes infiltrating into the NEC component was significantly higher than that infiltrating
into the non-NEC component, in invasive margins (PD-1 intra: p = 0.1342, PD-1 margin:
p = 0.0134). CD4/CD3, CD8/CD3, Foxp3/CD4, Foxp3/CD8, PD-1/CD4 and PD-1/CD8
ratios were subsequently calculated (Figure 4b,c). PD-1/CD4 and PD-1/CD8 ratios were
significantly higher in NEC than in non-NEC components (PD-1/CD4 intra: p = 0.0127,
margin: p = 0.0070; PD-1/CD8 intra: p = 0.0176, margin: p = 0.0484). CD8/Foxp3 ratio was
higher and CD8/CD3 lower in NEC than in non-NEC components, but the tendency did
not reach statistical significance (Foxp3/CD8 intra: p = 0.0717, CD8/CD3 intra: p = 0.1480).
There were only seven cases with high PD-L1 status in this study and no significant correla-
tion was detected between the PD-1 and PD-L1 status in non-NEC or NEC components
(non-NEC: p = 0.5691, NEC: p = 0.1762). PD-1-positive lymphocytes were more abundant in
NEC than in non-NEC components in 12 (36.4%) and 15 (45.5%) cases in intra-tumoral areas
and invasive margins, respectively. CD8-positive lymphocytes were more abundant in NEC
than in non-NEC components in 12 (36.4%) and 17 (51.5%) cases, respectively, in those areas.
Foxp3-positive lymphocytes were more abundant in NEC than in non-NEC components in
18 (54.5%) and 16 (48.5%) cases and PD-1/CD4 ratio was greater in NEC than in non-NEC
components in 12 (36.4%) and 15 (45.5%) cases, respectively. PD-1/CD8 ratio was greater
in NEC than in non-NEC components in 13 cases (42.4%), and the Foxp3/CD8 ratio was
greater in NEC than in non-NEC components in 19 (57.6%) cases, as summarized in Table 3.
Results are summarized in Figures S1–S3.
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Figure 4. The difference in the abundance of lymphocytes expressing different markers between
NEC and non-NEC components in the same case (Wilcoxon signed-rank test). (a). PD-1-positive
lymphocytes infiltrated into the NEC components more abundantly than the non-NEC components
in invasive margins (it: p = 0.1342, im: p = 0.0134). There were no significant differences in the
abundances of CD3- and Foxp3-positive lymphocytes, but more lymphocytes infiltrated into the
NEC components than the non-NEC components in both intra-tumoral areas and invasive margins.
The points are outliers. * it: intra-tumoral, im: invasive margin; NEC, neuroendocrine; non-NEC,
non-neuroendocrine. (b). There were no significant differences in the CD4/CD3 and Foxp3/CD4
ratios. However, the CD8/CD3 ratio for infiltrating lymphocytes was lower in the NEC than in the
non-NEC component in intra-tumoral areas (CD8/CD3 it: p = 0.1430). For infiltrating lymphocytes,
it was higher in the NEC component than the non-NEC component in intra-tumoral areas. The
points are outliers. * it: intra-tumoral, im: invasive margin. (c). The Foxp3/CD8 ratio for infiltrating
lymphocytes was higher in the NEC component than the non-NEC component in intra-tumoral areas
(Foxp3/CD8 it: p = 0.0717, im: p = 0.5458). Both PD-1/CD4 and PD-1/CD8 ratios in infiltrating
lymphocytes were significantly higher in the NEC component than in the non-NEC component in
intra-tumoral areas (PD-1/CD4 it: p = 0.0127, im: p = 0.0070, PD-1/CD8 it: p = 0.0176, im: p = 0.0484).
The points are outliers. * it: intra-tumoral, im: invasive margin.
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Table 3. The difference of each antibody positive lymphocytes, macrophage, and molecules for
micro-vessels between NEC and non-NEC and the ratio of the cases with more positive ones in NEC
than in non-NEC areas. * median ± SD.

Antibodies
NEC-Non-NEC

Intra-Tumoral * NEC > Non-NEC (%) Invasive Margin * NEC > Non-NEC (%)

CD3 9.33 ± 359.25 54.5 43.33 ± 332.71 57.6
CD4 −0.67 ± 142.78 42.4 0 ± 108.94 39.4
CD8 −9.67 ± 277.47 36.4 0.67 ± 199.06 51.5

Foxp3 5.00 ± 75.63 54.5 0.33 ± 68.18 48.5
PD-1 0 ± 38.43 36.4 0 ± 23.76 45.5
CD68 66.00 ± 224.67 60.6 58.67 ± 237.92 75.8
CD163 16.67 ± 154.52 66.7 2.33 ± 103.05 51.5
MVD 4.00 ± 44.38 57.6 - -

