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Abstract1

Inferring past demographic history of natural populations from genomic data is of central concern2

in many studies across research fields. Previously, our group had developed dadi, a widely used3

demographic history inference method based on the allele frequency spectrum (AFS) and maximum4

composite likelihood optimization. However, dadi’s optimization procedure can be computationally5

expensive. Here, we developed donni (demography optimization via neural network inference), a6

new inference method based on dadi that is more efficient while maintaining comparable inference7

accuracy. For each dadi-supported demographic model, donni simulates the expected AFS for a8

range of model parameters then trains a set of Mean Variance Estimation neural networks using the9

simulated AFS. Trained networks can then be used to instantaneously infer the model parameters10

from future input data AFS. We demonstrated that for many demographic models, donni can11

infer some parameters, such as population size changes, very well and other parameters, such12

as migration rates and times of demographic events, fairly well. Importantly, donni provides13

both parameter and confidence interval estimates from input AFS with accuracy comparable to14

parameters inferred by dadi’s likelihood optimization while bypassing its long and computationally15

intensive evaluation process. donni’s performance demonstrates that supervised machine learning16

algorithms may be a promising avenue for developing more sustainable and computationally17

efficient demographic history inference methods.18
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INTRODUCTION19

Inferring demographic history from genomic data has become routine in many research fields,20

from elucidating the anthropological origins and migration patterns of modern and archaic human21

populations (Gutenkunst et al. 2009; Bergström et al. 2020; Marchi et al. 2022; Gopalan et al. 2022),22

to inferring the population genetic trajectories of endangered animals (Mays Jr et al. 2018; Miller-23

Butterworth et al. 2021; Chavez et al. 2022). Accounting for demographic history is also essential in24

setting the appropriate background for detecting signals of natural selection (Nielsen et al. 2005;25

Boyko et al. 2008; Kim et al. 2017), disease associations (Mathieson & McVean 2012), and recombi-26

nation hotspots (Johnston & Cutler 2012). Due to the wide range of possible demographic models27

and high dimensionality of genome sequence data, such analysis often involves computationally28

expensive modeling. As the size of genomic datasets rapidly grows to thousands of full genomes,29

there is a great need for more efficient and scalable methods for extracting information from such30

datasets.31

One class of widely used methods infers demographic history from sequence data summarized32

as an allele frequency spectrum (AFS). An AFS is a multidimensional array with dimension equal33

to the number of populations being considered in a given demographic model. Each array entry34

is the number of observed single nucleotide polymorphisms (SNP) with given frequencies in the35

sampled populations. For example, the [1,2] entry would count SNPs that were singletons in the36

first population and doubletons in the second. A major advantage of using the AFS as a summary37

statistic is the ease of scaling to whole genome data (Marchi et al. 2021), as it efficiently reduces the38

high dimensionality of population genomic data. AFS-based inference methods are, therefore, often39

fast and suitable for exploring many demographic models (Spence et al. 2018). Given its wide use in40

countless empirical studies, much progress has been made towards understanding the theoretical41

guarantees and limitations of the AFS and AFS-based inference (Myers et al. 2008; Achaz 2009;42

Bhaskar & Song 2014; Terhorst & Song 2015; Baharian & Gravel 2018).43

Demographic inference methods based on the AFS often work by maximizing the composite44

likelihood of the observed AFS under a user-specified demographic history model with parameters45

such as population sizes, migration rates, and divergence times (Coffman et al. 2016). The expected46
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AFS can be computed via a wide range of approaches (Gutenkunst et al. 2009; Naduvilezhath et al.47

2011; Lukić & Hey 2012; Excoffier et al. 2013; Kern & Hey 2017; Jouganous et al. 2017; Kamm et al.48

2017) with varying degrees of computational expense, model flexibility, and scalability. Because49

this is the most computationally intensive step in the procedure, new methods developed thus far50

have focused on devising algorithms to speed up AFS calculation (Jouganous et al. 2017; Kamm51

et al. 2017, 2020). However, not much attention has been given to optimizing how the computed52

AFS is stored and used for inference. In a typical likelihood optimization procedure, hundreds to53

thousands of expected AFS are computed and compared to the data to obtain the best-fit parameter54

set. These generated AFS and their corresponding demographic parameters contain information55

regarding the mapping between the AFS and demographic parameters but are discarded after each56

optimization run. As there are often a few common demographic models regularly used across57

studies, if these simulated data could be captured, stored, and distributed for future use, individual58

groups as well as the research community as a whole could save a lot of time and computational59

effort by avoiding unnecessary repetition.60

The mapping between the AFS and its associated demographic history model parameters can61

be efficiently captured by supervised machine learning (ML) algorithms. Given a training data62

set with feature vectors (AFS — input) and labels (demographic history parameters — output),63

these algorithms can learn the function mapping from the input to the output. While training64

