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Abstract: Currently, adipose tissue is considered an endocrine organ that produces hormone-active
substances, including leptin, which can play a key role in thermoregulation processes. Therefore, we
performed a meta-analysis to investigate the influence of the climatic environment on leptin levels. A
systematic literature search in the databases was carried out on 10 January 2020. Finally, 22 eligible
articles were included in the current meta-analysis and a total of 13,320 participants were covered
in the final analysis. It was shown that males of the “North” subgroup demonstrated significantly
higher levels of leptin (10.02 ng/mL; CI: 7.92–12.13) than males of the “South” subgroup (4.9 ng/mL;
CI: 3.71–6.25) (p = 0.0001). On the contrary, in the female group, a similar pattern was not detected
(p = 0.91). Apparently, in order to maintain body temperature, higher leptin levels are required. The
results of the study indicate that such effects are most pronounced in males and to a smaller extent in
females, apparently due to a relatively high initial concentration of leptin in females. The correlation
between leptin levels and climatic environment data support the hypothesis of leptin-mediated
thermoregulation as an adaptive mechanism to cold climates.
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1. Introduction

The indigenous people living in circumpolar regions have certain anatomical and physiological
adaptations to protect the body from prolonged exposure to cold [1–3]. In response to chronic cold
exposure, the rate of energy expenditure must increase to generate the additional heat needed to avert
a drop in body temperature. One of the main mechanisms of increasing heat production in the body is
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nonshivering thermogenesis. This is mainly due to the metabolism in brown adipose tissue (BAT).
Although BAT was initially considered to be present only in infants, it is now established that substantial
BAT depots can be detected in the supraspinal, supraclavicular, pericardial and neck regions of adult
humans [4–9]. In 2015, BAT in adults living in the cold climatic conditions of Eastern Siberia (Sakha
Republic, Russia) was found. The BAT was detected in samples of adipose tissue from paraaortic,
perirenal, subclavian, and parathyroid areas [10]. In BAT, nonshivering thermogenesis is mediated
primarily by the uncoupling protein 1 (UCP1). This protein uncouples fatty acid oxidation from
adenosine triphosphate production, leading to a futile metabolic process that results in increased heat
production [11]. According to Efremova et al. [12], it was found that a constant part of the mediastinal
and perirenal fat (up to about 40%) in adult residents of Eastern Siberia had a morphology typical
of brown adipocytes and that a relevant percentage of it (up to about 30%) expressed the functional
marker of UCP1 [12]. Many studies have shown that prolonged exposure to cold temperatures results
in white-to-brown adipocyte transdifferentiation (browning) [13–16]. The process of browning is
currently being studied by many researchers around the world [15,17–28]. One of the most relevant in
this sphere is the study of hormonal activities in browning processes. Leptin was the first adipokine to
be discovered [28]. In humans, leptin is the product of the LEP gene that is located on chromosome
7 [29]. Leptin plays an important role in regulating energy homeostasis, but it can also affect some other
physiological processes [30–33]. It was found that leptin can increase the expression of UCP1 [34,35],
and stimulate the oxidation of fatty acids [36,37]. Leptin-deficient ob/ob mice are characterized not
only by hyperphagia and obesity but also mild hypothermia; such mice will not survive a prolonged
cold exposure [38]. Subsequently, it was found that the administration of exogenous leptin can
optimize the body temperature in ob/ob mice [39], which suggests the direct involvement of leptin in
thermoregulation. The available data suggest that leptin is involved in thermoregulation and possibly
in adaptation to cold climates. Therefore, the present systematic review and meta-analysis were
performed to summarize the results of original articles into a quantitative estimation of the correlation
between leptin levels and climatic environment.

2. Materials and Methods

The present study was conducted following the Preferred Reporting Items of Systematic Reviews
and Meta-Analyses statement [40].

2.1. Search Strategy

PubMed-Medline databases were searched by using the following search terms in titles and
abstracts: (“leptin”[MeSH Terms] OR “leptin”[All Fields]) AND (“body mass index”[MeSH Terms] OR
(“body”[All Fields] AND “mass”[All Fields] AND “index”[All Fields]) OR “body mass index”[All
Fields] OR (“body”[All Fields] AND “mass”[All Fields] AND “index”[All Fields] AND “bmi”[All
Fields]) OR “body mass index bmi”[All Fields]). The literature was searched from inception to 10
January 2020.

2.2. Inclusion and Exclusion Criteria

The inclusion criteria for the studies were as follows: (1) the studies were case-controlled,
cross-sectional, prospective, or clinical trials; (2) the studies examined serum or plasma leptin levels;
(3) blood leptin levels should be measured using an enzyme-linked immunosorbent assay (ELISA) or
radioimmunoassay (RIA), as these two methods are highly sensitive and specific; (4) leptin level unit is
ng/mL; (5) the studies used mean values and standard deviations with a confidence interval (95%).

