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Abstract: The combination of multiple omics approaches has emerged as an innovative holistic scope
to provide a more comprehensive view of the molecular and physiological events underlying human
diseases (including obesity, dyslipidemias, fatty liver, insulin resistance, and inflammation), as well
as for elucidating unique and specific metabolic phenotypes. These omics technologies include
genomics (polymorphisms and other structural genetic variants), epigenomics (DNA methylation,
histone modifications, long non-coding RNA, telomere length), metagenomics (gut microbiota compo-
sition, enterotypes), transcriptomics (RNA expression patterns), proteomics (protein quantities), and
metabolomics (metabolite profiles), as well as interactions with dietary/nutritional factors. Although
more evidence is still necessary, it is expected that the incorporation of integrative omics could be
useful not only for risk prediction and early diagnosis but also for guiding tailored dietary treatments
and prognosis schemes. Some challenges include ethical and regulatory issues, the lack of robust
and reproducible results due to methodological aspects, the high cost of omics methodologies, and
high-dimensional data analyses and interpretation. In this review, we provide examples of system
biology studies using multi-omics methodologies to unravel novel insights into the mechanisms and
pathways connecting the genotype to clinically relevant traits and therapy outcomes for precision
nutrition applications in health and disease.

Keywords: precision nutrition; holistic approach; genomics; epigenomics; metagenomics; transcriptomics;
proteomics; metabolomics

1. Introduction

Precision nutrition integrates information at scale by taking into account endogenous
individuals’ backgrounds, but also exogenous factors including lifestyle aspects, cultural,
socioeconomic and psychosocial characteristics, and food environments [1]. Thus, precision
nutrition adopts a whole and dynamic scope to develop comprehensive tailored dietary
recommendations for individuals and population subgroups centered on potentiating
human health and nutritional wellbeing, as well as the prevention and management of
chronic diseases [2,3].

Thus, the notion of precision nutrition should contemplate in-depth metabolic phe-
notyping using high-throughput omics technologies such as genomics (polymorphisms
and other structural genetic variants), epigenomics (DNA methylation, histone modifica-
tions, long non-coding RNA, telomere length), metagenomics (gut microbiota composition,
enterotypes), transcriptomics (RNA expression patterns), proteomics (protein signatures),
and metabolomics (metabolite profiles) under a holistic approach (Figure 1).
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mentation of personalized medicine schemes for precision health [5]. 
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novel insights into the mechanisms and pathways connecting the genotype to clinically 
relevant traits and therapy outcomes for precision nutrition applications in health and 
disease. In this regard, complex relationships between the genetic background, inherited 
epigenetics, nutrient utilization, microbiome-derived metabolites, and lifestyle factors 
may modulate gene and protein expressions, with implications for physiological pro-
cesses, inflammation and metabolic phenotypes (Figure 2). 

Figure 1. Holistic approach for precision nutrition using multi-omics technologies.

However, because each method cannot individually explain entirely metabolic finger-
prints, the bioinformatic integration of multiple omics skills has emerged as an innovative
scope to provide a more comprehensive view of the molecular and physiological events
leading to human disease [4]. Moreover, the concurrent application of these tools is helping
to elucidate unique and specific phenotypes, enabling the design and implementation of
personalized medicine schemes for precision health [5].

In this review, we provide examples of system biology studies using multi-omics
methodologies (comprising genomics, metagenomics, epigenomics, transcriptomics, pro-
teomics, and metabolomics) and interactions with dietary/nutritional factors to unravel
novel insights into the mechanisms and pathways connecting the genotype to clinically
relevant traits and therapy outcomes for precision nutrition applications in health and
disease. In this regard, complex relationships between the genetic background, inherited
epigenetics, nutrient utilization, microbiome-derived metabolites, and lifestyle factors may
modulate gene and protein expressions, with implications for physiological processes,
inflammation and metabolic phenotypes (Figure 2).
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sociated with type 2 diabetes risk [9]. Comparably, PNPLA3 gene variants, gut bacterial 
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miger taxa), and specific dietary factors (low in fiber and vitamins as well as enriched in 
amino acids, uric acid and purine) were all associated with different histology features in 
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2. Genomics in Combination Epigenomics, Metagenomics, Transcriptomics,
Proteomics or Metabolomics Tools