ML algorithms can be computationally intensive up front, subsequent inference from trained65

models will have minimal cost (Schrider & Kern 2018). ML algorithms have been widely adopted in66

population genetics over the past decade, thanks to their efficiency and flexibility. Several studies67

have used supervised ML algorithms such as random forest (RF) and multilayer perceptron (MLP)68

with AFS as training data for demographic model selection and demographic parameter inference69

(Sheehan & Song 2016; Smith et al. 2017; Villanea & Schraiber 2019; Mondal et al. 2019; Lorente-70

Galdos et al. 2019; Sanchez et al. 2021). In Smith et al. (2017) specifically, the RF algorithm was71

used to replace the rejection step in the approximate Bayesian computation (ABC) framework,72

significantly improving overall efficiency (Pudlo et al. 2016). This improvement in efficiency was73

in part due to more efficient use of simulated data. Whereas in a typical ABC procedure, any74
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Figure 1: Schematic of the workflow for training and testing donni. For a given demographic
model (A), we drew sets of model parameters (B) from a biologically relevant range (Table 1).
Each parameter set represents a demographic history and corresponds to an expected AFS. These
parameters were input into simulator programs (C) to generate training and test AFS (D). We use
the expected AFS simulated with dadi and their corresponding parameters as training data for
donni’s MVE networks (E). We generated test data either by Poisson sampling from dadi-simulated
AFS or by varying recombination rates with msprime, resulting in a change in variance compared
to training AFS. The output of donni’s trained networks includes both inferred parameters and
their confidence intervals (F).

simulations beyond a threshold of difference to the data will be discarded, there all simulations75

were used as input for training the RF classification algorithm. The same principle can be applied76

in the maximum likelihood optimization and regression framework, where an ML algorithm can77

be trained by simulated AFS to provide estimates of demographic parameter values, bypassing78

likelihood optimization.79

NEW APPROACHES80

Here, we introduce donni (Demography Optimization via Neural Network Inference), a supervised81

ML extension to dadi, a widely used AFS-based method for inferring models of demographic82

history (Gutenkunst et al. 2009) and natural selection (Kim et al. 2017). dadi computes the ex-83

pected AFS by numerically solving a diffusion approximation to the Wright-Fisher model and uses84

composite-likelihood maximization to fit the model to the data. While the initial implementation85
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of the software could only handle up to three populations, a recent update supports up to five86

populations (Gutenkunst 2021). donni uses dadi to generate AFS and demographic parameter labels87

for training Mean Variance Estimation (MVE) networks (Nix & Weigend 1994) (Fig. 1). Researchers88

can then use donni’s trained MVE networks to instantaneously infer the parameter values and their89

associated uncertainty from future AFS input data, obviating the need for likelihood optimization.90

donni supports a wide range of common demographic parameters that dadi supports, including91

population sizes, divergence times, continuous migration rates, inbreeding coefficients, and an-92

cestral state misidentification ratios. We show that donni has inference accuracy comparable to93

dadi but requires less computational resource, even after accounting for the cost of training the94

MVE networks. Our library of trained networks currently includes all demographic models in the95

dadi API as well as the models from Portik et al. (2017) pipeline. The supported sample sizes are96

10, 20, 40, 80, and 160 haplotypes per population (up to 20 haplotypes only for three-population97

models). For users who only need to use the trained networks for available demographic models,98

almost no computation is required. For users who require custom models, we also provide our99

command-line interface pipeline for generating trained models that can save time compared to100

running likelihood optimization with dadi. Furthermore, the custom models produced can be101

contributed to our growing library and shared with the community.102

RESULTS103

Choice of MVE network for demographic history model parameter estimation with uncertainty104

We wanted to develop a supervised ML method that can infer not only the demographic history105

parameters but also their associated uncertainties. Uncertainty estimation has not been the focus of106

previous supervised neural-network-based approaches in demographic history inference (Sheehan107

& Song 2016; Flagel et al. 2019). There are several techniques for constructing a prediction interval108

from neural-network-based point estimation as reviewed by (Khosravi et al. 2011). Among them, the109

MVE method is one of the most conceptually straightforward and least computationally demanding,110

which are important factors for our goal of improving efficiency.111

An MVE network is a feedforward neural network with two output nodes, one for the mean112
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and one for the variance (Fig. 1E). This approach provides an uncertainty estimate in a regression113

setting by assuming that the errors are normally distributed around the mean estimation. For114

demographic history inference, the mean is the value of the demographic history model parameter115

we want to infer. We can construct confidence intervals using the normal distribution defined by116

the output mean and variance estimates. There are different implementations of the feedforward117

network architecture for MVE network (Sluijterman et al. 2023). Our implementation is a fully118

connected network, similar to the MLP, in which all hidden layer weights are shared by the mean119

and variance output nodes.120

Variance in allele frequencies affects donni training and performance121

Since the AFS is the key input data in our method, we first considered how different levels of122

variance in the AFS might affect training and performance of the MVE networks underlying donni.123

