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Abstract

Health advances are contingent on continuous development of new methods and

approaches to foster data-driven discovery in the biomedical and clinical sciences. Open-

science and team-based scientific discovery offer hope for tackling some of the difficult chal-

lenges associated with managing, modeling, and interpreting of large, complex, and multi-

source data. Translating raw observations into useful information and actionable knowledge

depends on effective domain-independent reproducibility, area-specific replicability, data

curation, analysis protocols, organization, management and sharing of health-related digital

objects. This study expands the functionality and utility of an ensemble semi-supervised

machine learning technique called Compressive Big Data Analytics (CBDA). Applied to

high-dimensional data, CBDA (1) identifies salient features and key biomarkers enabling

reliable and reproducible forecasting of binary, multinomial and continuous outcomes (i.e.,

feature mining); and (2) suggests the most accurate algorithms/models for predictive analyt-

ics of the observed data (i.e., model mining). The method relies on iterative subsampling,

combines function optimization and statistical inference, and generates ensemble predic-

tions for observed univariate outcomes. The novelty of this study is highlighted by a new and

expanded set of CBDA features including (1) efficiently handling extremely large datasets

(>100,000 cases and >1,000 features); (2) generalizing the internal and external validation

steps; (3) expanding the set of base-learners for joint ensemble prediction; (4) introducing

an automated selection of CBDA specifications; and (5) providing mechanisms to assess

CBDA convergence, evaluate the prediction accuracy, and measure result consistency. To

ground the mathematical model and the corresponding computational algorithm, CBDA 2.0
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validation utilizes synthetic datasets as well as a population-wide census-like study. Specifi-

cally, an empirical validation of the CBDA technique is based on a translational health

research using a large-scale clinical study (UK Biobank), which includes imaging, cognitive,

and clinical assessment data. The UK Biobank archive presents several difficult challenges

related to the aggregation, harmonization, modeling, and interrogation of the information.

These problems are related to the complex longitudinal structure, variable heterogeneity,

feature multicollinearity, incongruency, and missingness, as well as violations of classical

parametric assumptions. Our results show the scalability, efficiency, and usability of CBDA

to interrogate complex data into structural information leading to derived knowledge and

translational action. Applying CBDA 2.0 to the UK Biobank case-study allows predicting vari-

ous outcomes of interest, e.g., mood disorders and irritability, and suggests new and excit-

ing avenues of evidence-based research in the context of identifying, tracking, and treating

mental health and aging-related diseases. Following open-science principles, we share the

entire end-to-end protocol, source-code, and results. This facilitates independent validation,

result reproducibility, and team-based collaborative discovery.

1. Introduction

Data Science is an emerging transdisciplinary field connecting the theoretical, computational,

experimental, biomedical, social, environmental and economic areas. It deals with enormous

amounts of complex, incongruent, and dynamic data (Big Data) from multiple sources and

aims to develop algorithms, methods, tools, and services capable of ingesting such datasets and

generating semi-automated decision support systems. The lack of a comprehensive or canoni-

cal mathematical formulation of Data Science is one of the major challenges in the develop-

ment of its theoretical foundations. Other significant hurdles and gaps pertain to the nature of

Big Data and the tools and methods to handle them. Examples of the former are Big Data het-

erogeneity [1], noise concentration [2], spurious correlations [3], among others. Advanced

tools and ensemble methods to handle large, time-varying, and heterogeneous datasets rely on

robust predictive models, the specification and implementation of optimal, feasible, scalable,

and convergent algorithms, advanced computational workflow protocols, access to appropri-

ate computational resources, and scalable infrastructure.

Previously, we proposed a scalable framework for Big Data representation, high-throughput

analytics (variable selection, predictive modeling, and noise reduction), and model-free infer-

ence that we called Compressive Big Data Analytics (CBDA) [4]. We showed the robustness,

efficiency, accuracy and viability of the first generation CBDA method for training predictive

models and for feature selection, and validated it on small-to-medium sized data. In this man-

uscript, we expand the CBDA method and test the new CBDA 2.0 technique on large synthetic

datasets (e.g., ranging from 10,000–1,000,000 cases and 1,000–10,000 features). In addition, we

validate CBDA 2.0 by applying it for detection and prediction of mood disorders (e.g., irritabil-

ity) using a large population-based clinical survey, the UK Biobank [5, 6] (see Datasets section

for details).

The CBDA protocol relies on model-based statistical computing methods and model-free

data analytics [7]. Each such method provides efficient parameter estimations, reliable predic-

tions, and robust scientific inference based on imaging, phenotypic, genetics and clinical data.

The two main strategies used by CBDA to explore the core principles of distribution-free and
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model-agnostic methods for scientific inference based on complex datasets are subsampling, or

bootstrapping, and ensemble prediction. Ensemble prediction and subsampling/bootstrapping

algorithms use common approaches for objective function optimization, quantification of

noise, bias estimation, prediction error estimation, and variance estimation during the learn-

ing/training processes.

Standard ensemble methods, such as bagging and boosting [8–10], usually aggregate the

results of a single “base” learner algorithm, e.g., support vector machine (SVM) [11] or k-near-

est neighbor (kNN) [12]. CBDA employs SuperLearner [13, 14] as its ensemble predictor to

combine multiple "base" learner algorithms into a blend of meta-learners. In addition, CBDA

utilizes ensemble methods in two stages, during the training step as well as during the subse-

quent overfitting testing step (see S1 Fig in S1 File for details).

Although advanced ensemble methods like Random Forest [15, 16] could change the fea-

tures’ weights during iterations, they do not directly reveal the importance of each individual

feature. CBDA explicates the feature importance at each experimental iteration. Similar to sig-

nal estimation in compressive sensing [17], CBDA reduces the problem dimension and effi-

ciently derives reliable and reproducible inference. In the iterative process of computing the

final inference, CBDA subsampling selects stochastically both features and cases, much like

compressive sensing randomly traverses the state space. CBDA identifies an optimal feature-

space, which may not necessarily be an average of the intermediate results.

Since its CRAN publication in 2018 [4], the CBDA package had an average of 328 down-

loads per months over the past 2 years. The first version of the CBDA method was imple-

mented as a stand-alone R package [4], which can be deployed on any desktop, laptop, or HPC

cluster environment. For example, we demonstrated deploying CBDA 1.0 on a high-perfor-

mance computing platform using the LONI graphical pipeline environment [18]. In this man-

uscript, we are enhancing the CBDA method, expanding its applications, and testing it on

large and very heterogeneous datasets. These improvements are reflected in an integrated and

upgraded CBDA 2.0 R package that is also tested on the LONI Pipeline workflow environment.

In the Pipeline environment, the entire CBDA 2.0 protocol is implemented via pipeline mod-

ule wrappers and includes various pre-processing and post-processing steps natively repre-

senting bash/shell, R, and Perl scripts that optimize the iterative CBDA subsampling phases.

The CBDA 2.0 software release documentation and detailed description of features, improve-

ments, and limitations are available on the CBDA GitHub repository [19].

