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Abstract
This paper reviews developments in climate science and hydrological modelling studies in Zimbabwe over the past 
29 years in an effort to expose knowledge gaps within this research domain. We initially give a global and regional over-
view and then follow a systematic thematic approach in reviewing specifically online published, peer-reviewed journal 
articles on climate change/variability and hydrological modelling in Zimbabwe. The state and progress towards advanced 
integrated climate and hydrological modelling research are assessed, tracking benchmarks in the research methodologies 
(tools and techniques) used therein including geographic information systems and remote sensing. We present descrip-
tive summaries of key findings, highlighting the main study themes (categories) and general conclusions arising from 
these studies while examining their implications for future climate and hydrological modelling research in Zimbabwe. 
Challenges associated with climate and hydrological modelling research in Zimbabwe are also briefly discussed and the 
main knowledge gaps in terms of research scope and methodologies employed in the reviewed studies also exposed. 
We conclude by presenting plausible potential areas of focus in updating and advancing scientific knowledge to better 
understand the climate-land use-hydrology nexus in Zimbabwe. While this paper is primarily relevant for researchers, the 
general findings are also important for policy-makers since it exposes potential areas for policy intervention or agenda 
setting in as far as climate and hydrology science research is concerned so as to effectively address pertinent questions 
in this domain in Zimbabwe.
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1 Introduction

A review of global climate changes since 1700 has 
revealed that over the centuries, twenty climatic events 
covering continental-scale temperature fluctuations, 
hydroclimatic anomalies, stratospheric perturbations and 
general atmospheric composition changes have occurred, 

impacting millions of people in many ways [1–4]. As such, 
understanding and predicting these inter-annual, and 
multi-decadal variations and changes in climate and the 
resultant impacts has become a critical and active area of 
research globally over the decades. Several studies have 
been undertaken to quantify the extent of impacts and 
the dynamics (in space and time) of climate change on 
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water resources [5–11], food security [12–16], ecosystems 
[17–20], energy, and human health [21–23]. All these stud-
ies have revealed that climate change is a significant factor 
to consider in holistic planning for community resilience 
and adaption, fostering global progress towards achieving 
the United Nations Sustainable Development Goals (UN 
SDGs), Agenda 2030 and Paris Agreement goals [24–27]. 
These impacts are expected to vary in different countries 
in various regions of the world considering the differences 
in climate-sensitivity of vulnerable populations with likely 
increases in poverty and inequities as a consequence of 
climate change especially in developing countries [28, 29].

In developing countries in Africa for example, where 
the impacts of climate system changes are predicted to 
be manifest in more uncertain terms [30–37], expanding 
knowledge in this domain has become more pertinent 
hence the steady developments in research therein. In 
Southern Africa, studies also indicate a continued high cli-
mate variability [35, 38, 39] marked by recurrent droughts 
and floods in the future [40–43], notwithstanding the 
uncertainties in these studies. The scope of these studies 
has been diverse, covering various focus areas such as cli-
mate modelling [44–47], hydrological impacts [48–51] and 
other general impact studies [52–55].

Despite all the advances made in the aforementioned 
studies, knowledge gaps are well acknowledged particu-
larly considering the inherent uncertainties in the new 
developments in climate science/modelling and climate 
impact assessment techniques [56]. Tools and approaches 
are now available and more are being developed that 
allow for a better understanding and characterisation of 
the implications of climate change and variability to assist 
in better climate risk management strategy development 
[57, 58] in developing countries such as Zimbabwe. As 
such, the scientific community within and outside Zim-
babwe has, over the past decades, been able to exploit 
various tools and techniques to generate new knowledge 
pertaining to the local climate dynamics and impacts to 
better guide decision making specifically tailored to the 
local needs. One key area of focus has been the implica-
tions of climate change on water resources/hydrological 
systems, considering that a significant part of Zimbabwe 
is generally semi-arid in nature.

Furthermore, considering the acknowledgement of 
spatio-temporal land use and land cover change (LULCC) 
as an important factor (with both direct and indirect impli-
cations) on hydrological systems [59–64], attempts have 
also been made to explore the climate-LULCC-hydrology 
interlinkages using coupled systems approaches in various 
studies globally [65–69]. All these studies indicate a wide 
scope of themes covered over the years as earlier men-
tioned and as such, it becomes important to explore and 
characterise these studies in a more systematic manner so 

as to better appreciate the advances made so far and iden-
tify the knowledge gaps therein. Very few known studies, 
e.g. Bhatasara [70] and Brazier [71], have attempted to 
extensively review climate change research in Zimba-
bwe albeit from a Foucauldian discourse perspective and 
general impacts and mitigation sense, respectively. With 
regards to climate-hydrological modelling studies, no 
known study has reviewed such; hence in this paper we 
attempt to expand the scope of review in these areas by 
presenting key research developments in climate science 
and hydrological modelling in Zimbabwe over the past 
three decades. The ultimate goal is to expose knowledge 
gaps, i.e. possible areas for further research in this domain 
in Zimbabwe.

2  Methods

We adopted a systematic search for relevant peer-
reviewed literature from a range of databases searched 
using Google Scholar (GS) search engine leveraging its 
strength of cataloguing 100 million records of academic 
literature and most importantly being able to competently 
find potentially valuable grey literature (i.e. articles pub-
lished by non-commercial academic publishers) [72]. We 
also utilised EBSCO Discovery Service within the University 
of Witwatersrand’s e-library resources to augment the GS 
search and to widen the scope and depth of our search. 
Our search was limited to papers published in English 
between 1990 and 2019 covering climate change and 
variability dynamics, climate modelling and hydrological 
modelling covering briefly the global, continental, regional 
perspectives and then more extensively the Zimbabwean 
context. The literature search inclusion and exclusion crite-
ria are summarised in Table 1. Thematic analysis adapting 
and integrating the approaches of Perkins et al. [73] and 
Nichols et al. [74] was used in assessing the content of the 
selected journal articles and categorising them accord-
ing the study keywords and their dominant/predominant 
focus area/theme, e.g. general climate trends study, cli-
mate impact and climate modelling. Climate impact stud-
ies were further categorised according to impact areas, 
e.g. agricultural impacts, livelihood impacts, ecological 
impacts, hydrological impacts and energy impacts. We also 
identified and categorised studies specifically integrating 
hydrological modelling and climate modelling leveraging 
geographic information systems (GIS) and remote sens-
ing (RS) techniques. The various hydrological and climate 
modelling techniques/tools used in the selected studies 
were also assessed. General descriptive statistics (frequen-
cies and proportions), Tables and Pie charts were used to 
present the findings of the study. Figure 1 summarises 
the main steps of our study methodology. However, it is 
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important to note that some relevant published studies 
could have been missed probably due to poor indexing 
or publication in unrated online journals and databases. 
Furthermore, some studies covered more than one theme 
which meant that they had to be categorised in more than 
one group. Figure 2 is a map of the study area (Zimbabwe) 
showing the main water catchments, settlements and the 
hydrology (rivers and dams).

3  Results and discussion

3.1  Climate change/variability

3.1.1  Global and regional climate change/variability 
studies: a brief overview

Climate change refers to a statistically significant vari-
ation in either the mean state of the climate or in its 
variability, persisting for an extended period (typically 
decades or longer) due to natural internal processes or 
external forcings, or persistent anthropogenic changes 
in the composition of the atmosphere or in land use [75]. 
Most scientists have, however, settled to use the term 
climate change to refer primarily to observed and pre-
dicted changes mainly as a result of human activities [53, 

Table 1  Literature inclusion and exclusion criteria summary used to select articles covered in the review

Inclusion criteria Exclusion criteria

Published, peer-reviewed academic journal articles on global, continental and regional scope 
on climate change and variability (trends) and hydrology

Unpublished, non-peer-reviewed materials

Published, peer-reviewed academic journal articles on climate change and variability, climate 
and hydrological modelling in general and specifically in Zimbabwe

News articles, Unpublished thesis, Unof-
ficial reports, Blog sites materials

Peer-reviewed journal articles on climate impacts in general and local (Zimbabwe) Old publication (> 15 years) for global, 
continental and regional scope

Peer-reviewed journal articles published in English language from 1990 (for Zimbabwe scope) Non-English language publications
Published book sections/chapters, ebooks, Reports (used in discussion only) General, non-scientific reports

Fig. 1  Methodology flow 
diagram showing the main 
steps of the study approach. 
( Adapted from Nichols et al. 
[74])
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76–78], though others suggest that climate changes are 
a result of natural cycles [3]. Over the years, the debate 
has evolved to include populist ideologies charged 
with political undertones [79–83], while some have pre-
sented alternative views in what has been termed the 
‘climate change hiatus’ where scientists are beginning to 
re-interrogate if the temporary slowdown in the global 
average surface temperature warming trend observed 
between 1998 and 2013 is a genuine slow down or a 
redistribution of energy in the earth system [45, 84, 85]. 
Climate variability on the other hand has been defined 
as variations in the mean state and other statistics (such 
as standard deviations and the occurrence of extremes) 
of the climate on all temporal and spatial scales beyond 
that of individual weather events due to natural internal 
processes within the climate system (i.e. internal variabil-
ity), or variations in natural or anthropogenic external 
forcing (that is external variability) [75].

