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Abstract.  The CC (cumulus cell) proliferation index in relation to the expression and distribution of Cdk4 and Cx43 proteins, 
which are crucial factors for oocyte maturation, was investigated. Cumulus-oocyte complexes (COCs) were recovered from 
pubertal crossbred Landrace gilts and treated with collagenase, and separated CCs were cultured in standard TCM199 
medium for 44 h. At each step of in vitro cultivation (IVC) of CCs (0, 12, 24 and 44 h), a normalized proliferation index was 
assessed. Cdk4 and Cx43 protein expression and the CC-specific cellular distribution were analyzed by confocal microscopic 
observation. The normalized proliferation index (number of cells attached, measured by impedance) was increased in the first 
12 h of IVC (P<0.01) and differed between 12 h and 24 h of cultivation (P<0.001). Later, between 24 h–44 h of IVC, the CC 
proliferation rate was stable, and no significant differences were observed. Based on the confocal microscopic observation, 
increased expression of both Cdk4 and Cx43 was found after 44 h of IVC compared with the expression of these proteins 
before IVC. Moreover, after IVC, a substantial translocation of Cdk4 and Cx43 was noted from the nucleus to the cytoplasm 
of CCs. In conclusion, it was demonstrated for the first time that CCs can be cultured in vitro separately without oocytes and 
that the proliferation index was significantly increased in the first 12 h of IVC, which may reflect the process of ordinary 
cumulus cell expansion. Furthermore, the expression of both Cdk4 and Cx43 in CCs suggested that these proteins may be 
regarded as markers not only of proper oocyte maturation but also of CC differentiation. Translocation of these proteins into 
the cytoplasm of CCs after 44 h of IVC may be related to the expansion process.
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The potential of oocytes to attain full maturation competence is 
characterized by an appropriate course of nuclear and cytoplasmic 

maturation, which finishes with attainment of the MII stage both in 
vivo and in vitro. Only mature oocytes can be successfully fertilized, 
undergo zygote formation and attain normal embryo development 
[1–3]. The maturation process is determined by several intrinsic 
and extrinsic factors, involving the storage of large amounts of 
mRNA and proteins as well as the transfer of low molecular weight 
compounds and substrates between oocytes and the surrounding 
somatic cumulus cells (CCs) [4–6]. The communication between 
these cells is associated with the formation of protein channels, also 
called gap junction connections (GJCs), permitting the transfer of 
small molecules of molecular weights less than 1 kD. It was clearly 
demonstrated that this “cross-talk” is critical for proper oocyte 

maturation and resumption of meiosis [7–9]. Experiments based 
on knock-out models demonstrated that mutation in genes encoding 
proteins that form GJCs led to failed oocyte maturation and finally 
produced sterile females [10]. GJC channels are formed by connexins 
(Cx), including mainly Cx31, Cx37, Cx43 and Cx47. Although the 
presence of Cx molecules in cumulus cells has been reported [1, 11], 
no data are available on the profiling of differential expression of Cx 
genes and the distribution of the proteins in the course of real-time 
CCs proliferation. Furthermore, cyclin-dependent kinases (Cdks) 
have been shown to be also involved in proper oocyte maturation 
and attainment of the MII stage [12]. Using mouse knock-out 
models it was demonstrated that Cdks are the main regulators of 
cell divisions and represent a checkpoint of cell cycle progression 
[13]. Cdk4 belongs to the protein-serine kinase superfamily, which 
catalyzes phosphorylation of target proteins and promotes cell 
cycle progression. The formation of the complex between Cdk4 
and type-D cyclin regulates cell proliferation during the G1 phase 
[14]. Since Cdk4 is the main target during the cell division, the 
expression of this protein in various phases of CC proliferation is 
examined in this study.
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During the complex process of oocyte maturation in vivo and/or 
in vitro, cumulus cells undergo substantial expansion that is highly 
linked with the transfer of regulatory molecules and small substrates. 
However, it has not been fully recognized if this process is related to 
CC proliferation and at which steps of oocyte maturation it occurs. 
Since it was shown that CCs manifested adherence in monolayer 
culture systems, it is known that the proliferation of CCs should be 
associated with the expansion during maturation [15–17]. However, 
no evidence was provided for proliferation of COCs in vivo. The 
supposition of such proliferation comes from in vitro studies in 
which porcine COCs were cultivated for 44 h. Despite documented 
changes in CC abundance during maturation, there is no clear 
evidence that CCs proliferate during IVC and that the proliferation 
rate is determined by in vitro conditions. Therefore, the goal of this 
study was to show quantitative changes in CC proliferation in real 
time in relation to the Cdk4 and Cx43 mRNA expression profile 
and the distribution of encoded proteins during periods of in vitro 
maturation in separated porcine CCs.