The upgraded CBDA protocol further expands on the set of machine learning algorithms

embedded in the ensemble predictor (i.e., SuperLearner [13, 14]). This new set allows the test-

ing of model performance and overall convergence metrics, which will inform the validation

step and help transitioning the predictive analytics into the estimation/inference phase. The

analysis of the ensemble predictor weights across the many subsamples and machine learning

algorithms can also suggest a way to empirically check the CBDA computational convergence.

As a last contribution, we recast our initial mathematical formulation to improve the study

of the ergodic properties and the asymptotics of the specific statistical inference approaches

utilized within the CBDA technique. This new simplified and more compact formulation is

presented in the S1 Text in S1 File.

Our results suggest that the CBDA methodology is scalable and accurate. One of the

strengths of combining a stochastic subsampling strategy with ensemble prediction is the

ability of sifting through data where no signal is present, with low false discovery rates. The

application to a real case study, like the UK Biobank, highlights the CBDA flexibility and scal-

ability in complex predictive analytics scenarios with incongruent, heterogeneous and highly-

correlated data, as well as with data with substantial proportion of missingness (greater than

50%).
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2. Materials and methods

This section illustrates the new CBDA protocol for representing and analyzing large datasets

with binomial, multinomial, and continuous outcomes. First, we briefly review the main steps

of the method and then describe in detail the new steps added to the workflow. We then review

the validation strategy and examine the results of using synthetic and clinical datasets. The

end-to-end CBDA processing workflow is shown in Fig 1.

The entire CBDA protocol is designed, implemented and validated as a reproducible, open-

project using the statistical computing language R [4, 20]. A number of training sets have been

used to assess the convergence of the CBDA technique through a workflow protocol described

in [4, 19]. This validation workflow runs on the LONI pipeline environment [18], a free plat-

form for high performance computing, which allows the simultaneous submission of hundreds

of independent components of the CBDA protocol (see [21] for details).

The first generation CBDA methodology and its implementation [4] can handle predictive

analytics for datasets up to 1GB. Depending on the available hardware infrastructure and the

user-controlled parameters, the enhanced next-generation CBDA 2.0 can handle gigabytes of

data for millions of cases. Our new implementation combines shell/bash and Perl scripts to

efficiently perform data preprocessing during the subsampling steps, data staging, data post-

processing, validation, and predictive analytics. The following sections outline the basics of the

CBDA methodology, drawing parallels between CBDA and alternative ensemble predictor

and bootstrapping strategies. Later, we will describe in detail the CBDA 2.0 implementation

Fig 1. Schematic of the improved CBDA 2.0 workflow.

https://doi.org/10.1371/journal.pone.0228520.g001

PLOS ONE Compressive Big Data Analytics v2.0

PLOS ONE | https://doi.org/10.1371/journal.pone.0228520 August 28, 2020 4 / 21

https://doi.org/10.1371/journal.pone.0228520.g001
https://doi.org/10.1371/journal.pone.0228520


and highlight the new upgrades and improvements. The entire CBDA protocol is shown as

pseudocode on S1 Fig in S1 File.

2.1 A new CBDA subsampling strategy

The initial CBDA subsampling strategy is fully described in [4]. Briefly, both cases and features

in the original Big Data are sampled with certain specifications given by the Case Sampling
Range (CSR) and Feature Sampling Range (FSR). Our new implementation has two major sub-

sampling advantages. The main objective of subsampling is to pass a representative, balanced

(if possible), and moderately-small sample of the complete dataset to the ensemble predictor

for faster analysis. In order to generalize and automate the subsampling strategy, the first nov-

elty of CBDA 2.0 is to set an upper bound in terms of number of cases and features for the sub-

sampled datasets, namely 300 cases and 30 features. Instead of sampling a proportion of the

original dataset (CSR×cases, FSR×features), which increases with the increase of the data com-

plexity, the new sampling scheme is data-size independent. Since the sample of features is

small enough, it largely avoids the joint presence of highly correlated variables and enables

CBDA to deal with potential multicollinearities in the data set. Other ratio cases/features can

be further explored augmenting our previous report [4]. More investigation is needed to deter-

mine theoretical optimal cases/features ratio values. The goal of this study is to set a reasonably

small subsample size (relative to the size of the original dataset) that is sufficient to support

predictive analytics and at the same time enable effective use of system resources (memory and

computational cycles).

Table 1 shows how the subsample size (e.g., 300x30), combined with the Big Data sizes, can

be recasted into the previously used ranges for CSR and FSR. The new subsampling protocol

significantly improves on the compression of the data needed to reconstruct the original signal

(at least in the synthetic case studies) by O(log n) in the case of 100,000–1,000,000 million

cases (see Table 1 for details). We also reduced the total number of subsamples M = 5,000

(comparing to M = 9,000 used in our previous study [4]). We tested CBDA 2.0 with synthetic

datasets up to 70GB, but the protocol can easily be applied to larger datasets since we operate

with pre-defined subsamples size (i.e., 300x30) and total number of subsamples M (e.g., 5,000).

There are natural barriers in dealing with large and heterogeneous datasets. Alternatives

subsampling approaches can be implemented to facilitate faster access and manipulation of

extremely large datasets, including Spark, Scala, Julia, Python, and more (see [22] for compari-

sons and details). The current CBDA workflow and R code are available and constantly

updated on the CBDA GitHub repository [19]. To optimize the computationally intensive sub-

sampling step, we are also actively working on an efficient Python implementation. Please

refer to our GitHub repository [19] for code updates.

Upon initializing the subsampling, the second novelty of the CBDA 2.0 protocol is a differ-

ent way to perform the sampling of the validation set. In [4] we set aside 20% of the original

Big Data for validation and never used it for training. However, the 20:80 split is not scalable

for Big Data, since the validation set might be too large. Our new strategy samples a validation

set each time we generate a subsample for training. Each validation set is twice the number of

Table 1. Subsampling specifications for different Big Data sizes. The total number of subsamples M = 5,000.

Description n (cases) p (features) Sampling Rates

CSR (cases) FSR (features)

Medium Synthetic Datasets 10,000 1,000 3% 3%

Large Synthetic Datasets 100,000 10,000 0.3% 0.3%

Very Large Synthetic Datasets 1,000,000 10,000 0.03% 0.3%

https://doi.org/10.1371/journal.pone.0228520.t001
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cases of the training set, with no case overlapping the training sample (see Section 2.3 for

details). In this study, we use validation sets of 600 cases. Each sampling is done with replace-

ment. As shown in Table 1, the high compression rates, achieved by fixing the maximum size

of each subsamples, masks the potential overfitting risks. We recognize that over M subsam-

ples, some records might be used for both training and internal validation. However, this is

only occurring in some of the M predictive analytics steps, and never within the same training/

validation sets. Given the low CSR and FSR, the likelihood to sample the final top-ranked fea-

tures in the same subsample (as resulting after the CBDA Overfitting Test stage) is relatively

small.