The integration of genomics with other functional omics analyses may significantly
improve the accuracy of host genetic data for explaining health outcomes [6]. For example,
using multiple machine learning algorithms, best predictors of obesity status were identi-
fied, and included single-nucleotide polymorphisms (mapped to genes such as STXBP6,
BBX, PLXDC2, PCDH15, TPH2, PCDH15, CALN1, FGF14, LRRN1, ACTBP2, RBMXP1,
and ZNF32) together with differentially methylated sites (in proximity to CPT1A, ABCG1,
SLC7A11, RNF145, and SREBF1 genes) and interactions with dietary factors encompassing
specific foods, micronutrients, and bioactive compounds [7]. Additionally, the consor-
tium of single-nucleotide polymorphisms in genes related to obesity and cardiometabolic
diseases, low adherence to the Mediterranean diet, and harboring specific urolithin metabo-
types (as biomarkers of the gut microbiota), was able to predict obesity in childhood and
adolescence [8].

Intriguingly, higher milk intake in genetically lactase non-persistent individuals was
reported to be associated with increased quantities of gut Bifidobacterium and serum concen-
trations of indolepropionate, a microbial-derived tryptophan metabolite inversely associ-
ated with type 2 diabetes risk [9]. Comparably, PNPLA3 gene variants, gut bacterial features
(low abundances of Faecalibacterium or Prevotella, and high abundances of Gemmiger taxa),
and specific dietary factors (low in fiber and vitamins as well as enriched in amino acids,
uric acid and purine) were all associated with different histology features in non-alcoholic
fatty liver disease [10]. Moreover, relevant interrelationships between gut Prevotellaceae
and an obesity-related genetic risk score determined interindividual BMI differences in
women [11]. Meanwhile, it was demonstrated that the microbiomes of subjects with low
copy numbers of the AMY1 locus had enhanced capacity to break down dietary complex
carbohydrates [12].

Notably, the methylation status of the APOA2 gene was associated with the intake of
saturated fat and the APOA2 -265T>C genotype, promoting a differential APOA2 mRNA
expression between APOA2 genotypes and modulating tryptophan and branched-chain
amino acid (BCAAs) metabolic pathways [13]. Meanwhile, significant combined and
interactive effects between two dietary factors related to gut microbiota (allium vegetables
and overnight meal) and polymorphisms in the miRNA binding site of IL13 gene were
detected in relation to the susceptibility to colorectal cancer risk [14]. Additionally, the
LPL variant rs13702 induced an allele-specific regulation of the LPL gene, affecting blood
lipid traits through the disruption of miR-410 binding sites, where interactions with dietary
polyunsaturated fatty acid (PUFAs) played an important role [15].

Although caution should be exercised, an exploratory analysis suggested that the
maternal FADS2 rs174575 genotype, combined with DNA methylation status in this gene,
could be related to plasma fatty acid concentrations in toddlers [16]. Similarly, a meta-
analysis revealed that higher ABCA1 promoter cg14019050 methylation correlated with
lower ABCA1 expression and was concomitantly associated with the C allele of the ABCA1
rs2246293 variant and lower circulating eicosapentaenoic acid [17]. Genomic, epigenomic,
and lipidomic analyses also showed that polymorphisms and methylation sites within the
FADS1/2 region influenced the plasma levels of arachidonic acid in response to a high-fat
meal in humans [18]. Of note, genomic assays of post-prandial lipidomic features after
dietary fat intake identified potential biomarkers of cardiovascular risk including two
polymorphisms in the SORBS1 gene (rs12247017 and rs12240292) affecting b-Sitosterol
plasma concentrations [19].