While the expected AFS computed by dadi under a given set of demographic model parameter gives124

the mean value of each AFS entry, AFS summarized from observed data will have some variance.125

We asked whether training the network on AFS with some level of variance or AFS with no variance126

would lead to better overall performance. When generating AFS simulations, we modeled such127

variance in the AFS by Poisson-sampling from the expected AFS (examples in Fig. S1A and S2B-D.)128

We implemented four levels of AFS variance: none, low, moderate, and high in AFS used for training129

and testing. We then surveyed the inference accuracy for all pairwise combinations for each type of130

variance in training sets versus test sets.131

Overall, we found that networks trained on AFS with no to moderate level of variance perform132

similarly across all variance levels in test AFS (Fig. S3-S6 for the split-migration model). High133

variance in training AFS led to substantially poorer performance in parameters that are more134

difficult to infer, such as time and migration rate. The population size change and ancestral state135

misidentification parameters were the least affected by AFS variance, and inference accuracy136

remained similarly high across all variance scenarios. For the time parameter, training on AFS137

with moderate variance produced the best-performing accuracy across all test cases (Fig. S4).138

However, for the migration rate parameter, training on AFS with no variance produced the overall139

best-performing accuracy (Fig. S5). We concluded that for subsequent analyses and model library140
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production for donni, we would train using AFS with no variance, since there was no clear benefit141

from adding an extra variance simulation step in training. For test AFS, we would use AFS with142

moderate level of variance to better match real data.143

donni is efficient and has comparable inference accuracy to dadi144

Since we built donni to be an alternative to dadi’s likelihood optimization, we compared with145

dadi in our performance analysis. We validated the inference accuracy of donni for three models: a146

two-population model with an ancestral population split and symmetric migration between the147

populations (split-migration model, Fig. 2A), a one-population model with one size change event148

(two epoch model, Fig. 3A), and a three-population model for human migration out of Africa (the149

OOA model, Fig. 5A) from Gutenkunst et al. (2009). We also compared the computational efficiency150

of donni and dadi for two different sample sizes of the split-migration model.151

For the split-migration model, donni was able to infer all demographic history parameters152

with accuracy comparable to dadi (Fig. 2B-I). The population size change parameters ν1 and ν2 were153

inferred very well by both donni (Fig. 2B, C) and dadi (Fig. 2F, G). The time parameter T (Fig. 2D, H)154

and migration rate m (Fig. 2E, I) were more difficult to accurately infer for both methods, with dadi155

having trouble optimizing parameter values close to the specified parameter boundary (Fig. 2E). We156

used Spearman’s correlation coefficient ρ to quantify the monotonic relationship between the true157

and the inferred parameter values, similar to Flagel et al. (2019). For a more direct measurement of158

inference accuracy, we also provide the RMSE scores for all models in Table S1.159

To compare the efficiency of donni and dadi, we benchmarked the computational resources160

required by each method to infer demographic parameters from the same 100 test AFS (Fig. 2J-K).161

Since inferring parameters with donni’s trained networks is computationally trivial, we instead162

measured the resources required by donni to generate trained networks. For both methods, compu-163

tation was substantially more expensive as the sample size increased from 20 haplotypes to 160.164

For dadi (Fig. 2J), there was a spread of optimization runtime among the 100 test AFS, with several165

difficult spectra requiring more than 500 CPU hours to reach convergence for both sample sizes. By166

comparison, the computation required for donni (Fig. 2K), including generating training data with167
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Figure 2: Inference accuracy and computing time of donni and dadi for a two-population model.
(A) The two-population split-migration model with four parameters: ν1 and ν2 are relative sizes
of each population to the ancestral, T is time of split, and m is the migration rate. (B-I) Inference
accuracy by donni (B-E) and dadi (F-I) for the four parameters on 100 test AFS (sample size of 20
haplotypes). (J) Distribution of optimization times among test data sets for dadi. (K) Computing
time required for generating donni’s trained networks for two sample sizes. Generate data includes
computing time for generating 5000 dadi-simulated AFS as training data. Tuning & training is the
total computing time for hyperparameter tuning and training the MVE network using the simulated
data.
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dadi, hyperparameter tuning and training, was less than the average time required for running168

dadi optimization on a single AFS. This result suggests that donni may benefit many cases where169

dadi optimization can take a long time to reach convergence.170

Fig. 2K also suggests that generating the expected AFS with dadi is computationally expensive,171

often equivalent to if not more so than tuning and training a network. Such expensive operations172

are indeed what we aimed to minimize with donni. During each dadi optimization, a large number173

of expected AFS are also calculated. As opposed to discarding all these expensive calculations after174

each dadi optimization, donni’s trained network effectively captures the mapping between the175

expected AFS and demographic history model parameter values in its network weights, which can176

be reused instantaneously in the future.177

donni accurately estimates uncertainty of inferred parameter values178

Sometimes, demographic model parameters may be unidentifiable, because multiple parameter sets179

generate nearly identical AFS. As a simple example, we considered the one-population two epoch180

model (Fig. 3A), which is parameterized by the relative size ν of the contemporary population and181

the time at which the population size changed T. For this model, donni inferences are inaccurate182

when T/ν is large (Fig. 3B-C). In this parameter regime, over the time T after the size change, the183