To account for possible multi-collinearity among multiple features, we define a scaling fac-

tor that augments the FSR: Variance Inflation Factor (VIF), similar to the ANOVA analysis

[23].

If the subsampling is deployed on the same server where the original data is stored, the pro-

tocol performs extremely fast. The conditions are that the server has (1) a workflow system in

place for the submission of multiple simultaneous jobs (e.g., LONI pipeline workflow, but it

can be PBS (Portable Batch System) [24], or SLURM (Simple Linux Utility for Resource Man-

agement) [25], or other schedulers); (2) shell and Perl scripting is enabled; and (3) access to an

R computing environment. The current CBDA 2.0 implementation is based on LONI pipeline

server/client 7.0.3 and R 3.3.3.

If any of the conditions above are not fulfilled, either the data must be deployed on a server

where the CBDA protocol can be executed, or, as a viable alternative, the subsampling can be

done on the server hosting the data and only the subsamples need to be deployed on the server

where the CBDA can be executed. The latter will offer a scalable solution, since the size of the

total set of subsamples is significantly smaller than the entire dataset and can be reasonably

predicted (e.g., approximately 1-2GBs).

2.2 CBDA ensemble prediction via the SuperLearner

The SuperLearner [13] and Targeted Maximum Likelihood Estimation (TMLE) [26, 27] theo-

ries have been developed in the past 10 years. Both are complimentary methods for parameter

estimation in nonparametric statistical models for general data structures. The SuperLearner

theory guides the construction of asymptotically optimal estimators of non-pathwise-differen-

tiable parameters, e.g., prediction or density estimation. The TMLE theory guides the con-

struction of efficient estimators of finite dimensional pathwise-differentiable parameters, e.g.,

marginal means. The CBDA protocol uses SuperLearner as a black-box machine learning

ensemble predictor.

The SuperLearner technique could be considered as a data-adaptive machine learning

approach to prediction and density estimation. It uses cross-validation to estimate the perfor-

mance of multiple machine learning models, or the same model with different settings. The

results shown in this study have been generated using 55 different classification and regression

machine learning algorithms (see Table 2).

Details on default and modified parameters for each of the machine learning algorithm

classes can be found in the S2 Text in S1 File. After each machine learning model has com-

pleted the analysis on each subsample, the SuperLearner creates an optimal weighted average

of those models (i.e., ensemble predictor), using the test data performance. This approach has

been proven to be asymptotically as accurate as the best possible prediction algorithm that is

tested [13]. Although we do not directly discuss convergence results of the SuperLearner in

this study, we outline a two-pronged approach for assessing the overall performance and

computational convergence of our CBDA method (see S1 File).
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2.3 CBDA two-phase bootstrapping strategy

CBDA resembles various ensemble methods, like bagging and boosting algorithms, in its use

of the core principle of stochastic sampling to enhance the model prediction [33]. The purpose

and utilization of the derived samples is what makes CBDA unique as it implements a two-
phase bootstrapping strategy. In phase one, similar to the compressive sensing approach for sig-

nal reconstruction [34], CBDA bootstrapping is initiated by the divide-and-conquer strategy,

where the Big Data is sampled with replacement following some input specifications (e.g., see

section 2.1 and Table 1 here and as described in [35]). In phase two, during the CBDA-Super-

Learner calculations, additional cross-validation and bootstrapping inputs are passed to each

base learner included in the meta-learner/SuperLearner. In fact, the SuperLearner uses an

internal 10-fold cross-validation, which is applied to each of the base learners available in the

SL.library. Moreover, one of the (optional) inputs for the SuperLearner is a set of data for

external validation. In this study, the external validation set is specified as twice the number of

the cases of the training chunks (600 vs. 300) and the same number of features. Technically,

this approach does not represent an external validation, since it comes from the same dataset,

but no case included in the internal validation sample (600x30) would also appear in the train-

ing sample (300x30). We choose a much larger external validation set simply because there is

no scarcity of data and also because the increased size does not affect CPU time (it’s just the

application of the ensemble predictor model trained on the 300x30 sample).

As many distinct boosting methods can be included within the meta-learner library (e.g.,

XGBoost), combining the power of multi-classifier boosting within a single base learner into

the larger CBDA ensemble prediction enhances the method’s power by aggregating across

multiple base learners. Many studies examine the asymptotic convergence of bagging, boosting

and ensemble methods [36–39]. Similar approaches may be employed to validate CBDA infer-

ence in terms of upper error bounds, convergence, and reliability. We highlight the strategies

we pursue in this study in S3 Text in S1 File.

2.4 Signal filtering and False Discovery Rate (FDR) calculation

Since CBDA exploits the subsampling strategy for feature mining purposes, it is important to

have an assessment of the False Discovery Rates (FDR) when ranking the most informative

and predictive features. We describe now a new and general procedure to filter the signal and

approximate CBDA False Discovery Rates. After the CBDA learning/training stage is com-

pleted, it is critical to determine the optimal number M� of top-ranked predictive models to

Table 2. Library of the 55 different classification and regression machine-learning algorithms used by the ensemble predictor SuperLearner (SL.library) in the

CBDA 2.0 implementation.

Base Learner Class Base Learner Different specifications Reference

Glmnet (SL.glmnet) "SL.glmnet" "SL.glmnet.0" "SL.glmnet.0.25" "SL.glmnet.0.50”"SL.glmnet.0.75“ [28, 29]

bartMachine (SL.

bartMachine)

"SL.bartMachine" "SL.bartMachine.500" "SL.bartMachine.100”"SL.bartMachine.20“ [30, 31]

Support Vector Machine (SL.

svm)

"SL.svm" "SL.svm.radial.10" "SL.svm.radial.0.1”"SL.svm.radial.default" "SL.svm.poly.2.0" "SL.svm.poly.3.0" "SL.svm.

poly.3.10" "SL.svm.linear" "SL.svm.poly.3.n10" "SL.svm.poly.6.0" "SL.svm.sigmoid”"SL.svm.poly.6.10" "SL.svm.poly.6.n10"

[11]

Random Forest (SL.

randomForest)

"SL.randomForest" "SL.randomForest.1000" "SL.randomForest.500" "SL.randomForest.300" "SL.randomForest.100" "SL.

randomForest.50"

"SL.randomForest.20“

[15, 16]

Xgboost (SL. Xgboost) "SL.xgboost" "SL.xgboost.500" "SL.xgboost.300”"SL.xgboost.2000" "SL.xgboost.1500" "SL.xgboost.d3" "SL.xgboost.d5" "SL.

xgboost.d6" "SL.xgboost.gau" "SL.xgboost.shrink.15" "SL.xgboost.shrink.2" "SL.xgboost.shrink.05" "SL.xgboost.shrink.25“

[9, 10, 32]

K-nearest neighbor (SL.knn) "SL.knn","SL.knn.100","SL.knn.50","SL.knn.25", "SL.knn.5" [12]

Others "SL.glm" "SL.bayesglm" "SL.earth" "SL.glm.interaction”"SL.ipredbagg" "SL.mean" "SL.nnet" "SL.nnls“

https://doi.org/10.1371/journal.pone.0228520.t002

PLOS ONE Compressive Big Data Analytics v2.0

PLOS ONE | https://doi.org/10.1371/journal.pone.0228520 August 28, 2020 7 / 21

https://doi.org/10.1371/journal.pone.0228520.t002
https://doi.org/10.1371/journal.pone.0228520


choose from the total number M computed. We now outline a new procedure, which com-

prises two steps. The first step selects M� top-ranked models and plots the feature frequencies

emerging from the M� subsamples. Then as a second step, we define a probabilistic cut-off α to

select the likely signal (i.e., a subset of features with significantly higher frequencies). In this

context, a signal is a feature frequency significantly higher than the others.