Findings by the Inter-governmental Panel on Climate 
Change (IPCC) experts [86–88] and other studies such as 
Scholes et al. [31], Zachos et al. [2] and Stocker et al. [89] 
indicate that the earth’s climate has experienced complex 
evolution marked by periodic and anomalous variability 
both at global and regional scales with diverse impacts 
on populations throughout-time. Such changing climatic 

patterns have been linked with various extreme events or 
phenomena such as droughts and floods [13, 42, 54, 57, 
90]. This notion is also buttressed in a review of observed 
(1900–2000) and possible future (2000–2100) climatic con-
ditions across Africa by Hulme et al. [30] which concluded 
that the climate of Africa is warmer than it was 100 year 
ago with some regions experiencing substantial inter-
annual and multi-decadal rainfall variations with dramatic 
impacts on both the environment and some economies. 
Impacts of anthropogenic processes on the global car-
bon cycle and the resultant greenhouse effect have been 
acknowledged as directly linked to global and regional cli-
matic systems perturbations with the same devastating 
effects on numerous vulnerable communities around the 
world, for example [29, 75, 88, 91, 92]. To mitigate against 
such impacts, 197 countries signed the 2015 Paris Climate 
Agreement in which signatories agreed to a goal of hold-
ing global temperatures well below 2 °C above the pre-
industrial levels and to pursue efforts to limit it to 1.5 °C 
[88]. The IPCC further emphasised a dire need for drastic 
global action [93] to achieve this in light of a narrow win-
dow period of up to 2030 to stem catastrophic climate 
change projected by scientists such as Miller, Croft [94]. 
However, such global climate change governance efforts 
have not been without major drawbacks as highlighted 

Fig. 2  Map showing location of Zimbabwe (study area) relative to other countries in Africa
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by the withdrawal of the United States of America (USA) 
in 2017 from the Paris Accord citing unfairness of the 
agreement and possible threats to US economic inter-
ests [95–97]. Furthermore, it is worth mentioning that the 
recent SARS-CoV-2 (COVID-19) pandemic has also brought 
in a new dimension into the existing global climate change 
research and governance discourse [98–100] though this 
is not within of the scope of this review.

Climate vulnerability describes the degree to which a 
system is susceptible to, and unable to cope with, adverse 
effects of climate change and variability and extremes [75]. 
It is a function of climate sensitivity and adaptive capacity 
of communities and natural systems [101]. Climate change 
increases frequency and intensity of extreme events such 
as storms, droughts and wildfires which impact on the 
global food supply, displace communities, and disrupt 
livelihoods thus increasing the risk of conflict, hunger and 
poverty [102]. Numerous climate impacts studies cover-
ing vulnerabilities and adaptation such as [15, 103–106] 
have been done and the general consensus is that cli-
mate change and variability present serious vulnerability 
challenges (as earlier alluded to) in most regions globally. 
Within the semi-arid regions in Southern Africa, challenges 
such as crop failure, land degradation and deforestation 
are prominent considering their ecosystems and agricul-
ture depend on rainfall for their primary production. In 
this regard, researchers such as Berrang-Ford et al. [107] 
have explored human climate adaptation actions while 
others such as Anwar et al. [108], Lennard et al. [109] and 
Reddy [13] have in this regard researched on modalities 
of developing frameworks for characterising and under-
standing community adaptation capacities to climatic vari-
ability and change vis-à-vis the spatio-temporal dynamics 
of climatic events such as the El Niño-Southern Oscillation 
(ENSO). Among other conclusions drawn, all these have 
revealed a need for pragmatic policy development but-
tressed by sound scientific evidence to guide mitigation 
and adaptation strategies especially in developing coun-
tries such as Zimbabwe [34].

3.1.2  Climatic change and variability studies in Zimbabwe

Climate in Zimbabwe is highly variable [110] and thus 
the country (with its limited coping capacity) is consid-
ered highly vulnerable to climate change and variability 
impacts like most developing countries in Africa, e.g. [86, 
91, 111–113]. In light of this, notable response initiatives 
have been taken by the Government of Zimbabwe (GoZ) in 
line with SADC climate policy directions. These include the 
adoption of a National Climate Policy (NCP) augmented 
by a National Climate Change Response Strategy (NCCRS) 
and the setting up of a dedicated National Climate Change 
Management Department under the then Ministry of 

Environment, Water and Climate in 2013 (now Ministry of 
Environment, Tourism and Hospitality Industry). One of the 
six core objectives of the NCP was to strengthen climate 
research and modelling and promote relevant home-
grown solutions to address the challenges of climate 
change [71]. Furthermore, the GoZ in partnership with the 
United Nations Development Programme (UNDP) imple-
mented the National Adaptation Plan (NAP) in the year 
2017 which was aimed at analysing the country’s short- 
and long-term climate risks and adaptation options so as 
to help feed-into the country’s NCP and NCCRS up-scaling 
of climate resilient development initiatives. In 2018, the 
GoZ set up and launched the Zimbabwe National Geo-
spatial and Space Agency (ZINGSA) under the Ministry of 
Higher and Tertiary Education, Innovation, Science and 
Technology Development with one of its mandate being 
to leverage exploitation of earth observation and geo-
spatial technology in advancing climate science research 
among other focus areas. These developments have come 
against the backdrop of the GoZ launching the Zimba-
bwe Centre for High Performance Computing (ZCHPC) in 
2015 aiming at availing supercomputing capabilities to 
researchers in various field of science such as meteorology 
(for example in numerical weather prediction/forecasting) 
and earth-system modelling in the country [114]. Despite 
these positive developments, not much research has been 
undertaken to expand knowledge and present updated 
scientific information on the evolution of past and future 
climatic conditions in Zimbabwe so as to buttress and 
enhance the country’s resolve/focus in achieving the Sus-
tainable Development Goals (SDGs) such as SDG 1, 2 and 
13 (that is No poverty, Zero hunger and Climate action, 
respectively). A synergy in all these developments, i.e. the 
ZINGSA, the ZCHPC and other relevant state agencies is 
critical to realise overall national climate objectives.

Figure 3 shows proportions of the five main identi-
fied thematic groups/categories from the climate stud-
ies covered under this review while Table 2 gives some 
examples of the 107 prominent climate studies under-
taken in the past 29 years in Zimbabwe under each cat-
egory. Researchers from Zimbabwean-based research 
institutions/organisations directly and in collaboration 
have over this time period contributed approximately 
70% of the studies reviewed herein. The rest are con-
tributions come from researchers affiliated to research 
institutions outside of Zimbabwe. Climate impact and 
climate vulnerability, adaptation and mitigation stud-
ies are the co-predominant categories of all the stud-
ies reviewed (each with 39%), while climate modelling 
is the least covered theme (9%) followed by climate 
governance studies (8%). These results reveal a dearth 
of scientific knowledge primarily within the themes 
of climate modelling, climate governance and general 
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climatic trends, respectively, in Zimbabwe. Results show 
a publication rate of 3.7 (approximately 4) journal arti-
cle publications per year over the study period which 
shows relatively low research output on climate science 

in Zimbabwe, thus, further demonstrating a knowledge 
gap in this regard.