Material and Methods

Animals
A total number of 41 pubertal crossbred Landrace gilts (age 170 

days, body weight 98 kg) were used. The animals were kept under 
the same conditions. The experiments were approved by the local 
Ethics Committee.

Collection of porcine ovaries and cumulus-oocyte complexes 
(COCs)

The ovaries and reproductive tracts were recovered at slaughter 
and transported to the laboratory within 10 min at 38 C in 0.9% 
NaCl. In order to provide optimal conditions for subsequent oocyte 
maturation and fertilization in vitro, the ovaries of each animal were 
placed in 5% fetal bovine serum solution (FBS; Sigma-Aldrich, 
St. Louis, MO, USA) in PBS [18, 19]. Thereafter, individual large 
follicles (>5 mm) were opened by puncturing with a 20-G needle 
connected to a 5-ml syringe in a sterile Petri dish, and COCs were 
recovered. COCs were washed three times in a modified PBS 
supplemented with 36 µg/ml pyruvate, 50 µg/ml gentamicin, and 0.5 
mg/ml BSA (Sigma-Aldrich). COCs were selected under an inverted 
microscope (Axiovert 35, Zeiss, Lübeck, Germany), counted and 
morphologically evaluated using the scale suggested by Jackowska 
et al. [20]. Only COCs of grade I with homogeneous ooplasm and 
uniform and compact cumulus cells were considered for use in the 
following steps of the experiment.

Assessment of oocyte developmental competence by BCB test
To perform the BCB staining test (brilliant cresyl blue), COCs were 

washed twice in a modified Dulbecco’s PBS (DPBS) (Sigma-Aldrich), 
supplemented with 50 IU/ml penicillin, 50 µg/ml streptomycin 
(Sigma-Aldrich), 0.4% [w/v] BSA, 0.34 mM pyruvate, and 5.5 mM 
glucose (DPBSm). Thereafter, they were treated with 26 µM BCB 
(Sigma-Aldrich) diluted in DPBSm at 38.5 C in 5% CO2 in air for 90 
min. Next, the oocytes were transferred to DPBSm and washed two 
times. During the washing procedure, the oocytes were examined under 
an inverted microscope and classified as either stained blue (BCB+) 

or remaining colorless (BCB–). After harvesting cumulus-granulosa 
somatic cells (CCs), only BCB+-COCs were incubated with bovine 
testicular collagenase (50 to 200 units/ml in HBSS) (Sigma-Aldrich) 
for 10 min at 38 C. Thereafter, the cells were removed by vortexing 
and pipetting the BCB+ oocytes in 1% sodium citrate buffer and by 
mechanical displacement, using a small-diameter glass micropipette. 
The oocytes were discarded, and the CCs were used for real-time 
cultivation procedures to determine the proliferation index and 
perform the confocal microscope analysis.

In vitro CC cultivation using a real-time cell analyzer (RTCA)
Harvested GCCs were transferred into a real-time cell analyzer 

(RTCA, E-Plates 48, Roche Applied Science, Penzberg, Germany) 
consisting of an RTCA Analyzer, RTCA SP Station and RTCA 
Software. The CCs were then cultured in 200 μl standard tissue culture 
medium (TCM-199) with Earle’s salts and L-glutamine, (Gibco BRL 
Life Technologies, Grand Island, NY, USA) supplemented with 2.2 
mg/ml sodium bicarbonate (Nacalai Tesque, Kyoto, Japan), 0.1 mg/
ml sodium pyruvate (Sigma-Aldrich), 10 mg/ml BSA (bovine serum 
albumin), (Sigma-Aldrich), 0.1 mg/ml cysteine (Sigma-Aldrich), 10% 
(v/v) filtered porcine follicular fluid and gonadotropin supplements 
at final concentrations of 2.5 IU/ml hCG (Ayerst Laboratories, 
Philadelphia, PA, USA) and 2.5 IU/ml eCG (Intervet, Whitby, ON, 
Canada). The CCs were cultured for 44 h at 38 C under 5% CO2 in 
air. After 44 h of cultivation, a set of CCs was treated with trypsin 
(0.25% trypsin in a balanced salt solution; Sigma-Aldrich), and the 
collected pool of proliferating cells was used for further confocal 
microscope analysis. After 12, 24 and 44 h of cultivation, the 
standardized cell index (CI) was used to evaluate quantitative changes 
in electrical impedance of cells. The cell status was determined using 
the RTCA software.