AFS relaxes back to that of an constant-sized equilibrium population. Therefore, in this case, the184

true parameters are unrecoverable because the AFS itself does not have the appropriate signal to185

infer them. While this problem may be avoided if users follow the best practice for model selection186

of exploring simpler models before complex ones (Marchi et al. 2021), it also highlights the need187

for uncertainty quantification, where a wide confidence interval would appropriately indicate188

problematic inference.189

Using the variance output from the trained MVE networks, donni can calculate any range of190

confidence intervals specified by the user for each inferred parameter. We validated our uncertainty191

quantification approach by measuring the observed coverage for six confidence intervals: 15, 30,192

50, 75, 80, and 95% intervals (details in Materials & Methods). For the two-epoch model, our193

approach provided well-calibrated confidence intervals (Fig. 3D). Considering individual test AFS,194
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Figure 3: Uninformative AFS affecting inference accuracy and uncertainty quantification method
validation. (A) The one-population two-epoch model with two parameters, ν for size change and
T for time of size change. (B-C) Inference accuracy for ν and T by donni on 100 test AFS, colored
by simulated T

ν values. (D) Confidence interval coverage for ν and T by donni. The observed
coverage is the percentage of test AFS that have the simulated parameter values captured within
the corresponding expected interval. (E-F) As an example, we show details of the 95% confidence
interval data points from panel D for 100 test AFS. The simulated values for ν (E) and T (F) of
these AFS are colored by their T

ν values, similar to panels B-C. donni’s inferred parameter values
and 95% confidence interval outputs are in brown. The percentage of simulated color dots lying
within donni’s inferred brown interval gives the observed coverage at 95%. The light shades are the
simulated parameter range (Table S2) used in simulating training and test AFS. The 100 test AFS are
sorted along the x-axis using true T

ν values.
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the uninformative AFS yielded appropriately wide confidence intervals (Fig. 3E-F, yellow points).195

We found that confidence intervals were similarly well-calibrated for the split-migration model196

(Fig. S7).197

donni is not biased by linkage between alleles198

The Poisson Random Field model underlying dadi (Sawyer & Hartl 1992) and thus donni assumes199

independence of all genomic loci in the data, which is equivalent to assuming infinite recombination200

between any pair of loci. But loci within close proximity on the same chromosome are likely sorted201

together during recombination and therefore linked. To assess how linkage affects donni inference,202

we tested donni’s networks that were trained on dadi-simulated AFS without linkage on test AFS203

simulated with msprime, a coalescent simulator that includes linkage (Baumdicker et al. 2022). These204

msprime-simulated test AFS (examples in Fig. S1B and S2E-G) represent demographic scenarios205

similar to those in dadi but also include varying levels of linkage under a range of biologically206

realistic recombination rates. Since smaller recombination rates lead to more linkage and further207

departure from the training data assumption, we tested donni on AFS with decreasingly small208

recombination rates down to r = 10−10 crossover per base pair per generation, which is two orders209

of magnitude smaller than the average recombination rate in humans.210

Population size parameters ν were inferred well no matter the recombination rate, but the211

inference accuracy for T and m decreased as the recombination rate decreased (Fig. 4). Confidence212

intervals were well calibrated at the higher recombination rates (Fig. 4A&E), but too small at the213

lowest recombination rate (Fig. 4I). These patterns are similar to those we found when testing214

the effects of AFS variance by Poisson-sampling from expected AFS with dadi (Fig.S3-S7), where215

accuracy decreased with higher variance, and confidence intervals were underestimated at the216

highest variances. Note that at r = 10−10, linkage disequilibrium often extends entirely across the217

simulated test regions, so in this regime methods assuming zero recombination, such as IMa3 (Hey218

et al. 2018), may be more appropriate. Importantly, even though more linkage did lead to higher219

variance in the estimated parameter values, we did not observe bias in our inferences.220

Comparison with dadi for the Out-of-Africa model221

11

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 15, 2024. ; https://doi.org/10.1101/2023.05.24.542158doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.24.542158
http://creativecommons.org/licenses/by-nc/4.0/


Inferrence accuracyConfidence interval
coverageA B C D

E F G H

I J LK

r = 10-8

r = 10-9

r = 10-10

Figure 4: donni’s inference accuracy and uncertainty quantification coverage on msprime-
simulated test AFS with linkage. Each row shows the confidence interval coverage and inference
accuracy for select parameters of the split-migration demographic model (Fig. 2A) at varying
recombination rate. Recombination rate decreases from top to bottom row, corresponding to in-
creased linkage and variance in the msprime-simulated test AFS. The same networks (train on
dadi-simulated AFS) were used in this analysis as in Fig. 2F-I.