One prominent study shown in Table 2 that exclusively 
explored climate conditions in Zimbabwe is by Unganai 

Fig. 3  Graph showing propor-
tions (%) of the various climate 
study themes (categories) 
covered in Zimbabwe in the 
past 29 years (n = 107). Climate 
impact studies are predomi-
nant

Table 2  Summary table showing climate study categorisation, examples and statistics for each category

NB, Twenty-five (25) of the studies marked with an asterisk (*) fall within at least two categories considering their scope)

Study category Frequency % Examples of studies

General climate trends analysis 13 10 (Unganai [115])*, (Unganai [129])*, (Unganai and Mason [120])*, (Williams et al. [339])*, 
(Mazvimavi [116]), (Nyoni et al. [293]), (Love et al. [330]), (Mushore et al. [143]), (Sibanda 
[341]), (Mamombe et al. [119])

Climate Impact 52 39 (Booth et al. [333]), (Unganai [117]), (Salewicz [249]), (Kristensen et al. [191]), (Corbett and 
Carter [141])*, (Makadho [199]), (Hartman et al. [342])*, (Chemura et al. [331]), (Matarira 
et al. [325])*, (Nyanganyura [246]), (Pilossof [237]), (Ebi et al. [236])*, (Brown et al. [130]), 
(Mutekwa [327])*, (Williams et al. [339])*, (Gwimbi [242]), (Mugandani et al. [343]), 
(Nyabako and Manzungu [231]), (Gwitira et al. [230]), (Chapungu and Nhamo [338]), 
(Ncube [235]), (Love et al. [330]), (Phillips et al. [344])*, (Manyeruke et al. [322]), (Davis 
and Hirji [253]), (Sango and Nhamo [198])*, (Sande et al. [22]), (Pedersen et al. [21]), (Beck 
and Bernauer [250]), (Yamba et al. [223]), (Kutywayo et al. [345]), (Torr and Hargrove 
[335]), (Svotwa et al. [324]), (Zinyengere et al. [328]), (Dube et al. [347]), (Bhatasara [287]), 
(Zinyemba et al. [369]), (Bossuet and Thierfelder [348]), (Magadza [349]), (Gunda et al. 
[336]), (Descheemaeker et al. [350])*, (Chikodzl and Mutowo [337]), (Utete et al. [234]), 
(Mamombe [119]), (Lord et al. [192])

Climate modelling 6 5 (Unganai [115])*, (Ebi et al. [236])*, (Mushore et al. [143]), (Chemura et al. [331])*, (Mashon-
jowa et al. [351]), (Masanganise et al. [323])

Climate governance 10 8 (Patt [326])*, (Patt and Gwata [197]), (Zinyengere et al. [328])*, (Gutsa [123]), (Mberego and 
Sanga-Ngoie [352]), (Ngwenya et al. [122]), (Bhatasara [70]), (Mubaya and Mafongoya 
[257])

Climate vulnerability, Adapta-
tion and Mitigation

51 39 (Matarira et al. [325]), (Matarira and Mwamuka [353]), (Unganai [329])*, (Patt [326])*, (Thi-
erfelder and Wall [121]), (Rurinda et al. [354]), (Chifamba and Mashavira [355])*, (Gwimbi 
[242]), (Mudombi-Rusinamhodzi et al. [356]), (Gwenzi et al. [251]), (Nhemachena et al. 
[357]), (Soropa et al. [258]), (Dube et al. [346]), (Descheemaeker et al. [350])*, (Chanza 
[370]), (Manyani et al. [243]), (Moyo [125]), (Mbereko et al. [358]), (Musarandega et al. 
[359]), (Mubaya et al., [257])*, (Chanza et al. [360]), (Mushawemhuka et al. [361]), (Jiri 
et al. [362]), (Mugambiwa [260]), (Katsaruware-Chapoto et al. [364]), (Mutandwa et al. 
[365]), (Jiri et al. [363]), (Mugambiwa [260]), (Simba et al. [366]), (Nyahunda and Tirivan-
gasi [367]), (Nyahunda et al. [368])
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[115]. This study revealed that over a 93 year period from 
the 1900s, daytime temperatures in Zimbabwe rose 
by about 0.8 °C, translating to a 0.08 °C rise per decade 
while precipitation was observed to have declined by up 
to 10% on average over the same period, which is about 
1% per decade. These findings, however, were rebutted 
by Mazvimavi [116] in his study covering 40 rainfall sta-
tions across all the rainfall regions of Zimbabwe for periods 
1892–1941 and 1942 to 2000. Mazvimavi [116] concluded 
that the purported climate change effects were not statis-
tically significant within the time series of total seasonal 
and annual rainfall in Zimbabwe, arguing that the findings 
of declining rainfall by Unganai [115] were likely due to 
the presence of multi-decadal variability characterised by 
combining years with above and below average rainfall. 
This contrast between two prominent climate research-
ers presents a need for interrogation of data with new/
updated techniques to bring better clarity with regard to 
past climatic conditions/trends in Zimbabwe. Since then, 
no known, published follow-up study has been done to 
build upon the existing knowledge in this regard.

On rainfall variability, studies have revealed that inter-
annual rainfall variability in the country are largely influ-
enced by external forcing of a near-global or hemispheric 
origin such the ENSO, the Inter-tropical Convergence Zone 
(ITCZ) to the North and the westerly cloud-bands to the 
south rather than regional or local-scale factors [117–119]. 
On long-term predictability of rainfall trends, Unganai, 
Mason [120] indicate that approximately 70% of the total 
summer rainfall variance in Zimbabwe is potentially pre-
dictable at long range due to due to a high climate signal 
to noise ration especially in the in the eastern, central, and 
western parts of the country. Over the years, climate-rain-
fall research has advanced to explore the teleconnectiv-
ity between summer rainfall patterns in Zimbabwe and 
sea-surface temperatures (SST), the Southern Oscillation 
Index (SOI), the Quasi-biennial Oscillation (QBO), Outgo-
ing Longwave Radiation (OLR) and wind [32]. Nangombe 
et al. [121], for example, concluded that there are strong 
correlations between severe droughts and circulation 
patterns and weather systems in the Indian Ocean and 
Equatorial Pacific Ocean such as the ENSO SOI, the QBO 
and the Luni-solar tide at 20, 12.5, 3.2, and 2.7 year cycles. 
These studies have revealed the possibility of predicting 
drought occurrences using these established relation-
ships. However, this knowledge is rather outdated and has 
not been fully utilised by decision makers in Zimbabwe 
for enhanced drought and other climate impact mitiga-
tion fore-planning [122, 123]. This is evidenced by poor 
preparation and the resultant recurrent adverse impacts 
experienced when such events occur.

Within the general climate studies reviewed in 
this paper, the predominant area of focus has been 

understanding the rainfall dynamics [120, 121, 124, 125] 
with less attention on temperature and other climatic 
parameters such as evaporation, humidity and solar radia-
tion. Limited research on these other climatic parameters 
could be attributed to limited access to good quality data 
as revealed by Dlamini et al. [126]. However, some stud-
ies that have looked at other climatic parameters such a 
temperature and evapotranspiration [30, 110, 127, 128] 
had limited detail that could not give a comprehensive 
picture of the dynamics of these parameters in space and 
time in Zimbabwe. For example, though Unganai [129] 
concluded a net warming of + 0.3 to + 0.5 °C between 1897 
and 1993, he could not attribute the observed warming 
trend to inherent climate variability though similar trends 
have been later related to climate change by Brown et al. 
[130] and Watson et al. [131]. Some of these studies have 
presented the climate dynamics in Zimbabwe in a general 
sense considering that the studies had a regional scope 
of coverage (covered Southern Africa) [31, 127, 132, 133]. 
Furthermore, studies such as Matarira and Jury [134] had 
limited temporal resolution in their assessments since 
they used cross-sectional study designs and thus missed 
exploring the multi-temporal aspects of the climatic condi-
tions in Zimbabwe. In other words, there is a need to build 
on this existing knowledge through longitudinal studies to 
capture a more recent picture of multi-temporal climatic 
trends in Zimbabwe.