VASH-1 density 9.00 ± 16.77 72.7 - -
VASH-1 expression (%) 15.00 ± 26.71 72.7 - -

CD4/CD3 −0.0057 ± 1.18 45.5 −0.0017 ± 0.50 33.3
CD8/CD3 −0.077 ± 0.84 39.4 −0.052 ± 1.33 45.5

Foxp3/CD4 0 ± 34.15 45.5 0.074 ± 26.88 51.5
Foxp3/CD8 0.32 ± 2.82 57.6 0.034 ± 0.77 57.6

CD163/CD68 −0.041 ± 11.63 39.4 −0.14 ± 0.86 30.3
PD-1/CD4 0 ± 2.50 36.4 0 ± 7.55 45.5
PD-1/CD8 0 ± 0.27 42.4 0 ± 0.058 42.4

Abbreviations: NEC neuroendocrine carcinoma, CD cluster of differentiation, MVD micro-vessel density, VASH-1
vasohibin-1, PD-1 programed cell death-1.

3.3. Difference in TAMs between NEC and Non-NEC Components in Intra-Tumoral Areas and
Invasive Margins

The differences in TAMs between the NEC and non-NEC components in intra-tumoral
areas and invasive margins are summarized in Figure 5. In both intra-tumoral areas and
invasive margins, CD68-positive macrophages infiltrating into the NEC components were
significantly more abundant than those infiltrating into the non-NEC components (CD68
intra: p = 0.0017, CD68 margin: p < 0.0001). Conversely, CD163-positive macrophages (M2-
like macrophages) infiltrating into the NEC component were significantly more abundant
than those infiltrating into the non-NEC component in the intra-tumoral areas (CD163 intra:
p = 0.0049). No significant differences were observed in the invasive margins, but M2-like
macrophages tended to harbor greater abundance in the NEC component (p = 0.1454).
CD163/CD68 ratio was significantly higher in invasive margin in NEC than in non-NEC
components (CD163/CD68 margin: p = 0.0290) (Figure 5). CD68-positive macrophages
were more abundant in NEC than in non-NEC components in 20 (60.6%) and 25 (75.8%)
cases, and CD163-positive macrophages were more abundant in NEC than in non-NEC
components in 22 (66.7%) and 17 (51.5%) cases examined, in the intra-tumoral areas and
invasive margins, respectively. However, the CD163/CD68 ratio was greater in NEC than in
non-NEC components in 13 (39.4%) and 10 (30.3%) cases in the intra-tumoral and invasive
margins, respectively (Table 3). The results are summarized in Figure S4.
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NEC and non-NEC components in the same case (Wilcoxon signed-rank test). CD68- and CD163-
positive macrophages infiltrating the NEC components were more abundant than those infiltrating
the non-NEC components, the former in both intra-tumoral areas and invasive margins (it: p = 0.0017,
im: p < 0.0001), and the latter only in intra-tumoral areas (it: p = 0.0049, im: p = 0.1454). CD163/CD68
ratio of infiltrating macrophages was higher in the non-NEC than in the NEC components in the
areas of invasive margin (it: p = 0.7333, im: p = 0.0290). The points are outliers. * it: intra-tumoral, im:
invasive margin.

3.4. Differences in Neoangiogenesis between NEC and Non-NEC Components

The differences in neoangiogenesis between NEC and non-NEC components are sum-
marized in Figure 6. VASH-1 density and immunoreactivity were significantly higher in
the NEC (both p < 0.0001) than in the non-NEC components. There were no significant
differences in MVD between these two components. MVD, VASH-1 density, and immunore-
activity were greater in NEC than in non-NEC components in 19 (57.6%), 24 (72.7%), and
24 (72.7%) cases, respectively (Table 3). The results are summarized in Figure S5.
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Figure 6. Difference in the number of micro-vessels expressing different markers in NEC and non-
NEC components in the same case (Wilcoxon signed-rank test). The number of VASH-1-positive
micro-vessels and the ratio of VASH-1 expression were significantly greater in the NEC area (VASH-1
density: p < 0.0001, VASH-1 expression: p <0.0001). There were no significant differences in the
MVD (MVD: p = 0.6683). The points are outliers. * it: intra-tumoral, im: invasive margin. MVD,
micro-vessel density.
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3.5. Association between Neoangiogenesis and CD163-Positive Macrophage Infiltration in
Intra-Tumoral Areas and Invasive Margins in NEC and Non-NEC Components

In the high CD163 expression group, VASH-1 density and immunoreactivity were
greater in the NEC than in the non-NEC components in both intra-tumoral areas and
invasive margins, but the difference was not statistically significant (Figure 7a,b).