The AA genotype of the Cdx-2 VDR polymorphism was associated with higher methy-
lation of the VDR gene promoter and lower serum levels of 25-hydroxyvitamin D in infertile
men [20]. Consistently, correlations between vitamin D intake and the expression of miRNA
let-7a/b varied with VDR BsmI genotype in an elderly cohort [21]. Moreover, the blood
levels of homocysteine were influenced by the dietary intakes of methyl group donors
(methionine and 5-methyltetrahydrofolate), whose interactions with methylation-related
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gene polymorphisms (such as 2R3R-TS, C1420T-SHMT, A2756G-MS, and 844ins68-CBS)
modified the risk of adenomatous polyps, a precursor of colorectal cancer [22]. In this
regard, it was demonstrated that an miRNA binding site polymorphism (rs1062980) in the
iron regulatory pathway, together with dietary iron intake, may modify the risk of lung
cancer tumorigenesis [23]. Likewise, the MTHFR C677T polymorphism influenced genomic
DNA methylation in peripheral blood mononuclear cells depending on folate status, where
only subjects carrying the T/T genotype with low serum levels of folate accounted for
reduced DNA methylation [24]. Accordingly, DNA methylation was directly related to
folate concentrations in red blood cells in subjects carrying the T/T genotype of the MTHFR
C677T polymorphism, but not in those with wild-type [25]. Choline intake also interacted
with the MTHFR C677T genotype to influence changes in genomic DNA methylation and
DNA damage in folate-compromised Mexican American men [26].

Remarkably, prospective analyses in different population cohorts showed that the
habitual intake of food source B-vitamins may modify the effects of DNA methylation-
related variants at SREBF1 and HIF3A genes on long-term adiposity changes [27,28]. In
fact, interactions of fat intake with genetic (rs11150675), transcriptional (ILMN_1725441),
and methylation (cg26663590) variations at the NFATC2IP locus mediated weight loss
rates in response to dietary intervention [29]. However, an integrative model using mi-
crobiota and genetic information was proposed to prescribe two hypocaloric diets with
different micronutrient distribution for a successful weight loss in individuals with excess
of body weight [30]. Moreover, diet induced weight loss led to polymorphism-dependent
modulation of miRNAs from the miR 25/93/106 gene cluster in humans [31].

Additionally, protein quantitative trait locus analyses provided evidence for distinct
genetic mechanisms regulating BMI-associated proteins during diet-induced weight loss,
including those associated with leptin protein expression changes [32]. Consistently, mul-
tivariate proteomic analysis using data from two clinical cohorts with obesity identified
genetically driven proteins associated with low-grade inflammation, insulin resistance and
dyslipidemia, which could act as endophenotypes for metabolic diseases [33]. Furthermore,
BMI was associated with widespread changes in the human plasma proteome under sub-
stantial genetic control, impacting clinically relevant pathways of adiposity such as lipid
metabolism and inflammation [34].

Lastly, a high dietary intake of antioxidants (α, β-carotene and α-tocopherol) protected
buccal cells from telomere length (TL) shortening, depending on the genetic background
of antioxidant vitamin-related genes (BCMO1 and ISX) in healthy Japanese adults [35]. In
addition, a higher adherence to the Mediterranean dietary pattern prevented leukocyte TL
shortening among Ala allele carriers of the PPARγ2 (rs1801282) polymorphism in subjects
with high cardiovascular risk [36]. Additionally, inverse associations between TL and
plasma zinc were found, especially in children carrying the homozygous mutant genotype
of the RFC G80A (rs1051266) gene polymorphism [37]. Furthermore, telomerase RNA
component genetic variants interacted with plasma monounsaturated fatty acids (MUFAs)
levels, improving inflammation status and telomere attrition related with coronary heath
disease [38].

3. Metagenomics Integrating Epigenomics, Transcriptomics, Proteomics or
Metabolomics Methodologies

Metagenomic sequencing techniques have contributed to identify a number of mi-
crobial communities in the gut under different physiological and disease conditions [39].
Additional multi-omic tools analyzing gut microbial mRNA (metatranscriptomics), pro-
teins (metaproteomics) and metabolites (metabolomics) are complementing information
about the gut microbial ecology, the biological roles of uncultured microbes, and complex
interactions between host, gut microbes, and environment affecting health status [40].