12

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 15, 2024. ; https://doi.org/10.1101/2023.05.24.542158doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.24.542158
http://creativecommons.org/licenses/by-nc/4.0/


We tested donni on the three-population Out-of-Africa (OOA) model with 6 size change parameters,222

4 migration rates, and 3 time parameters (Fig. 5A). In general, we observed a similar pattern223

to previous models; size change parameters were often easier to infer than times or migration224

rates (Fig. 5). For example, both donni and dadi showed near perfect inference accuracy for νA f225

(Fig. 5B&G). They both also performed well for the for νEu, νAs and misid parameters (Fig. S8). But226

several parameters were challenging for both methods, including some size change parameters,227

such as νAs0 (Fig. 5C,H), νB and νEu0 (Fig. S8). The time parameters proved to be the most challenging228

with relatively lower accuracy for both methods, with TA f (Fig. 5D,I and TB S8) being particularly229

difficult. Overall, both methods agree on the parameters that are easy versus difficult to infer.230

However, when inference accuracy is poor on difficult parameters, dadi and donni tend to231

have different failure patterns. For instance with the mA f B parameter, dadi tended to get stuck232

at the parameter boundaries for many AFS (Fig. 5J), while donni essentially inferred the average233

value for all test AFS (Fig. 5E). This indicates a failure by donni to learn any information from the234

training AFS for this particular parameter. For all other migration rate parameters in the model,235

donni performs well, matching dadi (Fig. S8).236

While performance varied between the two methods among parameters, donni still had com-237

parable accuracy to dadi in most cases. donni was also able to produce well calibrated confidence238

intervals for all parameters (Fig. 5F). Due to the computational expense of dadi optimization for this239

model, we only analyzed 30 test AFS for direct comparison between donni and dadi. Since donni240

is not as computationally constrained, we also tested donni on all 1000 test AFS per our standard241

procedure, finding similar results (Table S1).242

Finally, we investigated the empirical AFS data from (Gutenkunst et al. 2009) using donni’s243

trained MVE networks for the Out-of-Africa demographic model (S3). We found that donni’s244

estimates differ from dadi’s to varying degrees across the parameters. The similarity in accuracy245

pattern between donni and dadi in Fig. 5 and Fig. S8 does not translate to similar inference values246

between the two approaches on these data. For example, donni and dadi have similarly high247

accuracy patterns for νAs but have very different estimates on the empirical AFS data (νAs = 7.29248

for dadi and νAs = 1.276 for donni). For this model, donni also tends to infer a stronger migration249
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Figure 5: Inference accuracy compared with dadi and confidence interval coverage by donni
for the Out-of-Africa demographic model. (A) The three-population Out-of-Africa model with
14 demographic history parameters. (B-E) Inference accuracy for representative parameters on 30
simulated test AFS inferred by donni. (G-J) Inference accuracy for the same parameters and 30
test AFS inferred by dadi. Each of the 30 test AFS is represented by a different color dot. For the
accuracy of the rest of the parameters see Fig. S8. (F) donni confidence interval coverage for all
model parameters.

rate than dadi does, with a higher estimate across all four migration rate parameters. Despite these250

differences in the estimated parameter values, dadi’s estimates are within donni’s 95% confidence251

intervals for all parameters.252

donni’s trained networks are accessible253

Given its speed, we expect that donni will be useful for quickly exploring many demographic254

scenarios given a user’s data set. To support this, we have produced trained networks for a large255

collection demographic history models. These include five one-population and eight two-population256

models from the current dadi API, plus the 34 two-population and 33 three-population models257

from Portik et al. (2017). For each of these models, we provide trained networks for unfolded258

and folded AFS for each of five sample sizes (only two sample sizes for three-population models).259

For large-scale production, we developed a comprehensive command-line interface pipeline for260

generating training data, tuning hyperparameters, and assessing the quality of the trained networks.261

donni’s pipeline is open-source and available on GitHub (https://github.com/lntran26/donni) for262

14

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 15, 2024. ; https://doi.org/10.1101/2023.05.24.542158doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.24.542158
http://creativecommons.org/licenses/by-nc/4.0/


users interested in training custom models. The trained network library is available on CyVerse263