While advances in climate research have seen the move 
towards the use of GIS and RS/Earth observation (EO) tech-
nology to (1) augment climate data series, and (2) assist 
in better and advanced analyses of climate dynamics in 
space and time globally [135–138] and in Southern Afri-
can [139, 140], progress in this direction has been limited 
in Zimbabwe. Only 8% of the reviewed studies in Zimba-
bwe over the past 29 years have directly and indirectly 
applied these tools and techniques at varying spatial and 
temporal scales. Examples include an assessment of inter‐
seasonal rainfall variability in Zimbabwe using GIS by Cor-
bett, Carter [141], spatial characterisation of summer rain-
fall Zimbabwe by Unganai, Mason [118], spatio-temporal 
analysis of climate-inter-annual malaria incidence [142], 
and exploring local climate zones-land surface tempera-
ture interlinkages using remotely sensed data [143]. This 
reveals a knowledge gap (of limited use of geospatial tools 
in climate research) which could be worsened by limited 
availability of quality in situ climatic data such as rainfall 
and temperature measurements. Furthermore, where 
such data is available, often it is incomplete due to poor 
distribution and investment in necessary infrastructure/
facilities to observe important climatic phenomena. Other 
data access challenges relate to (1) inaccessibility due to 
bureaucratic red-tapes and prohibitive costs for long-term 
climatic datasets charged by government agencies such 
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as the Meteorological Department, (2) inconsistent and 
poor spatial coverage which often renders it of limited use 
in climate research in the country. This is also confirmed 
by Gumindoga et al. [144] who noted that historic tem-
perature and rainfall data for Zimbabwe is incomplete and 
often costly to purchase thus a limiting factor in climate 
research in general. In light of such limitations, research-
ers such as Chikodzi [145], Dlamini et al. [126], Kamusoko, 
Aniya [146] and Mpala et al. [147] have exploited freely 
available remotely sensed climatic and other datasets to 
overcome these challenge, notwithstanding the inherent 
spatial and in some instances temporal resolution limi-
tations of using these datasets at a local scale. The main 
advantages of using remotely sensed datasets include 
their availability and access at low to no cost (freely avail-
able online) and their ability to give parameter measure-
ments in otherwise inaccessible and ungauged areas at a 
wider spatial coverage compared to in situ measurement 
techniques. Disadvantages of remotely sensed data relate 
to spectral mixing due to low or course spatial resolution, 
limited temporal resolution which tend to limit time series 
analysis in some instances and no spatial coverage due 
to remote sensing satellites’ limited repeat cycles. Fur-
thermore, very high purchase costs of higher resolution 
datasets tend to be prohibitive or limit access and use in 
developing countries.

3.2  Climate modelling studies

3.2.1  A brief global and regional overview

Climate modelling science is a highly active field of 
research with rapid advancements in knowledge marked 
and driven by rapid developments in the tools and tech-
niques (models) used in this domain. Two main types of 
models, i.e. Global Climate Models (GCMs) and Regional 
Climate Models (RCMs), are used in climate modelling 
studies. GCMs are numerical tools/models representing 
physical processes in the atmosphere, ocean, cryosphere 
and land surface used for simulating the response of the 
global climate system to increasing greenhouse gas con-
centrations [91]. Examples of GCMs include the Hadley 
Centre Coupled Model, version 3 (HadCM3), the Com-
monwealth Scientific and Industrial Research Organisation 
Mark 3 (CSIRO Mk3) GCM [127, 148], the Geophysical Fluid 
Dynamics Laboratory Climate Model version 2.5 (GFDL 
CM2.5) [149] and the Model for Interdisciplinary Research 
on Climate–Earth Systems Model (MIROC-ESM) [150] and 
the more recent Hadley Centre Global Environment Model 
3–Global Coupled version 3.1 (HadGEM3-GC3.1) [151]. 
Other variable resolution GCMs such as the Conformal-
Cubic Atmospheric Model (CCAM) of the CSIRO have also 
been developed for regional climate and weather research 

[152, 153] and have been applied at different scales glob-
ally. Over the years, the GCMs have been used to improve 
our understanding of how climate systems work, to fore-
cast the drivers of climate change, improve estimates of 
climate sensitivity and to predict future climatic condi-
tions and impacts, e.g. [46, 89, 154, 155]. Advances in this 
domain have seen the progression from Atmosphere-only 
GCMS (AGCMs), to Coupled Atmosphere–Ocean models 
(AOGCM) and fully coupled earth system models (ESM) 
in an attempt to improve the statistical confidence in 
the GCM outputs. Thus, the emergence of AOGCMs has 
allowed for more reliable projections of climate at various 
spatial and temporal scales [155–157]. This has been real-
ised in light of the well appreciated inherent uncertainties 
and weaknesses associated with the use of such models. 
For example, Motesharrei et al. [158] argued that two-
way feedbacks are missing from most climate models and 
other critical socio-economic variables such as inequal-
ity, consumption, and population are often inadequately 
modelled hence increasing uncertainty in outputs. Fowler 
et al. [159] further emphasise that GCMs have relatively 
coarse resolutions and hence are unable to resolve sig-
nificant sub-grid scale features such as land use and land 
cover (LULC) and topography, thus limiting their accuracy 
and application at a local scale. To this end, the IPCC and 
other climate scientists have progressed to implement 
and develop the Coupled Model Intercomparison Project 
(CMIP) with the latest being CMIP6 [160]. In CMIP6, vari-
ous ensembles of GCMs have been run collectively and 
results compared in an attempt to understand how the 
global climate will respond to future scenarios of increas-
ing/decreasing anthropogenic radiative forcing relative to 
present‐day climate conditions [157, 161, 162]. For exam-
ple, Andrews et al. [163] recently ran simulations using the 
HadGEM3-GC3.1 for CMIP6, testing climatic responses to 
historical forcings such as solar irradiance, ozone concen-
trations, greenhouse gases, land‐use changes, and aero-
sols compared results to observational data.

To resolve the shortcomings of GCMs, downscaling 
techniques [164–166] have been used to develop finer 
resolution Regional Climatic Models with varying levels of 
accuracies at sub-grid scale with higher statistical validity 
and reduced biases compared to GCM simulation outputs. 
Examples of such RCMs include the Consortium for Small-
Scale Modelling and Regional Climate Model (COSMO-
CLM), Regional Climate Model version 4 (RegCM4), and 
the Providing Regional Climates for Impacts Studies (PRE-
CIS) model. Because of their higher resolution (compared 
to GCMs), RCM data have been widely used in numerous 
impact studies as input in hydrological models for exam-
ple, in an attempt to assess the variability of hydrological 
responses due to past, present and future climate change 
scenarios [133, 167–169]. Furthermore, to drive and 
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coordinate active research in both dynamic and statistical 
regional climate downscaling (RCD) techniques of GCMs 
so as to provide higher-resolution climate information at 
regional level, the World Climate Research Programme 
(WCRP) has run the Coordinated Regional Climate Down-
scaling Experiment (CORDEX) [170]. The CORDEX has, over 
the years, allowed for an objective assessment and inter-
comparison of various RCD techniques, i.e. an evaluation 
of their performance, illustration of benefits and short-
comings of different approaches, thus providing a more 
solid scientific basis for impact assessments and other uses 
of downscaled climate simulations. To this end, high reso-
lution regional climate simulations of the CORDEX CORE 
activity are now available covering all major inhabited 
areas of the world at a resolution of 25 km including Africa 
(Domain: Region 5).

Numerous climate modelling studies have been done 
both at global and regional scale in an effort to better 
understand the past, present and future climate dynam-
ics in space and time. While significant progress has been 
realised in global climate modelling science, e.g. [5, 163, 
171–174], there has been relatively less work published for 
Africa in the same regard [30] and let alone at local (coun-
try) level. Some countries such as South Africa have been 
leading and have made considerable strides in climate 
modelling research and actively contributing to the IPCC 
working groups and the CORDEX-Africa for example. GCMs 
such as the Canadian Climate Centre Model (CCCM) and 
GFDL-3 have simulated changes of plus 2 to 4 °C increases 
in mean surface air temperature across Southern Africa 
under doubled atmospheric carbon dioxide scenarios 
showing over and underestimations when validated with 
observed data over local areas [128]. Other models that 
have been applied in Africa include the HadCM3, Paral-
lel Climate Model (PCM) and the Coupled Global Climate 
Model (CGCM3) [175] showing varying simulation outputs 
with limited local use considering their inherent uncertain-
ties related to forcings and horizontal biases as discussed 
by Arora [176].