For instance, a clinical trial demonstrated that the daily consumption of 12 g of a
prebiotic fiber supplement for 4 weeks significantly increased the abundance of several
beneficial Bifidobacterium species and the production of health-promoting bacteria-derived
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metabolites in healthy individuals, with abundance of genes associated with prebiotic
utilization, acetate production, and choline to betaine oxidation [41]. Additionally, normal
diets of participants supplemented with either pea- or orange-fiber-containing snacks for
10 weeks correlated with abundances of genes encoding carbohydrate-active enzymes in the
fecal microbiome, whose changes in turn correlated with levels of plasma proteins involved
in vascular function, fibrotic responses, immune cell signaling, and obesity-associated
hormonal regulators [42]. However, a very low-calorie diet intervention (800 kcal/day) in
obese postmenopausal women induced changes in individual microbial taxa correlating
with variations in the plasma metabolome, fecal bile acid composition, and altered gene
expression pathways in adipose tissue [43]. Improvements in metabolic alterations were
linked to specific microbiota genera (relative abundances of Lachnospiraceae NK4A136
and uncultured genera of Ruminococcaceae) and fecal metabolites (cholate and cadav-
erine) after following a Mediterranean dietary pattern for 2 months instead of only nut
consumption [44]. Consistently, the consumption of a vegetarian diet for 4 weeks sig-
nificantly improved cardiometabolic risk factors and altered the relative abundance of
gut microbes (dominated by several genera of Ruminococcaceae) and plasma metabolites
(including l-carnitine, acylcarnitine metabolites, and phospholipids) in patients with is-
chemic heart disease [45]. Additionally, differential gut microbial protein expression was
detected in stool samples of individuals consuming diets varying in fiber content and
glycemic index for 28 days, including those implicated in production and degradation of
fatty acids [46]. Interestingly, replacing beef with a chicken-based diet for two weeks largely
affected the abundance of Bacteroides genus, and thus probably induced downregulation of
immunoglobulins in feces, especially in high- and middle-BMI Chinese volunteers [47].

At the cross-sectional level, the intakes of plant-derived nutrients or artificial sweeten-
ers in healthy individuals were associated with relevant differences in circulating metabo-
lites (particularly bile acids) depending on gut enterotypes [48]. Similarly, gut microbiome
composition influenced the relationships between soy isoflavone intake and plasma and
stool metabolites, including 2-hydroxybutyrate, glycine, and liquiritigenin, with relevance
in hypertension and diabetes pathogenesis [49]. Remarkably, yoghurt consumption was as-
sociated with reduced visceral adiposity and changes in gut microbiome (transient increases
of S. thermophilus and B. lactis species) and fecal metabolome (elevated concentrations of
3-hydroxyoctanoic acid) in female twins [50]. Of note, chicken eaters had more diverse gut
microbiota and higher abundances of Prevotella 2 and 9 than pork eaters, which positively
correlated with fecal levels of skatole and indole [51]. Moreover, the levels of circulatory or
gut metabolites were concurrently influenced by gut microbiome alterations shaped by the
quality of diet consumed [52]. In addition, dietary differences among vegans and omnivores
correlated with large variations in the metabolome, including co-metabolites produced
by the gut microbiota [53]. In general, higher occurrence of potentially beneficial host
microbiome metabolites (i.e., short- and medium-chain fatty acids and their derivatives)
have been found in vegans compared to omnivores [54]. Likewise, vegan and vegetarian
diets were associated with increased abundance of microbial genes/proteins involved in
cell motility, nutrient breakdown and transport, and the synthesis of essential amino acids
and vitamins [55]. Specifically, vegetarians showed low levels of circulating BCAAs and
upregulation of the gut microbial pathway implicated in the degradation and utilization of
BCAAs [56]. Accordingly, multi-omics analyses revealed that Indian subjects presented
unique gut microbiome and serum metabolome profiles compared to other populations,
which were associated with specific dietary patterns [57]. Meanwhile, high-level adherence
to a Mediterranean diet (based on plant foodstuffs) was associated with increased levels of
fecal short-chain fatty acids and favorable microbiome-related metabolomic profiles [58].