Now, M� can be between 0 and M. If M� is too low or too high, no signal can be detected

(see Fig 2A–2C). For each M� value chosen, we plot the resulting feature frequency distribu-

tion. For M� = M, each feature frequency follows a binomial distribution, with probability 1

p.

The distribution of the feature frequencies then follows a normal distribution, since it is the

result of a linear transformation of a very large number of binomial stochastic variables (see

[40] for details). The mean μ and standard deviation σ of the features frequency distribution

across the M subsamples can give us a way to control the CBDA False Discovery Rate and sug-

gests a cut-off for selecting True Positives (i.e., TP) for different M�. By construction, if we plot

the distribution of the feature frequencies across the M subsamples, we see an approximately

normal distribution centered on the mean frequency m � 1

p with a certain variability given by

the standard deviation σ (see Fig 2A). By setting different α we can then control false positives

(i.e., FP).

For example with an α = e−6, we obtain CBDAFDR−cutoff = μ+4.75σ. Decreasing α forces a

more conservative FDR. The criteria will consider any feature density value above the

CBDAFDR−cutoff as a Positive. For the synthetic datasets, the new CBDA function CBDA_slicer()
will generate AUC (i.e., Area Under the Curve) trajectories based on different M� and α. The

maximum of each trajectory will determine the optimal M� (see Fig 3A–3C). The False Discov-

ery Rate can be then calculated as the ratio of False Positives over the Positives (i.e., FP/P).

Fig 2A shows an example of the histogram of feature frequencies resulting from one of the

synthetic dataset results for M� = 5000 (Fig 2A). Fig 2 is meant to be illustrative of the method-

ology rather than showing the specific results. Based on the features distribution shown in Fig

2B and the hypothetical cut-off values set in Fig 2A, several α determine the values for the Pre-

cision-Recall (PR) plots, see Fig 2C, which shows the PR AUC plot for M� = 1,000.

In real case scenarios, the True Positive rate may not be known. Thus, the feature mining

process may be guided by the optimal settings suggested by the synthetic case studies. Namely,

we used the best top-ranked value (i.e., 1,000) and 5,000, 300x30 and 600x30 for the total num-

ber of samples, size of the training and validation sets, respectively.

Fig 2. Procedure to generate Precision Recall and AUC plots. The consistent colors in the three Panels indicate identical significance levels based on the “normal”

histogram in Panel A. Panel A: histogram of feature frequencies for the Binomial dataset with 100,000 cases and 10,000 features, for M� = 5,000. Panel B: histogram of

the features frequencies across the 1,000 Top Ranked models. Panel C: Precision-Recall plot for the Binomial dataset with 100,000 cases and 10,000 features, for M� =

1,000. Each circle represents a cutoff based on Fig 2B distribution for different α (shown in the legend of Panel C). The area under the curve (AUC) in Panel C is then

used to assess the quality and accuracy of M� (i.e., Top-Ranked models to consider).

https://doi.org/10.1371/journal.pone.0228520.g002
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2.4.1. Precision-Recall and AUC trajectories. Usually, the number of features measured

in Big Data is very large (e.g.,�10K), resulting in a number of True Negatives (TN, referring

to features) that is typically 2–3 logs larger than the number of True Positives (TP). Due to this

built-in class imbalance, the classical ROC curves (i.e., False Positive Rates-PPR vs. True Posi-

tive Rates-TPR) are not very informative in discriminating between different M� combina-

tions. We then decide to use Precision-Recall (PR) plots to select the best M� and α, since they

do not account for True Negatives (TN). The definitions of Precision and Recall are given

below:

Recall ¼
TP

TP þ FP
and Precision ¼

TP
TP þ FN

:

Where FP and FN represent False Positives and False Negatives, respectively. The Precision

Recall Area Under Curve (PR AUC) is defined as the area under the PR curve, and that is what

we use to generate our AUC trajectories. An ideal algorithm with only true positives and nega-

tives would have a PR curve in the upper-right corner and a PR AUC of one. The new function

called CBDA_slicer() generates a set of plots after the training stage of CBDA that display (1)

the frequency of each feature as a function of the top-ranked M� models, (2) the correspondent

PR plot, and (3) an AUC plot. The AUC plot summarizes the results of the RP as a function of

M�. In a real case scenario, the function CBDA_slicer() generates a final False Discovery Rate

plot, instead of the AUC plot, since no true positives are known. Details on the CBDA_slicer()
function can be found in the S4 Text in S1 File as well as in through the help() method part of

CBDA 2.0 package [19].

Fig 3. Precision Recall AUC values for different synthetic datasets and top-ranked models M�. We always performed M = 5,000 subsamples. We calculated the PR

AUV values in Panels A-C for different values of M�, e.g., 100, 500, 1,000, 2,000, 3,000 and 5,000. The horizontal lines in Panels D-F are calculated for α values 0.9

(black), 1e-2 (red), 1e-5 (green), 1e-10 (yellow), 1e-16 (brown) and 1e-20 (blue). Fig 2 has more details on how the horizontal line values are calculated.

https://doi.org/10.1371/journal.pone.0228520.g003
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A new function called Overfitting_plot() generates two plots for each dataset after the Over-

fitting Test stage of the CBDA is completed (see Overfitting Plots in S1 Fig in S1 File). The x

axis of each plot shows the 100 top-ranked features resulted from the CBDA training stage.

The y axis shows Accuracy and MSE, respectively. By analyzing the trend of the overfitting

plots, we can have a general assessment of the overall performance of the CBDA protocol on

any dataset. This should be the first function to call at the end of the CBDA Overfitting Test

stage. Details on the Overfitting_plot() function can be found in the S4 Text in S1 File and the

help() function in the CBDA package [19].

2.5 Datasets

For the purpose of testing the protocol and assessing the CBDA performance. We validate the

CBDA technique on three different datasets. The first two, namely the Null and Binomial data-

sets, are synthetically generated as cases (n) and features (p), see Table 1 for details. We used

synthetic dataset to test the CBDA feature mining capability, controlling for true and false pos-

itives. Similar to our previous study, for all the Binomial datasets, only 10 features are used to

generate the binary outcome variable (these are what we call truly predictive features, see

details below in the Binomial Datasets section). The real case-study represents a real biomedi-

cal dataset on aging and neurodegenerative disorders (UK Biobank) [5, 6].