(Merchant et al. 2016; Center 2011) and donni’s command-line interface will automatically download264

appropriate networks. The library also included all accuracy and confidence interval coverage plots265

for all supported demographic history models.266

DISCUSSION267

We addressed dadi’s computationally intensive optimization procedure by developing donni, a268

new inference method based on a supervised machine learning algorithm, the MVE network. We269

found that donni’s trained MVE networks can instantaneously infer many demographic history270

parameters with accuracy comparable to dadi on simulated data. Even when including comput-271

ing time required for training the network networks, for many cases donni is faster than dadi’s272

maximum likelihood optimization. Users are also provided a confidence interval for each inferred273

demographic history model parameter value from donni. Through examples of one-, two-, and274

three-population demographic models, we demonstrated that donni’s uncertainty quantification275

method works well for a wide range of demographic parameters. We also showed that donni works276

well for AFS simulated by msprime, which includes linkage.277

Our approach of using supervised machine learning to reduce the computational expense of278

the maximum likelihood optimization step is similar in spirit to Smith et al. (2017) using random279

forests to improve the efficiency of the computationally intensive ABC procedure. While Smith280

et al. (2017) developed a classification approach for demographic model selection, our method is a281

regression approach, where we provide a suite of pre-trained regressors for many commonly used282

demographic history models. Users can quickly explore many possible scenarios and get an estimate283

for several demographic parameters based on their input AFS data. However, we caution users to284

always start with simpler models first before trying more complex ones, to avoid exacerbating the285

uninformative parameter space problem. While we have implemented an accompanying uncertainty286

quantification tool to aid in identifying such problematic scenarios, best practices in model-based287

inference should still be followed.288

Our choice of AFS as input data for training the network algorithm has several limitations.289
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First, because the size of the AFS depends on the sample size but the network requires a fixed290

input size, we have to train a different set of networks for different sample sizes within the same291

demographic history model. Different sets of trained networks are also required for unfolded292

versus folded AFS. We have limited our trained network library to sample sizes of 10, 20, 40, 80,293

and 160 haplotypes per population. User data that don’t match exactly these sample sizes will be294

automatically down-projected (Marth et al. 2004) by donni to the closest available option, leading295

to some data loss. It is, however, possible to use donni’s pipeline to train custom models that can296

support a different sample size. We also verified that donni still provides accurate inference and297

well-calibrated confidence intervals on down-projected data (Fig. S9).298

Second, for optimal network performance, we need to normalize the AFS data for training,299

leading to the loss of information about the parameter θ = 4NaµL, where Na is the ancestral effective300

population size, µ is the mutation rate and L is the sequence length. Estimating θ is required for301

converting all demographic parameters in genetic units to absolute population sizes and divergence302

times. While donni can provide a point estimate for θ, it cannot provide the uncertainty, which303

is necessary for estimating the uncertainty of absolute parameter values. This limitation can be304

overcome with a hybrid approach between donni and dadi, where donni’s inferred parameter305

outputs become the starting point for dadi’s optimization procedure and uncertainty estimation306

(Coffman et al. 2016). While this approach requires running likelihood optimization, a good starting307

value provided by donni should reduce overall computing time.308

donni trains a separate MVE network for each parameter in a given demographic history309

model, even though the model parameters are correlated. This is a limitation of our implementation,310

because the canonical MVE network architecture includes only one node for the mean and one311

node for the variance. It may be possible to add additional nodes to output means, variances,312

and covariances from a single network, but we found that this often affects the overall inference313

quality of the trained MVE network. Additionally, we tested an alternative multi-output regression314

approach (the scikit-learn Multilayer-Perceptron Regressor) and found that our single-output315

approach provided similarly accurate estimates (Fig. S10). To our knowledge, existing methods for316

estimating uncertainties of multi-output neural network regressions are limited.317
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At its heart, the neural network approach of donni corresponds to a nonlinear regression of318

model parameters on AFS entries, in contrast to existing approaches which typically maximize a319

composite likelihood through optimization. Neural networks can be used to estimate likelihoods320

(e.g., Tejero-Cantero et al. (2020)), which could then be optimized or sampled over, but here we321

prefer the more direct regression approach. Although dadi and donni display comparable overall322

accuracy (Fig. 2&5), they may differ when applied to any given data set (Table S3), reflecting323

differences between regression and composite likelihood optimization.324

In conclusion, our results indicate that using supervised machine learning algorithms trained325

with AFS data is a computationally efficient approach for inferring demographic history from326

genomic data. Despite implementation limitations discussed above, the AFS is fast to simulate327

compared to other types of simulated data such as genomic sequence images (Flagel et al. 2019;328

Sanchez et al. 2021) or coalescent trees (Baumdicker et al. 2022; Kelleher et al. 2016). Furthermore,329

while ignoring linkage may be a weakness of AFS-based methods, it can also be a strength in that330

it is more species-agnostic and therefore trained models are transferable among species. A major331

challenge for AFS-based methods such as ours is the poor scaling to large sample sizes and number332

of populations, where the AFS matrix becomes high dimensional and sparse, and simulation333

becomes prohibitively expensive. While we limited this study to three-population models, there334

have been major improvements in AFS-based methods that can handle more (Gutenkunst 2021;335

Jouganous et al. 2017; Kamm et al. 2017, 2020). Given our results, a supervised machine learning336

approach might be a promising next step to extend to such AFS-based methods to further improve337

their computational efficiency.338

MATERIALS AND METHODS339

Simulations with dadi340

We used dadi v.2.3.0 (Gutenkunst et al. 2009) to simulate AFS for training and testing the networks.341