Furthermore, it has been demonstrated that gut microbiota may mediate the effects
of diet on the host health via mechanisms targeting the epigenome [59]. Thus, microbial
metabolites of diet (i.e., phenolic acids, isothiocyanates, and short chain fatty acids) may
influence epigenome status may altering the expression of epigenetically active enzymes
including DNA methyltransferases, histone acetyltransferases, deacetylases and demethy-
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lases [60]. In this context, the impact of common dietary patterns on the gut microbiota
composition and the host epigenome status has been recently reviewed [61]. However,
because most evidence comes from animal studies and in vitro assays, further clinical trials
are still required to analyze the nutrition-microbiota-epigenetic axis and applications in
precision nutrition approaches.

Additionally, it was evidenced that imbalances in intestinal microbiota due to diet
may contribute to the development of different pathologies by impairing the expression of
miRNAs [62]. Accordingly, a poor diet quality was associated with a higher risk of mild
cognitive impairment, which could have been mediated by microbiota composition (abun-
dance of Proteobacteria and Gammaproteobacteria) and miRNA expression (hsa-let-7g-5p,
hsa-miR-107, and hsa-miR-186-3p) in middle-aged and elderly Chinese population [63].
Of note, interactions between the abundance of bacterial species (i.e., Bacteroides eggerthi)
and circulating miRNAs (miR-130b-3p, miR-185-5p and miR-21-5p) were found in humans
in relation to obesity [64]. Moreover, an integrated analysis using 25 miRNAs, 25 taxa
and 7 dietary nutrients was able to clearly discriminate vegan, vegetarian, and omni-
vore dietary patterns in healthy individuals [65]. Lastly, dietary plant-derived miRNAs
(xenomiRs) appear to modulate gut microbiota composition, influencing gut epithelial
barrier permeability and related gastrointestinal health [66].

4. Nutritional Relationships between the Epigenome, Transcriptome,
and the Metabolome

Epigenome landscapes play an important role in determining cell phenotypes via
regulation of gene expression [67]. In turn, certain nutrients may induce epigenetic mod-
ifications such as DNA methylation, probably modifying the expression of key genes
associated with physiologic and pathologic processes [68]. Thus, some observational and
intervention studies have analyzed interactions between nutrition, epigenome, and tran-
scriptomic signatures on health outcomes. For example, associations between dietary folate
deficiency, CAMKK2 methylation and expression levels, and insulin resistance status were
reported in subjects with obesity [69]. Additionally, gestational fish intake was related to
changes in the methylation and expression levels of the FADS1/2 and ELOVL5 genes, with
impact on allergy development in early childhood [70].

Consistently, fatty acid supplementation with 4 g/day of either n-3 PUFAs or olive
oil (OO) for 8 weeks altered the methylation and the transcript levels of the FADS2 and
ELOVL5 genes in peripheral blood mononuclear cells (PBMCs) of adults suffering renal
disease [71]. Likewise, it was demonstrated that dietary supplementation of 5.7 g/day of
n-3 PUFAs or 6 g/day of extra virgin olive oil (EVOO) for 4 weeks induced DNA methyla-
tion changes in leukocytes in trained male cyclists, potentially via the modulation of DNA
methyltransferases (DNMTs) mRNA expression [72]. By contrast, daily supplementation
with 200 mg of monomeric and oligomeric flavanols from grape seeds for 8 weeks modu-
lated the expression of genes associated with cardiovascular disease pathways, without
parallel changes in DNA methylation states [73].

Interestingly, an integrated transcriptomic and epigenomic analysis identified dif-
ferential DNA methylation and expression levels of the CD44 gene on PBMCs depend-
ing on the success to the RESMENA (moderately high-protein content) weight-loss pro-
gram [74]. In addition, the beneficial effects of consuming a very low-calorie ketogenic
diet (600–800 kcal/day) for six months on obesity measurements involved methylome and
transcriptome changes in ZNF331 and FGFRL1 genes in blood leukocytes [75].