2.5.1. Null datasets. The first set of data is a "white noise" dataset (i.e., Null dataset),

where the outcome Y is a realization of a Bernoulli vector of length n (i.e., Y = [Y1,Y2,. . .,Yn],

with Yi~Bernoulli(0.5), i = 1,2,. . ..,n) that is completely independent from the set of features X.

Each column of X is an independent realization of a Gaussian random variable with mean 0

and standard deviation 1 (i.e., X = [X1,X2,. . .,Xp], with Xj~N(0,1),j = 1,2,. . .,p. We will refer to

n as number of cases and to p as number of features.

2.5.2. Binomial datasets. The second set of data is similar to the Null dataset, but the Ber-

noulli vector Y is now an explicit function of the set of features. We establish the dependency

of Y to X by selecting 10 features from X to build a linear additive model Y~X, with non-zero

coefficients for only these 10 features:

Z ¼ bk1
Xk1
þ bk2

Xk2
þ bk3

Xk3
þ � � � þ bk10

Xk10
þ e; with e � Nð0; 1Þ and

b ¼ bkjðj ¼ 1; 2; . . . ; 10ÞÞ

The Bernoulli outcome Y is then generated by an inverse logit on the outcome of the linear

additive model (i.e., Pr ¼ ez
1þeZ and Yi~Bernoulli(Pr),i = 1,2,. . .,n). When necessary, various

strategies may be used to binarize the predicted outcomes using the corresponding probability

values.

2.5.3. UK Biobank archive. The UK Biobank dataset is a rich national health resource

that provides census-like multisource healthcare data. The archive presents the perfect case

study because of its several challenges related to aggregation and harmonization of complex

data elements, feature heterogeneity, incongruency and missingness, as well as health analytics.

We built on our previous UK Biobank explorative study [6] and expand to include several out-

comes for classification and prediction using our CBDA protocol.

The UK Biobank dataset comprises 502,627 subjects with 4,317 features ([41] and www.

ukbiobak.ac.uk). A smaller UK Biobank subset with 9,914 subjects has a complete set of neuro-

imaging biomarkers. By matching the ID field, we are able to merge the two datasets into a

more comprehensive one with 9,914 subjects and 7,614 features (see Table 3 for details).

For our CBDA analysis, we then started with this subset of the entire UK Biobank dataset

(i.e., 9,914 cases), with 3,297 neuroimaging biomarkers and 4,317 clinical and demographic
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features. Due to the high frequency of missing data in the clinical/demographic feature subset

(~72% of missingness), many of the clinical and demographic features were discarded (see Sec-

tion 3.4 for details). This data archive includes appropriate and relevant categorical (binomial/

binary) outcome features, as well as clinical and neuroimaging measures. Our outcome of

interest was irritability (a mood disorder). University of Michigan has signed a materials-

transfer-agreement (MTA), 20171017_25641, with the UK Biobank consortium for the use of

these UKBB data.

2.5.4. Data availability. Large synthetic datasets can be downloaded using the pipeline

workflow script available on our GitHub repository [42]. A client version of LONI pipeline

environment [18] can be installed on a local machine and a guest account can be created with

the LONI Pipeline Java/WebStart Client [43]. A pipe script can be downloaded from our

GitHub repository, in the Data section [42]. After making the appropriate edits to the script in

order to point to the appropriate local directories and remote data file name, the selected data-

set will be compressed first and then saved in the local directory specified. Otherwise, if a client

version is not available, the LONI webapp [44] can be used. Similar edits should be made to

the pipeline script before loading on the LONI webapp.

Every synthetic dataset used in this manuscript can be generated from scratch using the R

script in the Data Section of our GitHub repository [42]. For larger datasets, it is recom-

mended to use the R script locally. Small size synthetic datasets are available on our GitHub

repository [42]. The UK Biobank dataset is not publicly accessible, unless an IRB approval is

available. A modified publicly available version of it can be downloaded from our GitHub

repository [42]. A proxy of the UK BioBank dataset is publicly available on GitHub; the entire

UK Biobank data is available separately (www.ukbiobank.ac.uk).

3. Results

We review now all the Results of the CBDA protocol applied to the synthetic datasets first, and

then on the real case study datasets. We will describe the feature mining performance, test the

Table 3. Aggregated UK Biobank clinical assessments and neuroimaging biomarkers.

Source Types of Data Sample Size

UK Biobank Archive

www.ukbiobank.ac.uk

Baseline Characteristics: age, DOB, sex The collection includes 9,914 subjects with 4,316 clinical/

demographic features and 3,297 imaging biomarkers. No

longitudinal data are included. The imaging biomarker data are

complete, while there is a lot of missing information for the clinical/

demographic features. Among the clinical/demographic features,

only 23 have complete data, and 1,616 have complete missingness.

UK Biobank Assessment Centre: Interview information, Physical

measures, Cognitive function, Imaging: MRI, DXA, Biological

sampling: blood, saliva, urine

Questionnaire Information: Sociodemographics, Life style and

environment, Psychosocial factors, Health and medical history, Sex-

specific factors.

Biological Samples: blood, saliva, urine

Genomics: genotypes, imputation (genotypes/haplotypes), HLA

Online Follow-up: diet, cognitive function, work environment,

mental health.

Additional Exposure: local environment, physical activity

measurement.

Health-related Outcomes: death, cancer, stroke, myocardial

infarction.

Imaging Biomarkers

Challenges • Build models to predict these clinical features using imaging biomarkers

• Impute the missing data for the clinical/demographic features

• Use text mining methods to analyze the free text. Predict clinical features using unstructured data

• Validate the prediction model using the hospital admission dataset

https://doi.org/10.1371/journal.pone.0228520.t003

PLOS ONE Compressive Big Data Analytics v2.0

PLOS ONE | https://doi.org/10.1371/journal.pone.0228520 August 28, 2020 11 / 21

http://www.ukbiobank.ac.uk/
http://www.ukbiobank.ac.uk/
https://doi.org/10.1371/journal.pone.0228520.t003
https://doi.org/10.1371/journal.pone.0228520


proposed performance procedure as well as the two pronged approach in assessing CBDA

convergence.

3.1 Binomial datasets results

The next sets of results highlight the performance of our CBDA protocol on three synthetic

Binomial datasets as described in Table 1 and in the Methods section. Each of the Binomial

datasets has only 10 “true” features out of 1,000 and 10,000 features total, respectively. Fig 3A–

3C shows the AUC trajectories based on different M� (from 100 up to 5,000) and α (from 0.9

down to e−20). After setting the M�, then True and False Positives, as well as True and False

Negatives are calculated for each α (displayed as horizontal red lines in Fig 3D–3F). Fig 3D–3F

show the correspondent frequency plot for the best M� (selected as the maximum of the AUC

trajectories, large circles in black in Fig 3A–3C). For each circle in Fig 3A–3C, a histogram like

Fig 3D–3F is generated and, based on the cutoffs calculated on the histogram for M� = 5,000

(e.g., Fig 2A shows the histogram for Fig 3B at M� = 5,000), a Precision-Recall AUC curve is

created (e.g., the PR AUC plot for Fig 3B at M� = 1,000 is shown in Fig 2C). For ease of illustra-

tion, Fig 3 does not display the cutoff with different colors (as in Fig 2). We used the accuracy

of the predictions as performance metric to rank each CBDA predictive model applied to each

subsample.