The exclusion criteria of studies were: (1) uncontrolled trials; (2) lack of sufficient information on
baseline or follow-up leptin concentrations; (3) duplicated study.
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2.3. Data Extraction

Eligible studies were reviewed, and the following data were abstracted: (1) author’s name; (2)
year of publication; (3) country where the study was performed; (4) group size; (5) mean age or age
range; (6) gender; (7) body mass index; (8) leptin levels; (9) blood leptin levels measurement method.

2.4. Quality Control

The methodological quality of the included studies was evaluated by the Newcastle-Ottawa scale.
A total of nine items were involved in this form. The high-quality study was defined as a study with
≥7 awarded stars.

2.5. Data Analysis

Meta-analysis was conducted using RevMan 5.3 (The Cochrane Collaboration). The difference in
blood leptin levels in individuals with elevated leptin and control groups was estimated by calculating
the mean difference (MD). If the χ2 value was less than 0.10 and I2 exceeded 50%, then we considered
there to be substantial heterogeneity and a random-effect model was applied to pool the data.

2.6. Climatic Environment

We divided data of included original articles by the climatic environment into “North” and
“South” subgroups. The division into “North” and “South” was made according to the approximate
border (40–45◦ N) of the transition from the subtropical climate zone to the temperate climate zone
(Figure 1).
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results in Section 3.1).

2.7. Limitations of Meta-Analysis

There are certain limitations to our study. First, some heterogeneity may lead to reduced statistical
power. Second, because sufficient data in primary studies are lacking, we were unable to perform
further analyses to investigate other factors, such as a body fat mass, age, smoking, physical activity,
diet, which may have affected our results.
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2.8. Ethics Statement

This study was approved by the local Biomedical Ethics Committee of Yakut Scientific Center of
Complex Medical Problems, Siberian Branch of the Russian Academy of Medical Sciences, Yakutsk,
Russia (Yakutsk, Protocol No. 16, 13 December 2014).

3. Results

3.1. Literature search and Eligible Studies

The search of the literature yielded 3827 relevant articles from PubMed. Then, the abstracts of
these articles were reviewed to assess their eligibility. Following this assessment, 3608 articles did
not meet the inclusion criteria, hence they were excluded. Furthermore, full texts of the 219 articles
were reviewed and this resulted in the exclusion of 197 articles. In the end, 22 eligible articles met the
inclusion criteria and were included in the final meta-analysis (Figure 2) [41–62].
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3.2. Characteristics of the Articles

The final analysis included a total of 13,320 participants with sample sizes ranging from 15 to
1507 in the individual studies. These studies were published between 1994 and 2020. The age of
the participants ranged from 20 to over 80 years. The detailed characteristics of these studies are
summarized in Table 1. The control group included 9390 individuals (3840 females, 5550 males)
with normal body weight (18.5–24.99 kg/m2). The group with elevated leptin levels included 3930
individuals (1933 females, 1997 males) with excess body weight and obesity (25–35 kg/m2). The data
were divided into two subgroups (“North” and “South”), according to the geographical zones of the
research sites.
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Table 1. Characteristics of the individual studies included in this meta-analysis.

Author Publication, Year Country/Setting
BMI

(Normal),
kg/m2

Leptin
Level,
ng/mL

Subjects (n)/Age
BMI

(Overweight/Obese),
kg/m2

Leptin
Level,
ng/mL

Subjects (n)/Age ELISA or
RIA

Serum or
Plasma Subgroups

FEMALES

Nikanorova et al., 2020 Russia 21.42 ± 1.33 18.18 ± 8.13 144/19.81 ± 2.09 27.56 ± 2.21 34 ± 15.3 16/20.56 ± 2.4 ELISA Serum North

Suyila et al., 2011 Mongolia 21.75 ± 1.9 2.35 ± 1.39 65/31.67 ± 3.87 30 ± 3.3 5.09 ± 1.07 53/41.54 ± 3.78 ELISA ND North

Andersson et al., 2011 Sweden 21 ± 0.6 9 ± 2.5 11/ND 31 ± 2.1 31 ± 5.6 11/ND RIA ND North

Harmelen et al., 1998 Sweden 22.3 ± 0.9 11.6 ± 2.3 8/45 ± 3 41.9 ± 2.3 51.6 ± 6.1 15/43 ± 3 RIA Serum North

Jurimae et al., 2003 Estonia 23.8 ± 1.7 19 ± 13.3 18/67.1 ± 6.4 31.4 ± 4.7 21.5 ± 21.5 17/67.0 ± 6.9 RIA Plasma North

Iputo et al., 2001 RSA 23 ± 4.5 12.1 ± 1.1 20/20 29.8 ± 5 14 ± 1.2 10/35 ELISA Serum South