For each demographic model, we uniformly drew parameter sets from a biologically relevant range342

of parameters (Table S2). We then generated each expected AFS by specifying the demographic343

model and parameters in dadi. We calculated the extrapolation grid points used for dadi inte-344
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gration based on the number of haplotypes per population according to Gutenkunst (2021) for345

one-population models. For models with more than one population, we used the same formula but346

also increased the grid points by a factor of 1.5 for each additional population. The demographic347

model parameter values are used as labels for the generated AFS data. To simulate AFS with348

different levels of variance, we started with the original expected AFS set (no variance). We then349

Poisson-sampled from the expected AFS to generate a new AFS with variance. We controlled the350

level of variance by the parameter θ, by which we multiplied the expected AFS before sampling. We351

used θ = 10000, 1000, and 100 corresponding to low, moderate, and high levels of variance, respec-352

tively (Fig. S3-S7.) Intuitively, modifying θ = 4NaµL is equivalent to altering the effective number353

of sites surveyed L. Assuming µ ∼ 10−8 and Na ∼ 104, θ = 1000 is equivalent to L ∼ 2.5 × 106 sites.354

Smaller θ is equivalent to fewer sites surveyed, hence noisier AFS. Finally, we normalized both355

expected and Poisson-sampled AFS for training and testing. The results shown in Fig. 2,3,5, and S8356

are based on unfolded AFS with sample size of 20 haplotypes per population.357

Simulations with msprime358

We used msprime v1.2.0 (Baumdicker et al. 2022) to simulate AFS from demographic history models359

while including linkage. We first specified dadi-equivalent demography in msprime for the two360

epoch and split-migration models. This included the population size change ratio ν and time of361

change T parameters for the two epoch model, and population size change ratios ν1 and ν2, time T362

of split, and migration rate m for the split-migration model. We then specified additional parameters363

required for msprime to yield θ = 4NALµ = 40, 000, with ancestral population size NA = 10, 000,364

sequence length L = 108 base pairs, and mutation rate µ = 10−8 per base pair per generation.365

We used three recombination rates 10−8, 10−9, and 10−10 per base pair per generation to simulate366

different levels of linkage and variance in the AFS. We then generated tree-sequence data with367

msprime before converting to the corresponding unfolded AFS of sample size 20 haplotypes per368

population and normalizing for testing with trained networks.369

Network architecture and hyperparameter optimization370

We used TensorFlow v2.12.1 and Keras v2.12.0 to generate all trained MVE networks for donni.371
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These networks have two fully connected hidden layers containing between 4 and 64 neurons. The372

exact number of neurons in each hidden layer are hyperparameters that were automatically selected373

via our tuning procedure described below. The input layer is a flattened AFS with varying sizes374

depending on the sample size and whether it is a folded or unfolded AFS. The output layer has two375

nodes for the mean and variance of one demographic history parameter. For tuning and training the376

network, we implemented a custom loss function based on the negative log-likelihood of a normal377

distribution:378

L(θ) =
N

∑
i=1

1
2

log
(
σ2

θ (xi)
)
+

1
2
(yi − µθ(xi))

2

σ2
θ (xi)

For automatic hyperparameter tuning, we used the HyperBand and RandomSearch tuning379

algorithms available in keras-tuner v.1.4.6. The 5000 AFS training data set was split 80% for training380

and 20% for validation. For a given network, we first used HyperBand to optimize both the381

hidden layer size and learning rate. We then kept the MVE network from HyperBand with the382

best performance on the validation data, froze the hidden layer size, and then continued tuning383

only the learning rate using RandomSearch. The MVE network with the best performance on the384

validation data after RandomSearch is then selected for subsequent training on the full training385

data. All hyperparameter configurations and non-default settings for the tuning algorithms are386

listed in Table S4.387

Uncertainty quantification coverage388

For uncertainty quantification, the trained MVE network outputs a variance for each inferred389

demographic history parameter. donni pipeline converts this variance to confidence intervals using390

the normal distribution. To validate our uncertainty quantification method, we first obtained the391

method’s estimation for six confidence intervals, 15, 30, 50, 80, 90, and 95% on all test AFS. We then392

get the observed coverage by calculating the percentage of test AFS that have their corresponding393

simulated parameter value captured within the estimated interval. The expected versus observed394

percentages are plotted in our confidence interval coverage plots.395

donni training and testing pipeline396

We used 5,000 AFS (no variance) for training and tuning and 1,000 AFS (moderate variance,397
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θ = 1000) for accuracy and uncertainty coverage validation. For visualization, only 100 test AFS398