On the contrary, downscaled RCMs have demonstrated 
more competence in simulating local climatic conditions 
compared to GCMs [165, 177–180] though the contradic-
tions and parameter over and underestimation of rain-
fall and temperature scenarios still persists when model 
outputs are compared [155, 181, 182]. For example, RCMs 
have shown to successfully simulate future projection of 
droughts in Southern Africa [179]; predict seasonal and 
regional climatic scenarios [180]; and project an annual-
averaged temperature rise at about 1.5 times the global 
rate of temperature increase in the African subtropics dur-
ing the twenty-first century [183]. The general consensus, 
however, among climate scientists is that projections of 
future climate change are restricted to assumptions of 

climate forcing, limited by shortcomings of the climate 
models used and inherently subject to internal variability 
when considering specific periods [165, 184–186]. This jus-
tifies the need for sustained research in regional climate 
downscaling research as supported in CORDEX framework. 
Resultantly, numerous studies, e.g. [167, 177, 187–190], 
have been undertaken in Africa and Southern Africa 
under the CORDEX showing remarkable advancements 
with more accurate and region-relevant results. Details of 
the findings of these studies are outside the scope of this 
review.

3.2.2  Climate modelling studies in Zimbabwe

Despite the advances in climate modelling science glob-
ally and regionally as earlier alluded to, the scope of cli-
mate modelling research in Zimbabwe has been rather 
limited. Of the 107 prominent climate studies done in Zim-
babwe (covered in this review), only 8% of these directly 
and indirectly involved climate modelling at some level as 
earlier shown in Fig. 1. The studies covered climate mod-
elling in relation to aspects such as disease vector distri-
bution, e.g. Kristensen et al. [191], Lord et al. [192] and 
Gwitira et al. [193], climate impacts on hydrological sys-
tems [194–196], agricultural productivity [197] and urban 
environments and natural ecosystems [143, 195, 198] and 
general prediction of future climatic conditions [115]. 
Unganai [128] used two GCMs (the GFDL and the CCCM) 
to simulate future climate conditions for Zimbabwe using 
a doubled carbon dioxide concentration forcing and con-
cluded that the models were inefficient in predicting the 
magnitude of precipitation change for example. Similarly, 
Makadho [199] used the same two GCMs to assess poten-
tial impacts of climate change on maize production while 
Matarira and Mwamuka [200] used the Goddard Institute 
of Space Studies (GISS) model to assess forest vulnerabil-
ity to climate change. Simulated maize yields decreased 
considerably under dryland conditions based on the cli-
mate change scenarios largely due to shorter growing 
seasons driven by increased temperatures (ibid). Matarira 
et al. [201], on the other hand, tested a combined crop 
model (CERES-Maize) with climate scenarios derived from 
two GCMs which showed that future low rainfall and high 
temperature will threaten agricultural production in Zim-
babwe. In their stable malaria transmission study, Ebi et al. 
[202] tested four GCMs, i.e. the CCCM, the United King-
dom Meteorological Office (UKMO) model, and the GISS 
model to simulate and relate future climatic scenarios to 
malaria transmission. They concluded that changes in tem-
perature and precipitation due to climate change could 
alter the spatial distribution of malaria in Zimbabwe, with 
previously unsuitable areas of dense human population 
becoming suitable for transmission.
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From all these reviewed modelling studies, most used 
GCM simulations directly, which could have had nega-
tive implications on the accuracy of their findings due to 
the known inherent limitations of GCMs application at a 
local level. A few exceptions such as Pedersen et al. [21] 
and Moyo, Nangombe [133] attempted to use RCMs and 
applied downscaling techniques to generate more accu-
rate climate simulations from GCMs for their studies. For 
example, Makuvaro [203] used Statistical and Regional 
dynamic Downscaling of Extremes for European regions 
(STARDEX) to come up with downscaled local scenarios for 
his study. Overall, it is emerging that most of these stud-
ies have used GCMs and RCMs (downscaled or directly) 
with limited regard of inherent limitations of these differ-
ent models implying possible inaccuracies in some of the 
findings and conclusions of these studies. This is in light 
of the fact that most models are developed to be more 
region specific and transferring them to or applying them 
in other regions of the world will give inaccurate results by 
the inherent design of the models. Furthermore, consid-
ering the advances in revision and/or improvements on 
old climate models and the development of new, better 
and region specific models, e.g. under the CORDEX pro-
gramme [167, 168], it is apparent that there is a need to 
revisit and advance climate modelling science in Zimba-
bwe. This means testing new, and advanced region spe-
cific downscaled RCMs or GCMs so as to help fill the earlier 
discussed climate science knowledge gaps in the country. 
We also found that no known study has been done to com-
paratively assess the competence of the more recent RCMs 
and GCMs in simulating local climate over Zimbabwe. Fur-
thermore, there has been no development of contextual 
optimization of RCMs to improve their skill in reproducing 
local climatic characteristics building on the research work 
covering Southern Africa by scientists such as Engelbre-
cht et al. [204], Dosio [205] and Abiodun et al. [206]. Such 
research advances and the ensuing results could help 
inform more contextual national climate adaptation and 
mitigation policy appraisal and response strategy develop-
ment by the GoZ as earlier discussed.

3.3  Climate change/variability impact studies

3.3.1  A general global overview

A number of climate scholars have explored the impacts 
of climate change and/or variability on various natural 
and human systems [54, 75, 91, 184, 207–210] and the 
results indicate heightened community vulnerabilities [12, 
104, 106, 211, 212] at a global, regional and local scale. 
Amongst other noted impacts, most of the studies have 
shown that climate change has an overall negative impact 
on hydrological systems in the world [213–215]. Arnell [6] 

for example, noted reduced runoff in the Mediterranean, 
Central and Southern America, and Southern Africa and 
increased evaporation in some areas [140, 216]. In South-
ern Africa, climate change has also been linked to the El 
Niño–Southern Oscillation (ENSO) induced droughts, e.g. 
[132, 168, 178, 217–219] with devastating effects on com-
munities and the environment in general. Several studies 
have quantified the extent of impacts and their dynamics 
(in space and time) on water resources [5–9]; food security 
[12–14, 220]; ecosystems, e.g. [17, 209, 221, 222]; energy, 
e.g. [146, 223–226]; and human health [21, 22, 227]. All 
these studies have revealed that climate change is a very 
significant factor to consider in holistic planning for com-
munity resilience and adaption for sustainable develop-
ment, and more importantly in African developing coun-
tries such as Zimbabwe. Considering the intricate coupling 
of the human and natural systems, most of these stud-
ies have used diverse advanced methods in an attempt 
to understand the climate change dynamics vis-à-vis all 
the earlier mentioned factors. Of note has been the wide-
spread use of climate model simulations (from both GCMs 
and RCMs) in climate impact models to explore how natu-
ral and human systems may be affected by climate change 
[6, 155]. That is, the climate simulations have been used 
in integrated climate change impacts assessments not-
withstanding the limitations of under and overestimating 
some climate extremes impacts revealed by Schewe et al. 
[228].

While these impacts are well acknowledged to be more 
devastating in vulnerable communities in developing 
countries due to their weak institutional arrangements and 
policies for resilience and adaptation [103], climate science 
research still lags behind in most of these countries [16, 76, 
229]. This has heightened future climate vulnerability due 
to limited scientific knowledge to guide pragmatic policy 
development and strategies for adaptation and resilience.

3.3.2  Climatic change impact studies in Zimbabwe

In this review, 52 of the 107 (39%) climate studies done 
in Zimbabwe over the past 29 years were found to be 
climate impact studies as earlier alluded to. Table 3 and 
Fig. 4 show thematic summaries of our findings in this 
regard. The emerging themes/categories covered by 
these studies ranged from climate agricultural impacts 
[199, 230–232]; socio-economic impacts [130, 233, 234]; 
ecological impacts, hydrological impacts, e.g. [117, 194, 
235]; energy impacts [224]; and health impacts, e.g. [236, 
237]. Agricultural impacts, ecological impacts and health 
impacts studies were found to be the three top cate-
gories of impact studies while energy impacts studies 
were the least covered category over the past 29 years 
in Zimbabwe as shown in Fig. 4. The scope of coverage 
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of these studies ranged from national through district, 
ward to catchment level. This basically revealed limited 
and, in some instances, outdated scientific knowledge 
in the least covered categories (i.e. socio-economic, 
energy and hydrological impacts of climate change). 
With limited research output informing climate impact 
on energy, it may imply that planning for energy security 
in the face of climate risks could be a major contribut-
ing factor to the persistent energy problems that the 
country has been grappling with. The energy crisis has 
compounded over the years climaxing with the recent 
(2019) near total shutdown of the country’s main hydro-
electricity power source, i.e. the Kariba South Power sta-
tion due to poor rains and the resultant low inflows into 
the Kariba reservoir [238].