Daghestani et al., 2007 Saudi Arabia 20.85 ± 0.25 11.7 ± 0.46 60/23.95 ± 0.6 35.9 ± 0.92 46.04 ± 3.07 46/26.49 ± 0.96 ELISA Serum South

Osegbe et al., 2016 Nigeria 21 ± 0.6 19.8 ± 17.2 76/ND 39.1 ± 7.2 48.4 ± 24.4 80/44.9 ± 9.8 ELISA Serum South

Gomez-Ambrosi et al., 2014 Spain 22.7 ± 1.7 12.8 ± 9 177/47.0 ± 10.0 39.7 ± 7 51.5 ± 25.9 138/47.2 ± 10.2 RIA ND South

Maciver et al., 2015 USA 24.3 ± 3.3 13.1 ± 8.1 2308/46.4 ± 18.9 35.5 ± 5 29.5 ± 15.1 965/46.5 ± 16.8 RIA Serum South

Benbaibeche et al., 2014 Algeria 20 ± 2 5.22 ± 0.4 30/35 ± 4 34 ± 1 31.35 ± 3.3 30/40 ± 3 ELISA ND South

Esteghamati et al., 2011 Iran 25.46 ± 4.89 8.99 ± 6.34 923/40.21 ± 11.42 31.24 ± 5.21 13.38 ± 8.31 654/48.23 ± 10.28 ELISA Serum South

MALES

Sommer et al., 2017 Norway 23.6 ± 2 7.9 ± 1.9 50/50 + 7 29.5 ± 2.3 16.4 ± 6.5 13/53 + 6 ELISA Plasma North

Paleczny et al., 2016 Poland 25.1 ± 2.7 4.9 ± 1.02 27/46 ± 8 33.7 ± 3.5 16.6 ± 4.83 14/44 ± 8 ELISA Plasma North

Nikanorova et al., 2020 Russia 21.96 ± 1.68 7.51 ± 1.13 72/20 ± 1.67 26.64 ± 1.17 8.48 ± 1.61 13/20 ± 1.21 ELISA Serum North

Kindblom et al., 2009 Sweden 25.9 ± 3.3 20.3 ± 17.6 857/75.3 ± 3.2 27.7 ± 4.2 34.7 ± 31.3 153/75.1 ± 3.3 ELISA Serum North

Morberg et al., 2003 Sweden 26.1 ± 3.7 4.9 ± 3.6 323/49.9 ± 6.0 35.9 ± 5.9 12.8 ± 8.9 234/47.5 ± 5.1 RIA Serum North

Goncharov et al., 2009 Russia 23.1 ± 1.3 4.9 ± 2.5 20/20–40 30.8 ± 2.7 13.9 ± 10.2 23/20–40 ELISA Plasma North

Gomez-Ambrosi et al., 2014 Spain 23.3 ± 1.6 4.4 ± 2.5 78/45.2 ± 13.8 39.4 ± 9.2 30.1 ± 21.4 84/44.4 ± 9.9 RIA ND South

Ekmen et al., 2016 Turkey 24 ± 1.3 2.53 ± 1.03 24/55.8 ± 8.8 31.5 ± 2.1 1.23 ± 0.73 23/48.5 ± 11.4 ELISA Plasma South

Maciver et al., 2015 USA 24.9 ± 2.9 4.6 ± 3.5 2309/47.7 ± 18.8 33.9 ± 4 11.5 ± 6.5 593/48.5 ± 16.2 RIA Serum South

Benbaibeche et al., 2014 Algeria 22 ± 2 3.25 ± 0.43 30/38 ± 3 32 ± 1 3.77 ± 2.05 30/44 ± 3 ELISA ND South

Esteghamati et al., 2011 Iran 23.65 ± 3.8 3.41 ± 2.37 907/41.53 ± 12.02 28.73 ± 4.07 5.1 ± 3.42 561/47.19 ± 1.95 ELISA Serum South

Soderberg et al., 2007 Australia 23 ± 0.2 3.8 ± 0.4 821/40.3 25.5 ± 0.36 5.6 ± 0.2 211/42.8 RIA Serum South

Katsuki et al., 2001 Japan 22.2 ± 0.5 3.6 ± 0.3 15/40.6 ± 1.7 29.2 ± 0.6 7.4 ± 0.8 15/38.2 ± 0.9 RIA Serum South

Haffner et al., 1997 USA 24.4 ± 0.3 3.3 ± 0.4 56/54.3 ± 0.7 29.7 ± 0.3 4.9 ± 0.5 31/53.9 ± 0.9 RIA Serum South

Vega et al., 2013 USA 24.1 ± 2.3 2.3 ± 2.2 55/53.0 ± 8.9 27.9 ± 2.5 10.4 ± 7.5 226/54.1 ± 10.2 RIA Plasma South

Note: ND—no data, USA—United State of America, RSA—Republic of South Africa.