Cancers 2022, 14, x 11 of 16 
 

 

micro-vessels and the ratio of VASH-1 expression were significantly greater in the NEC area (VASH-
1 density: p < 0.0001, VASH-1 expression: p <0.0001). There were no significant differences in the 
MVD (MVD: p = 0.6683). The points are outliers. * it: intra-tumoral, im: invasive margin. MVD, mi-
cro-vessel density. 

3.5. Association between Neoangiogenesis and CD163-Positive Macrophage Infiltration in Intra-
Tumoral Areas and Invasive Margins in NEC and Non-NEC Components 

In the high CD163 expression group, VASH-1 density and immunoreactivity were 
greater in the NEC than in the non-NEC components in both intra-tumoral areas and in-
vasive margins, but the difference was not statistically significant (Figure 7a,b). 

 
(a) 

(b) 
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Figure 7. (a) Association between the number of CD163-positive macrophages infiltrating intra-
tumoral areas and invasive margins in NEC components (t-test). The number of CD163-positive
macrophages was significantly associated with the VASH-1 density and immunoreactivity and tended
to be associated with an increased MVD. The points are outliers. * it: intra-tumoral, im: invasive
margin; cutoff: median. (b). Association between the number of CD163-positive macrophages
infiltrating the intra-tumoral areas and invasive margins in non-NEC components (t-test). The high
infiltration of CD163-positive macrophages was significantly associated with the VASH-1 density
and immunoreactivity, but not with the MVD. The points are outliers. * it: intra-tumoral, im: invasive
margin; cut off: median.
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3.6. Association of TILs or TAMs with Lymph Node Metastasis, Lymphatic Invasion, and Venous
Invasion

The association of the abundance of lymphocytes infiltrating into the intra-tumoral
areas and invasive margins and VASH-1 f to lymph node metastasis and vascular invasion
are summarized in Tables S1 and S2. Only CD4 status was significantly higher in the
intra-tumoral areas of the NEC than in the non-NEC components (p = 0.0229).

4. Discussion

This is the first study to evaluate the differences of the tumor microenvironments
of neuroendocrine and non-neuroendocrine components in the patients with MiNENs.
The results first demonstrated that the status of intra-tumoral infiltration of Foxp3- and
CD8-positive lymphocytes was not significantly different between NEC and non-NEC
components, but CD8/Foxp3 ratio tended to be higher in NEC components. Konno et al.
previously reported that the Foxp3/CD8 ratio was correlated with prognosis of the patients
with esophageal squamous cell carcinoma who underwent neoadjuvant chemotherapy
(5-fluorouracil+cisplatin) [35]. In addition, Katz et al. also reported that CD8- and Foxp3-
positive lymphocytes themselves had no prognostic impact [36]. The status of VASH-1,
which represents the neoangiogenesis status, was also reported to suppress TILs and
anti-tumor immune responses [37]. In addition, there were significant increments of
PD-1/CD4 and PD-1/CD8 ratios both in intra-tumoral and invasive margins. Lim et al.
reported that high lymphocytic ratio of PD-1/CD8 resulted in worse prognosis in patients
with extrahepatic bile duct carcinoma [38]. Pardoll et al. reported that high ratio of PD-
1/CD8 was observed to suppress anti-tumor immune responses [39]. Therefore, increased
Foxp3/CD8, PD-1/CD4, and PD-1/CD8 ratios and VASH-1 expression in the tumor tissues
were considered to suppress anti-tumor immunity more markedly in NEC than in non-
NEC components of MiNENs. These results also suggest the difference in the tumor
microenvironment between these two components. The current cohort did not include
the cases of MiNENs in the appendix and small intestine, but MiNENs arising in the
appendix and small intestine were reported to be associated with poorer clinical outcome
compared to those in other sites of the GI tract or pure NECs arising in the appendix or
small intestine [13], although the clinical outcomes of MiNENs arising in other sites of
the GI tract have been reported to be similar to those of pure NECs arising in the same
organ [13]. In addition, the small intestinal epithelium was reported to contain comparable
levels of Foxp3-positive lymphocytes as the lymph nodes and to be associated with an
immunosuppressive response [40]. The abundance of Foxp3-positive lymphocytes in
the appendix was also reported to increase under inflammatory conditions [41]. These
findings in the small intestine and appendix could be related to the fact that lymphoid
tissue is relatively abundant in both organs, and this could be intrinsically associated
with a more pronounced tumor immune suppression; however, further investigations
are required for clarification. The therapeutic approach to MiNENs has not necessarily
been established, but is generally considered to be governed by the component with a
higher grade in the tumor tissues [9]. However, an effective therapeutic approach to one of
the two MiNEN components could disrupt the balance of the tumor microenvironment
and induce the growth of the other tumor component [10,42]. The results of our present
study also indicated the differences between the tumor immune microenvironments of the
two components of MiNENs. The therapeutic approaches for several malignancies at this
juncture could involve the effective inhibition of in situ tumor immune suppression caused
by cancer cells. In this regard, PD-1-positive lymphocytes were more abundant in NEC
than in non-NEC components in more than 35% of the MiNENs examined, both in intra-
tumoral areas and invasive margins of the tumor (p = 0.1342 and p = 0.0134, respectively).
In addition, Foxp3/CD8 ratio tended to be greater in NEC than in non-NEC components
of the MiNENs examined and PD-1/CD4 and PD-1/CD8 ratios were significantly higher
in NEC. These findings also indicated that the suppression of local anti-tumor immunity
could be more pronounced in NEC than in non-NEC components in MiNENs and the
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effects of immune checkpoint inhibitor could be less pronounced in NEC components in
MiNENs but further investigations are required for clarification.