Some of the emerging general conclusions from the 
reviewed impact studies are presented hereon. Climate-
agricultural impact studies generally revealed that small-
holder agricultural production is significantly constrained 
by high temperature and low rainfall in Zimbabwe [233] 
and that climate change has compounded Zimbabwean 
peasant farmers’ climate vulnerability, e.g. to drought 
hence food insecurity and poverty [239]. This has neces-
sitated pragmatic adaptive management of agro-biodiver-
sity to ensure equitable sharing of resources in the face of 
climate change and uncertainties as suggested by Maso-
cha et al. [240]. Given that smallholder and subsistence 
farmers are highly vulnerable to climate change [241], 
there is need for deliberate investment in climate adapta-
tion strategies and clear policies on irrigation and early 

Table 3  Summary table showing climate impact studies categories and study examples done in Zimbabwe from 1990 to 2019 (n = 52)

NB, Eight (8) of the studies marked with an asterisk (*) fall within at least two categories considering their scope

Study theme Frequency Examples of studies

Socio-economic impacts 6 (Matarira and Mwamuka [201]), (Dube et al. [255]), (Brown et al. [130]), (Manyeruke et al. [322]), (Utete 
et al. [234])

Agricultural impacts 18 (Corbett and Carter [141]), (Makadho [199]), (Gwimbi [242]), (Matarira et al. [325]), (Masanganise 
et al. [323]), (Svotwa et al. [324]), (Patt and Gwata [197]), (Nyabako and Manzungu [231]), (Mutekwa 
[327]), (Zinyengere et al. [328]), (Unganai [329])

Hydrological impacts 7 (Unganai [117]), (Salewicz [249])*, (Davis and Hirji [253]), (Love et al. [196]), (Chemura et al. [331]), 
(Mamombe [119])

Ecological impacts 17 (Nyanganyura [246]), (Gwitira et al. [230]), (Marshall 332), (Booth et al. [333]), (Sango et al. [198]), 
(Pilossof [237])*, (Gandiwa and Zisadza [334]), (Sango and Nhamo [198]), (Magadza [349]), 
(Pedersen et al. [21])*, (Chikodzl and Mutowo [337]), (Chapungu and Nhamo [338]), (Gwitira et al. 
[193])*, (Matawa et al. 2013)

Energy impacts 3 (Salewicz [249])*, (Spalding-Fecher et al. [224]), (Yamba et al. [223])
Health impacts 9 (Williams et al. [339]), (Ebi et al. [236]), (Gwitira et al. [193])*, (Pilossof [237])*, (Pedersen et al. [21])*, 

(Torr and Hargrove [335]), (Gunda et al. [336]), (Kristensen et al. [191])

Fig.4  Chart showing propor-
tions (%) of the various climate 
impact study themes covered 
in climate studies in Zimbabwe 
in the past 29 years. Ecologi-
cal and agricultural impacts 
are the predominant themes 
covered by the impact studies 
(n = 52)
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warning systems to bolster the farmers’ climate resilience 
[141, 230] in line with the Southern African Development 
Community (SADC) Climate Change Adaptation Strategy 
[103]. Crop production has also been related to climatic 
conditions in some of these studies. For example, cotton 
production levels were noted to have declined as precipi-
tation decreased and temperatures increased in Gokwe 
district of Zimbabwe [242], while maize productivity has 
been projected to decrease in response to various global 
climate change scenarios [231, 243]. The ENSO has been 
successfully linked to rainfall, drought and maize yield, 
e.g. [231, 242, 244–247] and livestock productivity [248]. 
Within agro-ecology impacts, Mugandani et al. [135] and 
Chingombe et al. [245] agree that the main food produc-
tion regions of Zimbabwe (regions 1 and 2) are likely to 
decrease in size due to climate change and variability 
pointing to possible reduction in food production and 
food security hence the need to have commensurate 
mitigation measures to avert potential negative impacts.

As earlier presented, there are other emerging themes 
related to ecosystem impacts [21]. Matarira and Mwamuka 
[200] in their modelling study projected a 17 to 18% land 
area shift from subtropical thorn woodland and subtropi-
cal dry forest to tropical very dry forest under a modelled 
climate scenario of reduced precipitation and an increase in 
ambient temperatures. Climate change/variability has been 
shown to be a current and future threat to energy security in 

Zimbabwe, i.e. hydroelectric power potential will be reduced 
in all existing and proposed hydroelectric power schemes 
due to climate change and increasing water demand, e.g. 
[131, 223, 249, 250]. The energy-climate link is already evi-
dent as earlier discussed in the recent Kariba power station 
situation. With regard to public health, literature reviewed 
in this study indicate negative impacts/trends, e.g. results 
from a climate suitability for stable malaria transmission 
in Zimbabwe under different climate change scenarios by 
Ebi et al. [202] suggest that changes in temperature and 
precipitation could alter the spatial distribution of malaria 
in Zimbabwe, with previously malaria unsuitable areas of 
dense human population such as Bulawayo becoming suit-
able for transmission. Gwitira et al. [193] and Ebi et al. [236] 
have all concluded that climatic factors such as temperature 
and annual precipitation are critical factors intricately linked 
to current and possibly future changes in distribution of 
malaria in Zimbabwe. Other studies are indicating changes 
in abundance and distribution of tsetse flies, suggesting pos-
sible redistribution of African trypanosomiasis (sleeping sick-
ness) incidence in Zimbabwe in the future due to climate 
change [237]. Table 4 presents some of the projected climate 
impacts by sector for year 2080. Of note is that projections 
indicate worsening of negative impacts in almost all the sec-
tors under consideration. For example, runoff is projected to 
decrease significantly within major catchments such as the 
Save and the Mzingwane with wide-ranging consequences 

Table 4  Projected climate change impacts by sector in Zimbabwe. (Adopted from [251])

Sector Projected climate change impacts

1 General Predicted warming of around 2degrees Celsius by 2080
Present southwest-northeast-east rainfall gradient will become steeper

2 Agriculture General vulnerability of communal agriculture to climate change and variability
Generally, maize suitable areas will decrease by 2080, while cotton and sorghum suitable areas will increase 

by 2080
In the south western parts of the country, sorghum and maize will become increasingly vulnerable to cli-

mate change while cotton will become less vulnerable
In the north central and eastern parts of the country, maize, sorghum and cotton will become less vulner-

able
3 Water Overall, surface water resources are projected to be reduced significantly by 2080 irrespective of the sce-

nario used
North eastern and the eastern parts of Zimbabwe are predicted to experience a surplus in surface water 

while the western and southern parts of Zimbabwe are projected to experience a drying up
Runoff will decrease significantly in the Mzingwane, Shashe, Nata, and Save catchments

4 Health The area under high to extremely high malaria hazard will tend to increase by 2080
High malaria hazard will be concentrated in the low lying parts of the country including the Zambezi valley, 

and the South-east Lowveld
Expected minimum pressure on plant diversity for best and worst case scenarios is 42%

5 Forestry and biodiversity Net Primary Production (NPP) will decrease from the current average maximum of over 8 tonnes per hectare 
per year to just over 5 tonnes per hectare per year by 2080 translating to decreased rangeland carrying 
capacity for both livestock and wildlife

6 Human settlement Any reduction in available water will lead to increased water scarcity thus impacting on livelihoods
7 Tourism With decreasing rainfall and rising temperatures, significant declines in biodiversity are expected to occur in 

most parts of the country especially the western regions where most of the park estates are located
Lower resilience of ecosystems to other global environmental changes
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for resident communities and in the face of high vulnerabil-
ity and low resilience.