Int. J. Environ. Res. Public Health 2020, 17, 1854 7 of 13

3.3. The Leptin Levels Depending on Climatic Conditions

Figure 3 presents a forest plot for the MD constructed from a random-effects model of the leptin
levels between elevated leptin subjects and controls in the 22 eligible studies. In Figure 3a, in males’
subgroup, the point estimate (black diamond’s) does not intersect with the point estimate of the
averaged studies (dotted line), which indicates that there are statistically significant differences. For
females, the point estimate (black diamond’s) of the “North” and “South” groups intersect with the
point estimate of the averaged studies (dotted line), which indicates that there are no significant
differences (Figure 3b). Thus, analysis of subgroups by leptin levels depending on the climatic
environment revealed statistically significant differences among the males of the “North” subgroup,
where the average leptin level (10.02 ng/mL; CI: 7.92–12.13) was twice as high compared to the “South”
subgroup (4.98 ng/mL; CI: 3.71–6.25) (p = 0.0001) (Figure 3a). However, no statistically significant
differences were found in the females (p = 0.91) (Figure 3b).
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Figure 3. Forest plot of meta-analysis: Mean difference in the circulating level of leptin in subjects
with elevated leptin and controls: (a) males; (b) females. Note: Mean—average value; SD—standard
deviation; Dotted line—the point estimate of the averaged studies; Black diamond—the point estimation;
Red diamond—the average point estimation.
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4. Discussion

For the first time, using published data, the meta-analysis was carried out to assess the influence
of climatic conditions on the levels of leptin circulating in the blood of 13,320 individuals. The obtained
results showed significant differences in leptin levels between “northern” and “southern” males,
indicating the involvement of leptin in the key processes of thermoregulation and possibly in the
mechanisms of human adaptation to cold environment. It is known that the mechanism of the regulation
of thermoregulation and browning by leptin is associated with neurons of pro-opiomelanocortin
(POMC) in the arcuate nucleus [50–53]. Through the mechanism of leptin-dependent neuro-adipose
linkage of nonshivering thermogenesis in BAT (Figure 4), leptin and its receptors in the arcuate nucleus
of the hypothalamus increase the activity of POMC neurons, triggering the production and release of
α-melanocyte-stimulating hormone. This hormone activates melanocortin-3 and 4 receptors, which
increases the activity of the sympathetic nervous system and leads to an increased expression of
uncoupling protein UCP1 in BAT [31,63]. In the BAT, noradrenaline is released as a response to signals
from the hypothalamus which is activated by cold receptors in the skin. Furthermore, in the outer
membrane of the brown fat cells, noradrenaline activates—via β-adrenalgenic receptors—adenylate
cyclase in the cytosol of these cells to form cAMP. Via a protein kinase cascade, cAMP activates
triglyceride lipase so that free fatty acids are formed. The released free fatty acids react with UCP1
and overcome UCP1 inhibition, wherein all the energy from the combustion of the substrate (food) is
directly released as heat [64–66].
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Figure 4. Possible mechanism of leptin-dependent neuro-fatty linkage of nonshivering thermogenesis
in brown adipose tissue (The figure adapted from the articles: [64,65,67]). Note: HP—hypothalamus,
MSH—α-melanocyte-stimulating hormone, CNS—sympathetic nervous system, βAR—β-adrenaline
receptors, AC—adenylate cyclase, ATP—adenosine triphosphate, cAMP—cyclic adenosine
monophosphate, PKA—protein kinase A, FFA—free fatty acids, β-OX—β-oxidation.

The involvement of leptin in thermoregulation and energy homeostasis was also previously
shown [38,39,68,69]. A study by Farooqi et al. [70] found that people with congenital leptin deficiency
have mild hypothermia and low energy expenditure [70]. The body temperature and energy expenditure
in these individuals were normalized with the introduction of exogenous leptin [70]. It can be assumed
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that, under the influence of low temperatures on the body, relatively high levels of leptin in the blood
prevent a decrease in energy expenditure and body temperature, which, in turn, can be an adaptogenic
mechanism to the effects of cold. The results of our study indicate that such effects are most pronounced
in males and to a smaller extent in females, since it is known that females have a relatively high
initial concentration of this adipokine in the blood due to their physiological features [70]. It was also
previously suggested that women have relatively high levels of leptin due to a lower sensitivity to leptin
in the central nervous system [71], as was shown in most obese humans having a leptin resistance [72].
The obtained results of the impact of the climatic environment on leptin levels suggest a possible
leptin-dependent neuro-adipose connection between nonshivering thermogenesis and browning in
people living in a cold climatic environment.

5. Conclusions

In this study, we showed a correlation between leptin levels and climatic environment data
supporting the hypothesis of leptin-mediated thermoregulation as an adaptive mechanism to
cold climates.
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