3.2 SuperLearner coefficients distributions as indicators of CBDA

convergence

Similarly to the analysis performed in Section 3.1, we look at the distribution of the SuperLear-

ner coefficients/weights across the M� top-ranked predictive models to gain insights into

CBDA overall convergence. S2 Fig in S1 File shows the results for the Binomial dataset with

10,000 cases and 1,000 features, using Accuracy as performance metric. Similar plots for all the

Synthetic datasets analyzed in this study are shown in S3 Fig in S1 File, and they include both

Accuracy and MSE as performance metric. For M� = M (i.e., 5,000), the coefficients/weights

always show a flat distribution (S2A Fig in S1 File), since many of the subsamples do not have

any true feature in it, resulting in a poor predictive model. If we only look at the distribution of

the M� top-ranked predictive models, some of the algorithms in the SuperLearner library per-

forms better than others (S2B Fig in S1 File). We could use the largest coefficient/weight

obtained for M� = M as a cut-off for “true positive” algorithms in the SuperLearner library for

the optimal M� (as returned by the procedure described in Section 3.1).

To validate this cut-off, we also plot the coefficients/weights distribution obtained from the

analysis of the Null dataset. The same cut-off value emerges from the Null dataset analysis

(S2C Fig in S1 File). The only difference between the Null and Binomial datasets is that for the

Null dataset no “better” algorithm emerges if we only look at the distribution of the M� top-

ranked predictive models (S2D Fig in S1 File). Thus, by comparing the SuperLearner coeffi-

cients/weights distribution between M and M�, we can first check if the CBDA protocol con-

verged to a subset of better-performing algorithms. The overall quality of the CBDA

convergence can be then assessed by looking at the overall accuracy as suggested by the Over-

fitting Test stage of the protocol.

Another way to use the SuperLearner coefficients/weights to gain insights into the CBDA

protocol convergence is to compare the Bray-Curtis (BC) dissimilarity index [45] calculated

on the Binomial and Null datasets distributions, controlling for M�. S4A-B Fig in S1 File

shows the BC index as a function of M�, from 50 to 5,000, calculated on the Binomial dataset

with 10,000 cases and 1,000 features. The key information from S4 Fig in S1 File is about the

dynamics of the index rather than on its values over M�. The dynamics are unchanged in the
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Null case if M� is varied, while, in the Binomial case, the lower M� is, the lower the BC index

is, suggesting an overall less diverse coefficients/weights distribution. The variance of the coef-

ficients/weights follows a similar pattern when comparing the Binomial (decreasing with a

minimum, S4C Fig in S1 File) and the Null (flat, S4D Fig in S1 File) cases. The variance also

shows a result consistent with Fig 3A, where the variance of the coefficients/weights can be

used to pinpoint the optimal M�. In other words, we can choose M� as the minimum of the

variance of the coefficients/weights over M�.

3.3 Overfitting test stage

The Overfitting Test Stage (see S1 Fig in S1 File for details) of the CBDA protocol generates

nested nonparametric models using the top 50 (or 100) features selected in the training stage.

Fig 4 shows the performance metrics Mean Squared Error (MSE) and Accuracy plotted against

the number of top features used in each nested predictive model. This example uses the results

obtained on the synthetic binomial datasets (as described in Section 2.6). These plots may

expose potential overfitting issues. The circles in Fig 4 highlight the optimal number of features

to include in the best predictive model, using either Accuracy or MSE as performance criteria.

Fig 4. Overfitting analysis for the Binomial datasets. The y-axis shows the performance metric (Panels A-C: Accuracy, Panels D-F: MSE). The x-axis shows the 50

Top-ranked features resulting from the CBDA Training Stage. These features are used to generate the nested models during the CBDA Overfitting Test Stage and the

performance metrics calculations. The red circles identify the likely optimal choices (i.e., max performance without overfitting) for the number of features to include in

the best predictive model.

https://doi.org/10.1371/journal.pone.0228520.g004
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It is worth noting that for the Binomial datasets, the optimal number of top features to be

included in the best predictive model is always consistent with the actual number of true fea-

tures i.e., 10, used to generate the loaded synthetic datasets. In fact, across the three Binomial

Datasets, CBDA always ranked at least 8 of the 10 true features among the top 10. As shown by

the overfitting plots in Fig 4, having 7–8 true features in the predictive model already ensures

an accuracy of ~90%.

3.4 Clinical data application to the UK Biobank dataset: Data wrangling

stage

We first acquire a subset of cases from the UK Biobank with complete neuroimaging measures

(3,297 biomarkers) for a total of 9,914 subjects. Then we expand the data to include all the

4,316 physical features measured on these 9,914 subjects. The resulting initial merged dataset

represents a second-order tensor of dimensions 9,914 x 7,614 (with one extra feature repre-

senting the subject ID). The next steps were performed to ensure data harmonization and

congruency.

For example, we eliminated all the constant features (1,964, all from the subset of physical

features), bringing the UKBB dataset down to 2,352 physical features.

Then we address the magnitude of missingness in the subset of physical features (the neuro-

imaging subset is complete). The plot below in Fig 5A shows the number of cases/subjects cor-

responding to different level of missingness. The more missingness we allow the more cases/

subjects can be included in the final dataset. However, large missingness can seriously affect

our results, no matter how efficient and accurate the imputation is. Based on the landscape

shown in Fig 5A, we chose a 20% missingness as the best compromise that allows for a maxi-

mum number of additional features with a manageable level of missingness (increasing the

missingness to 30% or 40% will only add approximately 50 subjects). Only 19 features are com-

plete (see the list in S5 Text in S1 File).

Fig 5. UK Biobank data wrangling statistics and results. Panel A: Missingness analysis. The x axis has the 2,352 features left in the physical dataset after

eliminating the constant features. The y axis displays the % of missingness in the dataset, as a function of the number of features added. For example, the red

horizontal line indicates a missingness of 20%, and the blue vertical line shows that if we allow for at most 20% missingness in the physical dataset, we end up

with 951 features (discarding the other 1,401 features with more than 20% missingness). Panel B: Analysis of the 951 features left in the physical dataset. The x

axis shows the number of levels (up to 30) for each of the categorical features in the physical dataset with at most 20% missingness. The goal of this analysis is to

identify possible binary target outcomes for the CBDA analysis. The large peak at 4 levels shows features that are actually binary, with some incongruencies

(either NAs, or values of -1 and -3 assigned to a binary outcome). The data cleaning step at this stage needs to be done manually and can only rarely be

automated. S5 Text in S1 File has some detail on the list of features up to 10 unique levels.

https://doi.org/10.1371/journal.pone.0228520.g005
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The subset of physical features was further reduced to 951 features (still 9,914 cases).