Some researchers in Zimbabwe such as Cobo et al. [252] 
and Davis, Hirji [253] corroborate the acknowledged conclu-
sion by the IPCC [172] and Watson et al. [131] that obser-
vational records and climate projections provide abundant 
evidence that freshwater resources are vulnerable and will 
be strongly impacted by climate change, with wide-ranging 
consequences for human societies and ecosystems globally. 
Studies on climate impacts on water resources all indicate 
negative trends, i.e. reduction in water reservoir water levels, 
increased evaporation and surface and groundwater storage 
and hydro-electricity potential [134, 232, 235, 254] which are 
directly related to climate impacts on rainfall and tempera-
ture. Very few studies have focused on modelling the hydro-
logical impacts of climate change and variability in Zimba-
bwe indicating a gap in knowledge in this regard. These are 
covered more extensively under hydrological modelling 
studies section of this review. Of note also is that 11% of 
all the climate impact studies reviewed here, directly and 
indirectly employed climate modelling and climate impacts 
modelling techniques in their methodologies notwithstand-
ing the rapid advancements within this domain. This limited 
utilisation of these advanced climate modelling tools and 
techniques thus presents a need to advance research in this 
direction so as to expand knowledge and close such appar-
ent gaps in climate impact studies in Zimbabwe for informed 
policy formulation and interventions. The same can be said 
about studies exploring climate impact on the tourism sec-
tor in Zimbabwe especially considering the revealed inter-
linkages between the aviation industry and climate change 
and the potential negative impacts such as threats to wildlife 
which may undermine future tourism operations and activi-
ties [255, 256].

Relative to these developments in methodologies in 
climate impact studies, there has been an increase in the 
integration of indigenous knowledge systems in climate 
research in Zimbabwe over the past decade. These studies 
have chattered a new frontier in climate research aimed at 
understanding aspects such as seasonal climate forecasts 
[257–259] and local climate adaptation practices and strat-
egies, e.g. [243, 260–262]. Developments in this regard 
indicate a drive to leverage and streamline the existing 
local indigenous knowledge in the development of prag-
matic, low-cost local climate interventions and mitigation 
strategies.

4  Hydrological modelling

4.1  Hydrological modelling studies: a general 
overview

Hydrological models are representative simplifications 
of complicated hydrological processes using mathe-
matical means to demonstrate the principal elements 
of the processes, their combination and function as a 
comprehensive hydrologic system [263]. These hydro-
logical models have been classified in various ways but 
Refsgaard and Knudsen [182] grouped them into three 
broad categories namely, (1) empirical black box models, 
(2) lumped conceptual models, and (3) distributed physi-
cally based system. Examples of these include the TANK 
model [264], Hydrologic Engineering Center’s Hydrau-
lic Modeling System (HEC-HMS) [265, 266], TOPMODEL, 
Système Hydrologique Européen (SHE), Soil and Water 
Assessment Tool (SWAT) [267, 268] and complex con-
ceptual models such as MODified HYDROLOG (MODHY-
DROLOG) [269]. A review of the pros and cons of these 
models by Sivapalan et al. [270] and Jaiswal et al. [271] 
revealed that distributed physically based models have 
the advantage of accounting for spatial heterogeneities 
and provide detailed description of the hydrological 
processes in a catchment with limited demands of input 
data hence their widespread use in numerous hydrologi-
cal studies [266, 272–276]. The same notion was con-
firmed by the World Meteorological Organization [181] 
in their inter-comparison of conceptual hydrological 
models for operational hydrological forecasting. Fur-
thermore, considering that these models use parameters 
which are directly related to the physical characteristics 
of the river basins (e.g. topography, soil, LULC and geol-
ogy) and account for spatial variability of meteorological 
conditions [182]. They have been very useful in studies 
advancing the understanding of changes in hydrological 
processes such as surface run-off [264, 269, 277, 278] and 
groundwater storage [7, 279] over space and time and 
simulating future hydrologic conditions.

4.2  GIS and remote sensing in hydrological 
modelling

As alluded to earlier on, over the years, GIS and RS tech-
niques have become indispensable in most state-of-
the-art hydrological models premising on the extensive 
spatio-temporal data capture and analysis capabilities 
of these technologies. Three main applications of RS in 
hydrological modelling presented in numerous studies 
can be summarised as, (1) model parameter estimation 
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with the aid of multi/hyper-spectral satellite data; (2) 
computation of historic monthly runoff using satel-
lite data as input; and (3) real-time flood forecasting 
using radar rainfall measurements as input [280, 281]. 
In this regard, many researchers have used GIS and RS in 
hydrological modelling studies aimed at optimisation of 
catchment management in the Mediterranean regions 
[282], water resources management in India [283, 284], 
forest hydrology [285–287], assessing water quality vis-
à-vis human activities in Korea [288], monitoring small 
dams in semi-arid regions [289, 290] and general param-
eterisation of hydrological models [273, 291–293]. GIS 
and RS have been noted to have a major advantage 
of accurately sizing and characterising catchments in 
rainfall-runoff modelling over and above the fact that 
analysis can be performed much faster, especially when 
there are complex mixtures of land use classes and dif-
ferent soil types [294]. In Africa, numerous studies [40, 
286, 295–299] have also exploited the same tools and 
techniques to advance knowledge in this domain. This 
has been enhanced by improved and free access to valu-
able satellite earth observation data from various sys-
tems such as Meteorological satellites [300], and Tropical 
Rainfall Measuring Mission (TRMM) [139, 301]. All these 
studies indicate that globally, GIS and RS have become 
an almost indispensable part of hydrological modelling 
studies over the past decades.

To this end, in the face of considerable uncertainty in 
determining water availability/security relative to climate 
and land use-land cover changes which impact of hydro-
logic conditions, it is critical for water resources manag-
ers and decision makers to have a better and simplified 
understanding of past, present and ideally future hydro-
logical processes dynamics/scenarios through sound 
water resources studies (which leverage GIS and Remote 
sensing technology) [302].

4.3  Hydrological modelling studies in Zimbabwe

Of the 107 studies reviewed in this study, 7% directly and 
indirectly involved hydrological modelling, indicating very 
limited hydrological modelling research in Zimbabwe 
over the period under review. Hydrological modelling 
studies in Zimbabwe date back to 1986 when Knudsen 
et al. [303] tested the capability of the WATBAL model 
in simulating ungauged catchments using medium size 
dams in Zimbabwe. Another early study is by Vörösmarty, 
Moore [304] who used a simple catchment-scale model to 
simulate seasonal variation in discharge in the Zambezi 
river and how it might respond to climate and land use 
change. Though developments have been slow in the past 
29 years, advances made thus far have seen shifts from 
use of simple statistical models to empirical-black box 

models, lumped conceptual models and more recently to 
coupled distributed physically based hydrological mod-
els such as SWAT and HecHMS. For example, Love et al. 
[305] used an empirical model (the Hydrologiska Byråns 
Vattenbalansavdelning (HBV) model) to simulate hydro-
logical processes in the Northern Limpopo basin (Mzing-
wane catchment), while the HEC-HMS model has been 
successfully used in simulating run-off in the gauged 
and ungauged Upper Manyame sub-catchments of Zim-
babwe [306, 307]. The same model has been applied by 
Gumindoga et al. [144] in modelling the water balance of 
the Lower Middle Zambezi Basin, successfully estimating 
the total inflows into the Cahora Bassa Dam and recom-
mending ways of managing artificial floods in this basin. 
Mazvimavi [308] successfully demonstrated the applica-
tion of two lumped conceptual models, i.e. the Thomas 
abcd model [309] and the Pitman model [310] to estimate 
catchment descriptors such as flow characteristics in 52 
ungauged sub-catchments in all the seven main catch-
ments of Zimbabwe. Other models that have been used 
in Zimbabwe include the Surface Energy Balance System 
(SEBS) Water Balance Model to determine actual evapo-
transpiration in the Upper Manyame catchment [311] and 
the TOPMODEL to simulate streamflow of Upper Save River 
catchment [312]. The flownet computational and model-
ling method [313] has been applied as well in groundwa-
ter recharge modelling within the Gwayi catchment. From 
these studies, it is apparent that the shift has been from 
lumped, empirical/mathematical-based models towards 
distributed physically based models in hydrological stud-
ies in Zimbabwe over the past 29 years.