Confocal microscope analysis of Cdk4 and Cx43 expression 
and distribution in CCs

The CCs were analyzed before and after 44 h of IVC. After 
cultivation, CCs were collected and fixed using an acetone/methanol 
mixture (1:1) for 10 min at –20 C and washed three times in PBS/PVP 
(0.2%). In order to block nonspecific binding, samples were incubated 
in 3% BSA in PBS with 0.1% Tween 20 for 30 min at RT. CCs were 
incubated for 1 h at room temperature (RT) with rabbit polyclonal 
anti-Cdk4 antibody (Ab), H-22 and/or rabbit polyclonal anti-Cx43 
Ab and (Ser 279/282)-R Ab, both from Santa Cruz Biotechnology 
(Santa Cruz, CA, USA), diluted 1:500 in PBS/1.5% BSA/0.1% Tween 
20. After several washes with PBS/0.1% Tween 20, samples were 
incubated with rabbit polyclonal anti-Cdk4 Ab and H-22 for 1 h at RT 
with fluorescent isothiocyanate (FITC)-conjugated anti-rabbit IgGAb 
(Santa Cruz Biotechnology) and diluted 1:500 in PBS/0.1% Tween 
20. Samples with rabbit polyclonal anti-Cx43 Ab and (Ser 279/282)-R 
Ab were incubated for 1 h at RT with fluorescent isothiocyanate 
(FITC)-conjugated anti-rabbit IgG Ab and diluted 1:500 in PBS/0.1% 
Tween 20. Following washing in PBS/0.1% Tween 20, the CCs were 
stained with 0.1 µg/ml 4,6-diamino-2-phenylindole (DAPI; Santa 
Cruz Biotechnology) in mineral oil, mounted on glass slides in an 
antifade drop and observed under an LSM 510 confocal system 
microscope (Olympus FluoView 10i). FITC was excited at 488 nm 
from an argon laser, and emissions were imaged through a 505–530 
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nm filter. All confocal microscopic images were analyzed using the 
Imaris 7.2 (Bitplane, Zurich, Switzerland) software.

Statistical analysis
One-way ANOVA followed by a Tukey post hoc test was used to 

compare the results of real-time quantification of the proliferation 
index. The experiments were carried out with at least two replications. 
The cell proliferation index was quantified using an RTCA system. The 
differences were considered to be significant at P<0.05, P<0.01 and 
P<0.001 and evaluated by comparing the results of analyzes between 
four replicates of the same recovered cumulus-granulosa cells. The 
statistical calculations were applied to compare all investigated groups 
to the highest normalized proliferation index in each time ratio. The 
GraphPad Prism software, version 4.0 (GraphPad Software, San 
Diego, CA, USA) was used for the statistical calculations.

Results

In this study, we analyzed the cumulus cell proliferation index 
between 0–44 h of IVC and assessed the expression and cellular 
distribution of Cdk4 and Cx43 using confocal microscope observation. 
The normalized cell index was assessed between 0–12 h, 12–24 
h, 0–24 h, 24–44 h and 0–44 h of IVC (Fig. 1A–E), respectively. 
Differences in the proliferation index were found at 0–12 h and 
12–24 h of IVC (P<0.01, P<0.001, respectively) (Fig. 1A and B). 
The proliferation index assessed at 0–24 h, 24–44 h and 0–44 h did 
not vary between groups (Fig. 1C–E).