Furthermore, epigenomics act as a mechanistic link between energy metabolism and
control of gene expression (known as metaboloepigenetics), where a number of dietary
metabolites (including SAM, acetyl-CoA, NAD+, and ATP) modulate the activity of epige-
netic enzymes regulating transcriptional rates as necessary to maintain cell homeostasis [76].
Therefore, epigenetic marks (such as DNA methylation, posttranslational histone modi-
fications, and nucleosome position) have the capacity to integrate the expression state of
chromatin with the metabolic state of the cell [77]. In this regard, maternal nutrient avail-
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ability of diet-derived methyl donors (folate, coline, betaine, and methionine) and cofactors
(vitamins B2, B6, and B12) is critical for DNA methylation reactions through 1-carbon
metabolism, which impacts gene expression and health outcomes in offspring [78]. More-
over, the risk for non-communicable diseases (NCDs) in adulthood can be programmed
by early nutrition through alterations in methylation/expression patterns of key genes
implicated in various metabolic pathways during development, and persisting into adult-
hood [79]. Hence, the importance of applying personalized nutrition approaches targeting
the epigenome, transcriptome, and metabolome to prevent and treat NCDs since early
stages of fetal life has been highlighted [80].

5. Metabolomics, Proteomics, and Transcriptomics Interplays

The analysis of proteins and metabolites associated with nutritional features may
provide insights into the molecular mechanisms mediating diet-related disease, with
preventive and management applications [81]. For instance, three dietary patterns, the
Mediterranean-style diet, the Dietary Approaches to Stop Hypertension diet, and the
Alternative Healthy Eating Index were unique metabolome and proteome signatures in-
volved in important physiological pathways such as cellular metabolism and immune
response within the Framingham cohort [81]. Additionally, plasma metabolomics and
proteomics analyses revealed subtle multiple processes related to metabolism, oxidation
and inflammation after a postprandial dietary challenge as demonstrated by changes in the
concentrations of metabolites, proteins and clinical chemistry parameters in overweight
subjects [82]. Interestingly, it was demonstrated that a nutrigenomic intervention with a
nutritional supplement containing selected bioactive compounds (including polyphenols,
alpha-tocopherol, vitamin C, and n-3 PUFAs) for five weeks affected inflammatory pro-
cesses, oxidative stress, and metabolism in healthy overweight men, as evidenced by an
integrated analysis of plasma metabolites/proteins, and gene expression profiles [83].

6. Conclusions

The combination of diverse types of biological data from genomics, epigenomics,
metagenomics, transcriptomics, proteomics and metabolomics is expanding our current
understanding of the complexity and diversity of human metabolism, as well as yielding
profound insights into disease pathogenesis. Hence, this knowledge is allowing for the
identification and characterization of potential molecular targets and active biomarkers
involved in many nutritional disorders, including obesity, dyslipidemias, fatty liver, insulin
resistance, and inflammation. Additionally, it is expected that the application of integrative
omics approaches could be useful not only for stratifying patients for risk prediction and
early diagnosis purposes but also for guiding precision disease treatments and prognosis
under a holistic scope. For instance, the prediction of obesity risk and weight loss has
considerably improved when using genomics, epigenomics, metagenomics and transcrip-
tomics signatures instead of single omics approaches. Additionally, integrative genomic,
epigenomic, and metabolomic analyses have better characterized post-prandial lipidomic
features as potential biomarkers of nutrient intakes (including polyunsaturated fatty acids
and B-complex vitamins) and subsequent cardiovascular and cancer risks. Moreover,
the combined application of metagenomics, epigenomics, metabolomics, and proteomics
methodologies has allowed us to discriminate different dietary patterns including vegan,
vegetarian, and omnivore regimes and their implications for health status. In addition, the
early programmation of chronic diseases in adulthood can be tackled by precision nutrition
strategies targeting the epigenome, transcriptome, and the metabolome in preconception
and pregnancy stages. However, despite these scientific advances, more evidence in these
research areas is still necessary before precision nutrition can be implemented in clinical
practice and public health settings around the world. Furthermore, some challenges include
ethical and regulatory issues, the lack of robust and reproducible results due to method-
ological aspects (type of samples analyzed, standardization of procedures, population
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characteristics), the high cost of omics methodologies, and high-dimensional data analyses
and interpretation.
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