Our goal was to clean the data as much as possible before making it available to the CBDA

protocol. Thus, the next data wrangling step analyzed the unique values for each feature, merging

categorical and numeric (both integer and double) features. Fig 5B shows the number of features

that have certain number of levels (or unique values), starting from 2 up to 30. We did not include

the missing values code “NA” as a level. Fig 5B shows a peak at levels = 4 with 31 features.

Due to the incongruency of the UKBB dataset, some obvious binary features are often

coded with 4 levels (e.g., 0, 1, −1, −3), and the same Field code or ID is used multiple times for

different time points. For these features, we eliminated the levels -1 and -3. A future CBDA

protocol update will include a new module to address time-varying longitudinal data. We

treated these pseudo-longitudinal data fields as the same feature and depending on the type of

the measure, either exclude them or use their mean values. This extra “cleaning” step reduced

the physical features to 830. In general, such ad-hoc pre-processing steps cannot be automated,

as they require specific knowledge of the case-study, especially when the outcome of interest

shows incongruences.

Another important step is to ensure that any of the features included as “predictors” for the

outcome of interest are not correlated to the outcome of interest (e.g., they measure the same

or similar outcome). For example, the two features “X2090: seen doctor for nerves, anxiety, ten-
sion or depression" and “X4598: ever depressed for a whole week” are highly correlated, and

using one as the outcome of interest should exclude the other one from the set of predictors.

An exhaustive and automated search will require adequate handling of unstructured data,

which we will include in a separate dedicated module of the CBDA protocol. To demonstrate

the CBDA protocol performance, for this UK Biobank study, we chose outcome of interest

Irritability (namely "X1940: Irritability") as the outcome of interest. The initial levels for “Irrita-
bility”, −1, −3, 0, 1, were transformed a binary outcome by eliminating the irrelevant levels −1

and −3. The physical features labels and counts for up to 10 unique levels are shown in S5 Text

in S1 File. The final UK Biobank subset analyzed to predict the outcome of interest Irritability

is 9,569 cases/subject with a total of 4,129 combined features: ID and outcome of interest (i.e.,

Irritability), 3,297 neuroimaging biomarkers and 830 physical features, the latter with at most

20% missing values.

3.5 CBDA applied to the UK Biobank dataset

We applied the new CBDA functions to assess the CBDA performance during the training

(i.e., CBDA_slicer(), BCplot() and SLcoef_plot()) and validation (Overfitting_plot()) stages. Ulti-

mately the Overfitting_plot() results will determine the overall performance of the CBDA pro-

tocol on each dataset. Fig 6A shows the accuracy results of CBDA protocol for the top 100

features returned by the CBDA Overfitting Test stage executed on the neuroimaging biomark-

ers and the physical features as predictors. S3A Fig in S1 File shows the equivalent plot for the

neuroimaging biomarkers only.

The overall accuracy in predicting the outcome of interest Irritability converges to approxi-

mately 72% for both datasets, with a slightly different dynamic when only the top 5–10 features

are included. S1 and S2 Tables in S1 File show the lists of the top 100 features for both datasets

analysis. When the physical features are included in the analysis, only 5 of them are selected in

the top 100 (ranked from 20 to 24), and they all refer to neuroimaging features (i.e., see the

grey cells in the S2 Table in S1 File, for details). There is a minimal overlap if we compare the

top100 features, namely 4 features overlap between the 2 datasets analyses (i.-

e.,"rh_BA45_exvivo_thickness", "rh_middletemporal_meancurv", "lh_temporalpole_gaus-

curv", "lh_S_circular_insula_ant_curvind").
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The highly correlated features in the biomarker dataset can explain this lack of overlap. A

pairwise correlation analysis of all the neuroimaging biomarkers shows that 75% of the top 200

features (resulting after merging the 2 lists displayed in S5 Text in S1 File) have a correlation of

0.37 and higher, 50% of the top 200 features have a correlation of 0.55 and higher, 20% of the

top 200 features have a correlation of 0.72 and higher, and 10% of the top 200 features have a

correlation exceeding 0.82.

We ran the analysis again increasing the FSR up to approximately 180, using a Variance
Inflation Factor (VIF) of 6. The VIF for the UKBB dataset is determined by the peculiar struc-

ture of the biomarker measures. In fact, the same measures are divided between a left and right

hemisphere (factor of 2) and of approximately 15 measures on each region of interest that are

correlated (e.g., volume, surface, thickness). We assumed a 20% of the number of measures for

each ROI to be highly correlated and contribute to an additional scaling factor of 3 (i.e., 20% of

15). Thus, the VIF is calculated as 2×3 = 6, bringing the FSR from 30 to 180. Increasing the

FSR further will significantly slow down the CBDA protocol without any advantages in terms

of performance.

The results of the CBDA analysis with the VIF = 6 are shown in S3 and S4 Tables in S1 File,

where the top 300 selected features are listed for both datasets, respectively. There is an overlap

of 34 features between the two analyses (see S5 Table in S1 File for details). S3B Fig in S1 File

shows the equivalent of Fig 6B with neuroimaging biomarkers only included in the analysis.

Increasing the FSR does not change the results in terms of overlap. If we compare the two

CBDA experiments with different FSR, among the top 100 and top 300, there are 19 overlap-

ping features for the experiment using only neuroimaging biomarkers and 9 overlapping

features when using both neuroimaging and clinical biomarkers. The accuracy does not

change significantly over the top 50 features (although it slightly increases, see Fig 6). In the

presence of highly correlated features, the inclusion of additional features does not affect the

Fig 6. Overfitting plots for the UK Biobank dataset CBDA analysis. The x axis shows the top 100 (Panel A) and top 300 (Panel B) features returned by the CBDA

training stage in predicting the outcome of interest Irritability on the UK Biobank dataset with both neuroimaging and clinical biomarkers (see S1 Fig in S1 File for

details). The y axis represents the accuracy of the nested models after the CBDA Overfitting Test stage. The details on the features can be found in the S2 Table (for Panel

A) and S4 Table (for Panel B) in S1 File.

https://doi.org/10.1371/journal.pone.0228520.g006
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performance, especially if the pool of the remaining features is highly correlated. Possibly

repeating the CBDA experiment a large number of times could shed some light into the corre-

lation structure of the dataset with respect to the most predictive features, alone and in multi-

variate combinations.