Using confocal microscopic observation, we analyzed Cx43 (Fig. 
2A–C) and Cdk4 (Fig. 2D–F) expression and cellular distribution 
after 12 h of IVC. The Cx43 and Cdk4 cellular expression was 
determined in the first 12 h of CC proliferation during cultivation. 
Expression of Cdk4 protein was significantly higher in CCs after 
44 h of cultivation compared with its expression before IVC (Fig. 
3A–F). Furthermore, Cdk4 was localized in the nucleus of CCs 
before IVC, whereas after IVC this protein was distributed in the 
cytoplasm of CCs (Fig. 3C and F). Similarly, a substantially increased 
expression of Cx43 was observed after IVC as compared with CCs 
analyzed before IVC (Fig. 4A–F). Moreover, a translocation of Cx43 
from the cell nucleus before IVC to the cytoplasm after IVC was 
observed (Fig. 4C and F).

Discussion

Cumulus cells undergo substantial morphological changes during 
maturation of COCs in vivo and in vitro, which are recognized as 
CC expansion. This process is accompanied by the transfer of large 
amounts of small molecules and substrates between the mature oocyte 
and surrounding somatic cells [15, 21–23]. However, the molecular 
changes, visible as differential expression profiles of genes and proteins 
responsible for COC maturation, are still not fully recognized. It 
was shown in several studies that the achievement of a fully mature 
stage of oocytes is regulated via an appropriate communication 
between the oocyte and the surrounding cumulus-granulosa cells, 
and it is assumed that attainment of the MII stage by the oocyte is 
accompanied by CC expansion [8, 18, 19, 24, 25]. The mechanisms 
responsible for this process are not entirely known. In our study, we 

postulated that the expression and cellular distribution of Cdk4 and 
Cx43 regulate not only oocyte maturation but also the mechanisms 
responsible for cumulus cell differentiation.

Since the bidirectional communication between the oocyte and 
CCs is acknowledged, analysis of the expression of specific proteins 
in oocytes and/or CCs may determine important molecular factors 
regulating oocyte-CC maturation and differentiation. Regassa et al. 
[26] investigated the global expression profile of genes in separated 
bovine oocytes and CCs. They found several hundred genes that were 
differentially expressed when CCs were cultured with or without 
oocytes. A bidirectional effect of cultivation on CCs and oocytes 
was observed because several genes were expressed in oocytes or 
CCs only or in both cell types, respectively. Likewise, we observed 
an expression of Cdk4 and Cx43 proteins in porcine CCs that has 
previously been described in oocytes [1, 27]. This indicates that both 
proteins might play a key role not only during oocyte maturation 
but that they also might regulate processes of CC differentiation. 
The assumption that CC expansion is associated with attainment of 
the MII stage in oocytes is supported only by biochemical data of 
the transfer of substances between oocytes and CCs [8, 23, 28]. Our 
observation of Cdk4 and Cx43 translocation from the nucleus to the 
cytoplasm of CCs during IVC provides clues regarding mechanisms 
of CC differentiation. Translocation of Cx43 and Cdk4 proteins into 
cytoplasm after IVC might be associated with an increased transport 
of molecules between the oocyte and CCs and with acquisition of 
the MII stage. However, in our experiment, we cultured CCs without 
oocytes, and the results indicate that even in a separated culture 
system both Cdk4 and Cx43 exert an effect on CC maturation. 
Almost all previously published data described oocytes enclosing 
cumulus cells and the possible association between oocyte and 
CC communication during IVC procedures [29–31]. In addition to 
the analysis of protein expressions after short-term cultivation of 
separated CC, we recorded in our study the CC proliferation index. 
Differences in the proliferation index were observed only between 
0 h and 24 h of IVC. This period may be interpreted as the adherent 
phase and the pre-proliferation stage. During the subsequent period, 
no differences in the proliferation index were observed, and it can 
be recognized as a stabile period. Besides the translocation of Cdk4 
and Cx43 into the cytoplasm of CCs during 44 h of IVC, the time 
window of 0–20 h of IVC may be crucial for CC growth. Only a few 
studies have shown that CCs may proliferate in vitro, but in all cases, 
this was based on the culture of CC-enclosed oocytes. Gilchrist et 
al. [23] stated that the process of CC expansion may occur without 
oocytes, and this was demonstrated in three out of four examined 
mammalian species. They used porcine and mouse COCs and 
oocyte-free complexes (OOXs) for evaluation the SMAD signaling 
pathway, which contributes to the efficiency of CC expansion. They 
found that inhibition of the ERK1/2 and p38 MAPK pathways affects 
porcine COC expansion. Although they did not culture separated 
CCs, as in our study, it can be concluded that porcine oocyte-free 
CCs may expand during IVC. Our results demonstrated that oocyte 
free-CCs are able to proliferate in vitro, which is presumably related 
to in vitro CC expansion.