Both CD68, which serves as pan-macrophage marker, and CD163, which represents
M2-like macrophages as well as positive macrophages were significantly more abundant
in NEC than in non-NEC components in MiNENs in this study. Sawa and Yu-jie indepen-
dently reported that humoral factors and the neuroendocrine differentiation of colorectal
carcinoma cells induced macrophage differentiation and promoted the production of var-
ious chemokines, including VEGF [43,44]. Therefore, the equilibrium of macrophages
could also contribute to the local anti-tumor immunity status [45]. In our present study,
both pan- and M2-like macrophages were more abundant in the NEC components, pos-
sibly owing to the presence of cytokines or growth factors secreted from neuroendocrine
granules, as previously reported [43,44]. Both CD68- and CD163-positive macrophages
were significantly higher in the areas of both intra-tumoral and invasive margin, while
the ratio of CD163/CD68 was significantly lower in invasive margin of NEC component.
Therefore, further investigations are warranted to explore the contribution of macrophages
to the suppression of anti-tumor immunity in carcinoma cells undergoing neuroendocrine
differentiation. In this study, we also examined the neovascularization status, which is an
important component of the local tissue microenvironment. The results demonstrated that
VASH-1 positivity in the NEC components was greater than that in the non-NEC compo-
nents of the same MiNEN cases, but was not necessarily associated with lymphovascular
invasion and/or lymph node metastasis. However, in cases with high CD163 status, VASH-
1 was more pronounced, especially in the NEC component. CD163 is generally considered
to enhance angiogenesis [46], whereas VASH-1 is considered to suppress angiogenesis [47].
Therefore, growth factors or other components secreted from neuroendocrine granules
could influence the negative feedback of VASH-1, and the tissue turnover could thus be
enhanced in angiogenesis in the tumors with neuroendocrine differentiation.

There were some limitations to this study. First, MiNENs are extremely rare tumors,
especially when strictly evaluated, and the number of the cases available for examination in
this study (33) could be considerably too small to draw definitive conclusions regarding the
potential effects of neuroendocrine differentiation on the localized tumor microenvironment.
Second, the neuroendocrine components of MiNENs were NECs and not NETs. Currently,
NETs and NECs are considered to be distinct tumor types with both morphological and
biological differences, including differences in mutation profiles [48,49]. Therefore, it is
also important to note that in this study, we evaluated the effects of NECs and not those of
general neuroendocrine differentiation.

5. Conclusions

This study is the first to demonstrate the differences in the tissue microenvironment
between NEC and non-NEC components of MiNENs and provide insights into the effects
of neuroendocrine differentiation on tumor microenvironments. The results of this study
provide information that may be important for administering anti-tumor immune therapy
to the patients with MiNENs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers14092152/s1. Figure S1: Graphs connecting the corresponding points for lymphocytes
expressing specific markers in the NEC and non-NEC components in each case; Figure S2: Graphs
connecting the corresponding points for lymphocytes expressing specific markers in the NEC and
non-NEC components in each case; Figure S3: Graphs connecting the corresponding points for lym-
phocytes expressing specific markers in the NEC and non-NEC components in each case; Figure S4:
Graphs connecting the corresponding points for macrophages expressing specific markers in the
NEC and non-NEC components in each case; Figure S5: Graphs connecting the corresponding points
for microvessels expressing specific markers in the NEC and non-NEC components in each case;
Table S1: The association between the number of lymphocytes infiltrating into intra-tumoral areas and
invasive margins in each case (NEC–non-NEC area) in relation to pN (+) and vessel invasion (χ2 test);
Table S2: The association between the number of macrophages infiltrating into the intra-tumoral areas
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and invasive margins and VASH-1 (NEC–non-NEC area) in relation to pN (+) and vessel invasion
(χ2 test).
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