S6 Fig in S1 File shows the SLcoef_plot() and BCplot() functions output for the UK Biobank

dataset with neuroimaging biomarker and physical features. The SuperLearner coefficients

distribution shows how the SVM algorithm (with different kernel specifications) is consis-

tently the most adequate to analyze the dataset (S6A-B Fig in S1 File). In fact, across the 55 dif-

ferent classification and machine learning algorithms bagged into the SL.library of our

ensemble predictor, the SVM class has the best predictive power. S6A Fig in S1 File shows the

mean SuperLearner coefficients assigned during training across the 5,000 subsamples. S6B Fig

in S1 File enforces a threshold of 0.05, however most of the algorithms’ coefficients fell well

below that, as shown in S6A Fig in S1 File. No specific insights can be gained by looking at the

Bray-Curtis and variance plots. The Bray-Curtis dissimilarity trajectory generated by the func-

tion BCplot() is relatively flat (except for an increase for M�<500), with a set of minima

between M� = 1,000 and M� = 3,000 (S6C Fig in S1 File). The variance of the SuperLearner

coefficients is consistently decreasing when M� decreases from 5,000 down to 50 (S6D Fig in

S1 File). The analysis on the UK Biobank with only the neuroimaging biomarkers returns simi-

lar results.

4. Discussion and conclusions

There are many challenges and opportunities associated with Big Data and team-based scien-

tific discovery. Key components in this knowledge discovery process are curation, analysis,

domain-independent reproducibility, area-specific replicability, organization, management,

and sharing of health-related digital objects.

Open-science offers a promising avenue to tackle some of these challenges. The FAIR data

principles that we abide by (making data Findable, Accessible, Interoperable and Reusable)

[46] promote maximum use of research data and foster continuous development of new meth-

ods and approaches to feed data driven discovery in the biomedical and clinical health sci-

ences, as well as in any Big Data field [47].

This work expands the functionality and utility of a new ensemble semi-supervised machine

learning technique called Compressive Big Data Analytics (CBDA). We designed and built the

CBDA protocol following the FAIR open-source/open-science principles where the scientific

community can independently test, validate and expand on our second generation technology.

The entire protocol, the updated R software package [4, 20] and the complete high perfor-

mance computing (HPC) workflow (i.e., LONI pipeline, see [21] for details) are openly shared

and publicly accessible on our GitHub repository [19]. As in our previous release (V 1.0),

CBDA 2.0 has two open-source implementations: (1) a platform-agnostic stand-alone R pack-

age, and (2) a reproducible pipeline graphical workflow (wrapper of the R-package).

In an effort to make the CBDA protocol accessible to a larger pool of researcher so it can be

deployed on virtually any HPC server, we are working now on recasting the LONI pipeline

workflow into more popular and commonly used batch systems like PBS and SLURM. Cur-

rently the pre- and post-processing steps to efficiently perform subsampling are developed as

shell and Perl scripts. In order to better and more efficiently handle heterogeneous, unstruc-

tured and incongruent data types, we are recasting the scripts for these two critical steps into

the Python language.

Currently, time-varying longitudinal and unstructured data require preprocessing before

CBDA 2.0 analytics. We are developing methods and approaches to address these challenges

PLOS ONE Compressive Big Data Analytics v2.0

PLOS ONE | https://doi.org/10.1371/journal.pone.0228520 August 28, 2020 17 / 21

https://doi.org/10.1371/journal.pone.0228520


in the context of data privacy and utility [47, 48]. We will incorporate the findings and the cor-

responding R wrappers implementation into the CBDA protocol as soon as they are suffi-

ciently tested and validated. A synoptic summary of current and future developments for the

CBDA R packages is illustrated in Table 4.

We tested the second generation CBDA protocol on both synthetically generated and real

clinical datasets. Results on synthetically generated datasets confirm and strengthen our previ-

ous study. Even with significantly reduced feature undersampling rates (e.g., from ~1%−5%,

down to ~0.03%−0.3%), and increased sizes of the datasets analyzed (e.g., up to 1 million cases

and 10,000 features), the CBDA protocol can identify most of the true features. The new

CBDA functionalities enable assessment of overfitting and possibly convergence issues. The

results of applying the new Overfitting_plot() function to the synthetic datasets show that accu-

rate predictions can be generated even if only a subset of the true features is mined and

selected.

The CBDA classification results on the UK Biobank population-wide (census-like) study

provide empirical evidence of effective prediction, especially when the data is extremely com-

plex, incongruent, higly-correlated, and include a lot of missing records. Overall, CBDA per-

forms well in predicting the outcome of interest, Irritability, in the presence of highly-

correlated features. Multi-collinearity plays a key role in analyzing the UK Biobank. When the

data includes extremely correlated multivariate features, CBDA reproducibility for small num-

ber of subsample sizes may naturally exhibit variability of the results, due to uncharacteristic

groupings of independent or highly associated clusters of features. In the UKBB study, once

the accuracy in predicting the outcome of interest (Irritability) reaches ~70% (fairly quickly,

using top 10–20 features), the additional features tend not to alter or improve the overall per-

formance. The top 10–20 features are selected semi-randomly among the top 100–300 non-

independent covariates. The ranking is based on random subsampling and the feature selec-

tion in such a scenario (highly correlated features) is affected by accuracy values that are very

close to each other.

These results illustrate the scalability, efficiency and potential of CBDA to compress com-

plex data into structural information. This leads to derived knowledge and translational action,

Table 4. Past, present and future CBDA R package developments.

CBDA R 1.0 [past] CBDA R 2.0: Large Scale [current] CBDA R 3.0: Unstructured and

Longitudinal Data [future]

Client implementation:

single and multicore

options.

Client implementation: single and multicore options(�).

HPC implementation Available for LONI pipeline only. Available for PBS, SLURM and LONI

pipeline only.

Client and Server
implementation: Big
Data loading

Load the Big Data into the R workspace

before any CBDA subsampling and

training/validation (�).

Does not load the Big Data into the R workspace.

Client and Server
implementation:

subsampling

Server implementation: subsampling

(both for the CBDA Training and

Overfitting Test stages) is done internally

in R(�)

Server implementation: subsampling (both for the

CBDA Training and Overfitting Test stages) is

performed by a combination of shell and Perl

scripts(��)

Server implementation: subsampling (both

for the CBDA Training and Overfitting

Test stages) is performed by Python scripts

Unstructured and

Longitudinal Data Types

Does not support Longitudinal and

Unstructured Data

Handles Longitudinal and Unstructured Data

(�) Not recommended for datasets larger than 1GB.

(��) Faster if subsampling and predictive analytics is performed in the same location as the original data.

https://doi.org/10.1371/journal.pone.0228520.t004
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where specific clinical outcomes can be targeted. Combining the CBDA and the UKBtools [49]

R packages in the next wave of analysis may streamline the analytical protocol. Such tool-inter-

operability facilitates the mapping of features, their descriptions and field ID codes, improves

the necessary data cleaning and wrangling before CBDA is implemented, and allows for post-

hoc analytics.

This exploratory CBDA study paves the way for a deeper analysis of the UK Biobank archive.

Our results may also suggest potentially new avenues of research in the context of identifying,

tracking, and treating mental health and aging-related disorders, where a priori clinical pheno-

types and inherently correlated multivariate predictors may not necessarily be explicitly known.
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