For the first time, we could demonstrate the proliferation ability of 
separated oocyte-free CCs in vitro. Moreover, substantial changes in 
the expression and translocation of Cdk4 and Cx43 in CCs during IVC 
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were observed. The results of our study show that the concentration 
levels of both analyzed proteins were higher after IVM. Moreover, 
similarity was also observed in the distribution of proteins, with the 
localization of proteins before IVM being mainly nuclear and after 
IVM being mainly cytoplasmic. Both processes are thought to be 
crucial for full maturation of porcine oocytes.
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Fig. 1. Normalized proliferation index of cumulus cells cultivated for 44 h. The cumulus cells were recovered from porcine COCs after collagenase 
treatment for 10 min at 38.5 C. Then, the CCs were immediately transferred into a real-time cell analyzer (RTCA, E-Plates 48, Roche Applied 
Science, Penzberg, Germany). The experiment consisted of four replications involving cultivation of the same population of collected CCs. At 
every step of the experiment, the normalized proliferation index was assessed in real-time in vitro cultivation for time periods of 0–12 h (A), 
12–24 h (B), 0–24 h (C), 24–44 h (D) and 0–44 h (E).
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Fig. 2. Confocal microscopic observation of Cdk4 and Cx43 expression and cellular distribution in porcine CCsat 0–12 h of IVM. Expression and localization 
of Cx43 (Fig. 2A–C) and Cdk4 (Fig. 2D–F) at the 0–12 h of IVM. CCs were stained with 0.1 µg/ml 4,6-diamino-2-phenylindole (DAPI; Santa Cruz 
Biotechnology, Santa Cruz, CA, USA) in mineral oil (Fig. 2A and D) following staining with porcine Cx43 (rabbit polyclonal anti-Cx43 Ab) (Fig. 2B) 
and Cdk4 (rabbit polyclonal anti-Cdk4 Ab) (Fig. 2E). Secondary antibodies were labeled with FITC (fluorescence isothiocyanate), which emits a green 
fluorescent signal after excitation at 488 nm. Double staining of CCs is presented for Cx43 (Fig. 2C) and Cdk4 (Fig. 2F).

Fig. 1. (Continued)
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Fig. 3.

Fig. 4.
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Fig. 3. Confocal microscopic observation of Cdk4 expression and cellular distribution in porcine CCs before and after IVC. The collected CCs before 
(Fig. 3A–C) and after IVC (Fig. 3D–F) were stained with 0.1 µg/ml 4,6-diamino-2-phenylindole (DAPI; Santa Cruz Biotechnology, Santa 
Cruz, CA, USA) in mineral oil (Fig. 3A and D), following staining with porcine Cdk4 (rabbit polyclonal anti-Cdk4 Ab), (Fig. 3B and E). 
Secondary antibodies were labeled with FITC (fluorescence isothiocyanate), which emits a green fluorescent signal after excitation at 488 nm. 
Double staining of CCs is presented as before (Fig. 3C) and after (Fig. 3F) IVC. The arrows point to the cytoplasmic localization of Cdk4 in 
CCs after IVC. Scale bars represent 10 µm (Fig. 3A–C) and 20 µm (Fig. 3D–F).

Fig. 4. Confocal microscopic observation of Cx43 expression and cellular distribution in porcine CCs before and after IVC. The collected CCs before 
(Fig. 4A–C) and after IVC (Fig. 4D–F) were stained with 0.1 µg/ml 4,6-diamino-2-phenylindole (DAPI; Santa Cruz Biotechnology, Santa 
Cruz, CA, USA) in mineral oil (Fig. 4A and D), following staining with porcine Cx43 (rabbit polyclonal anti-Cx43 Ab), (Fig. 4B and E). 
Secondary antibodies were labeled with FITC (fluorescence isothiocyanate), which emits a green fluorescent signal after excitation at 488 nm. 
Double staining of CCs is presented as before (Fig. 4C) and after IVC (Fig. 4F). The arrows point to the cytoplasmic localization of Cx43 in 
CCs after IVC. Scale bars represent 10 µm (Fig. 4A–C) and 20 µm (Fig. 4D–F).
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