A review of the scope of coverage of these studies 
revealed that all seven water catchments in Zimbabwe (i.e. 
the Gwayi, Manyame, Mzingwane, Runde, Sanyati, Mazowe 
and the Save catchment shown in Fig. 2) have been stud-
ied at varying degrees using various hydrological model-
ling techniques and tools. However, most of these studies 
have been done in the Zambezi basin catchments, i.e. the 
Mazowe and the Manyame catchments [144, 306, 314]. 
Catchments to the North-eastern and South-western part 
of the country, i.e. the Gwayi and the Save catchments 
have received very limited attention in terms hydrological 
modelling research over the years, while the Mzingwane 
catchment has had four prominent studies [196, 305, 315, 
316] that directly applied modelling techniques over the 
past two decades showing a knowledge gap in this regard. 
Furthermore, in as far as the integration of land use and 
land cover change, and climate modelling in hydrologi-
cal modelling studies is concerned, it was noted that very 
few studies, i.e. approximately 15% of hydrological studies 
done to date have attempted to advance knowledge in 
this direction. In other words, utilisation of advanced, cou-
pled distributed physically based hydrological modelling 
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techniques to expand the scope of understanding of the 
climate-land use-hydrology nexus in Zimbabwe has been 
very limited thus showing a huge knowledge gap in this 
regard. However, other non-modelling hydrological stud-
ies have been done in almost all catchments in the country 
covering various themes such as reservoir capacity and 
sedimentation rate estimation [279, 317], groundwater 
yield estimation [254], water quality assessment [318], 
in-field and rainwater harvesting [319, 320] and general 
catchment characterisation—water balance relationships 
[305, 315].

Though there has been tremendous advances in inte-
gration/streamlining of GIS and RS in hydrological mod-
elling research globally over the past decades as earlier 
discussed [191, 298, 302], in Zimbabwe however, very few 
studies, e.g. [144, 145, 240, 254, 279, 306, 321] have applied 
these tools and techniques showing a need to expand 
knowledge in this area leveraging these techniques. This 
could be attributed to limited expertise and GIS and RS 
infrastructure/equipment to fully streamline the use of the 
techniques in hydrological modelling studies. This could 
also be exacerbated by the earlier highlighted challenges 
of limited accessibility and availability of good quality in 
situ climatic /meteorological data such as rainfall and tem-
perature measurements in the country.

5  Conclusion

5.1  Climate change/variability studies

Despite the developments in climate and hydrological 
research, and the already confirmed climate impacts on 
human livelihoods, economies and general well-being and 
water resources in Zimbabwe, the scope of understand-
ing of the climate-land use-hydrology interlink is still lim-
ited/poor. It has gaps as revealed in our study. Similarly, 
climatic conditions studies in Zimbabwe covered in this 
review present varying and in some instances contradic-
tory conclusions though most agree that the climate has 
been changing or varying considerably in space and time 
with a temperature rise of less about 0.1 °C and an approxi-
mately 10% decrease per decade for rainfall over the 1900 
to 1993 period. Follow up studies in this regard basically 
indicate the same temperature and rainfall trends though 
magnitudes of change have been varying and, in some 
instances, contradictory owing to the different method-
ologies used in these studies. It was noted that the use of 
different methodologies in the analysis of data in these 
studies further compounds the problem of comparability 
of findings. For example, some studies used simple para-
metric inferential statistics to test for significance of cli-
matic trends while others used non-parametric techniques 

on the same. This basically shows the need for care in inter-
preting and/or comparing study findings in this regard. 
Furthermore, new and more robust climate trend analysis 
techniques have been developed over the years which can 
be utilised to re-interrogate the available climate datasets 
with more scientific rigor to close knowledge gaps related 
to biases and inaccuracies of some of the past studies cov-
ered in this review.

We can conclude that climate change and variability 
impact studies and climate vulnerability, adaptation and 
mitigation studies are the two-predominant categories of 
climate studies in Zimbabwe while climate modelling and 
governance study themes were the least covered. For cli-
mate impact studies, there has been greater bias towards 
agricultural and ecological impact themes with very 
limited coverage of energy and socio-economic climate 
impacts. Other themes that emerged included climate 
impacts on health and hydrological systems. Findings in 
this regard converged on this general conclusion asserted 
by the IPCC that Zimbabwe is a highly climate vulnerable 
country with limited resilience and poor adaptation poli-
cies and strategies in place to avert the inherent impacts of 
climate change and variability, notwithstanding the avail-
ability of relevant legislation and institutional framework, 
policy and strategies (e.g. the NCP, NAP, ZINGSA, ZCHPC 
and the NCCRS). Furthermore, considering that the global 
and regional climate forecasts indicate worsening of con-
ditions, it is thus very important that climate science in 
Zimbabwe is updated to generate new and contextual 
knowledge leveraging on cutting edge recently developed 
tools and techniques rather than rely on outdated conclu-
sions from past studies to inform climate policy formula-
tion and strategy development for the country.

Furthermore, in this review, it emerged that climate 
modelling research is still a largely grey area in Zimba-
bwe. Most past studies have used GCMs and only a few 
have used RCMs with limited to no bias corrections and 
due consideration of the region-specific nature of most of 
these models. The implication of this are potential biases 
and errors and thus limited local applicability of some of 
their findings considering also recent developments and 
cautions in application of these tools at a local scale. This, 
thus, necessitates further expansion of knowledge on the 
same by leveraging on the potential presented by new 
and advanced Southern Africa regions-specific GCMs and 
RCMs such as the CCAM which have the ability to gener-
ate accurate climate perturbations at regional and local 
scale through advanced downscaling and bias correction 
techniques. New studies could expand knowledge by 
modelling impact scenarios within agriculture, biodiversity 
and hydrology such as surface run-off which influences 
overall water availability and thus security in Zimbabwe. 
Advancing knowledge in this regard will be vital especially 
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for identifying, for example, the hydrologic consequences 
of changes in important climatic variables such as tem-
perature, precipitation, and other landscape variables such 
as land use-land cover. This could contribute to holistic 
policy development and effective planning of current 
and future water management and security interven-
tions. Furthermore, highly prohibitive costs of in situ cur-
rent and historic climate and hydrological data imposed 
by governmental agencies such as the Zimbabwe National 
Water Authority (ZINWA) and the Meteorological Services 
Department are noted to be one of the potential serious 
bottlenecks impeding climate science research in the 
country. It is therefore important for the Government of 
Zimbabwe to address this by coming up with more prag-
matic data-access policies that will make climate datasets 
more easily available and accessible to the Zimbabwean 
scientific community so as to encourage more research. 
This will allow for unhindered fast progress or advance-
ment of climate science research in Zimbabwe, exploiting 
also the available national supercomputing capabilities at 
the ZCHPC.

5.2  Hydrological modelling studies

Hydrological modelling is a relatively grey area of research 
in Zimbabwe with very few studies reviewed herein cover-
ing this research domain. Of the seven water catchments 
in Zimbabwe, the Manyame and the Mazowe catchments 
have received most attention as frontiers of hydrologi-
cal modelling research in Zimbabwe whilst the Gwayi, 
the Runde, the Save and the Sanyati catchments have 
had least coverage. While some hydrological modelling 
research has been done on the Mzingwane catchment, the 
scientific knowledge is outdated, i.e. has been outpaced 
by advances in techniques and tools developed and used 
in this domain over the past two decades globally. With 
such knowledge gaps, vis-à-vis the already acknowledged 
highly vulnerable climate of Zimbabwe and the predicted 
worsening future climatic conditions in the country, it thus 
becomes very critical that deliberate efforts cascading 
from policy level, prioritise climate-hydrology modelling 
research in Zimbabwe. This is because all these aspects 
speak to present and future sustainable development in 
terms of water security and livelihoods.

Regarding the types of models, there is generally a 
need to test or apply new/advanced coupled hydrologi-
cal models to better understand interlinkages between 
climate-hydrology and land use in Zimbabwe to update 
existing knowledge to be abreast with global and regional 
developments within this domain. In order to achieve 
this, approaches encompassing coupling of distributed 
hydrological models and properly downscaled GCM/
RCM simulations as advocated for by various researchers 

should be considered. Such approaches could enhance 
understanding of local feedback mechanisms and inter-
relations between key natural-human systems influenc-
ing community livelihoods which is a specialised area 
of research within this domain. Furthermore, we note a 
relatively new and important frontier of climate-hydrology 
research, i.e. integration of indigenous knowledge systems 
(IKS) in the context of climate adaptation and mitigation in 
Zimbabwe which has to be encouraged and streamlined 
within this domain.

Overall, we conclude that climate science and hydro-
logical modelling research in Zimbabwe is lagging behind 
vis-à-vis global and regional developments within these 
domains and thus the need to adopt a more systematic 
and holistic approach exploiting among other tools and 
techniques, coupled systems-based approaches (integrat-
ing climate-land use-hydrological modelling and GIS/
RS) for better understanding of past, present and future 
climatic conditions and their hydrological impacts. This 
should be done without negating the need of developing 
new and/or fine-tuning the existing climate related and 
other relevant policy, legislative and institutional frame-
works in Zimbabwe.
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