(30 AFS for the out-of-Africa model) are shown to compare with dadi. However, accuracy scores399

by donni on all 1000 test AFS are provided in Table S1. Our pipeline tunes and trains one network400

for each demographic model parameter and sample size. For example, the two epoch model with401

two parameters ν and T has 20 independently trained networks: 2 networks for ν and T times 5402

supported sample sizes times 2 polarization states.403

Likelihood optimization with dadi-cli404

To infer demographic parameters for a large number of test AFS in parallel (100 AFS for the405

split-migration model and 30 AFS for the out-of-Africa model), we used dadi’s command-line406

interface (Huang 2023). We specified the upper and lower bound values for optimization based407

on the parameter range provided in Table S2. Optimization ran until convergence, as defined by408

δlog(L) = 0.0005 for the Out-of-Africa model and δlog(L) = 0.001 for the split-migration model.409

Benchmarking dadi optimization and donni pipeline410

To benchmark the computational expense required for dadi optimization versus for training the411

networks, we used 10 CPUs on a single computing node for each task. For donni, the tasks are412

generating training AFS, hyperparameter tuning with HyperBand, and training using the tuned hy-413

perparameters. Estimating demographic parameters for 100 test AFS with donni’s trained networks414

is nearly instantaneous. For dadi, each test AFS is a task that was optimized until convergence, at415

which time was recorded, or until the specified cut-off time (50 hours × 10 CPUs = 500 CPU hours).416
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Supporting Information536

Poisson-sampling with dadiA B Varying r with msprime

Figure S1: Simulated AFS examples with different variance for the two epoch model. All AFS are
normalized and plotted on the same scale. The "No variance" line in both panels is the expected
AFS generated by dadi with ν = 0.8, T = 0.5 (A) AFS with different variance by Poisson-sampling
from the "No variance" AFS. (B) msprime-simulated AFS with equivalent demography to (A) but
with varying recombination rates. Here θ = 4NaµL = 4 × 103 (with µ = 10−8 per nucleotide per
generation and L = 108 base pairs).
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L ~ 2.5x10⁷ L ~ 2.5x10⁶ L ~ 2.5x10⁵

Figure S2: Simulated AFS examples with different variance for the split-migration model. All
AFS are normalized and plotted on the same scale. (A) Expected AFS generated by dadi with ν1 = 1,
ν2 = 0.5, T = 2, m = 5. (B-D) AFS with different variance by Poisson-sampling from (A). (E-G)
msprime-simulated AFS with equivalent demography as in (A) under varying recombination rates.
Entries below 10−5 are masked.
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Figure S3: The effects of AFS variance on donni training and performance for the split-migration
model size-change parameter ν1. Each row corresponds to different levels of variance in training
AFS, and each column corresponds to different levels of variance in test AFS. For example, the third
panel from the left in the top row is the inference accuracy of a network trained on AFS with no
variance tested on AFS with moderate levels of variance (θ = 1000 or L ∼ 2.5 × 106 sites surveyed).
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Figure S4: The effects of AFS variance on donni training and performance for the split-migration
model time parameter T. Panels are as in Fig. S3.
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Figure S5: The effects of AFS variance on donni training and performance for the split-migration
model migration rate parameter m. Panels are as in Fig. S3.
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Figure S6: The effects of AFS variance on donni training and performance for the split-migration
model ancestral state misidentification parameter. Panels are as in Fig. S3.
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Figure S7: The effects of AFS variance on donni’s uncertainty quantification method for the
split-migration model. Panels are as in Fig. S3.
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Figure S8: Inference accuracy of dadi and donni on the rest of Out-of-Africa model parameters.
Each of the 30 test AFS is represented by a different color dot as in Fig. 5.

32

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 15, 2024. ; https://doi.org/10.1101/2023.05.24.542158doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.24.542158
http://creativecommons.org/licenses/by-nc/4.0/


Figure S9: Inference accuracy and confidence interval calibration by donni on down-projected
test AFS for the split-migration model. We simulated 100 test AFS with sample size 39 haplotypes
per population then projected them to sample size 20 haplotypes per population. Top row is the
result for test AFS projected from moderate variance (θ = 1000) AFS and bottom row is for test AFS
projected from high variance (θ = 100) AFS.
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Figure S10: Inference accuracy by scikit-learn multi-output network compared with donni’s
single-output network for the split-migration model with sample sizes 20 and 160 haplotypes
per population. scikit-learn multi-output network is one network network trained to predict all
parameters in a demographic model, whereas donni trains a single network for each parameter. We
used the same test AFS simulated with moderate variance (θ = 1000) for sklearn and donni.
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Table S1: donni inference accuracy on 1000 test AFS with moderate variance (θ = 1000) and the best
hidden layer sizes (HLS) architecture for demographic history models in this study.

Model Parameter RMSE Spearman’s ρ network architecture (HLS)
1-population ν 201.9 0.714 (64, 12)
Two epoch T 0.72 0.514 (48, 9)
(ns = 20 haplotypes) misid 0.037 0.905 (64, 12)
2-population ν1 16.223 0.981 (48, 12)
Split Migration ν2 10.713 0.977 (64, 12)
(ns = 20 haplotypes T 0.444 0.65 (32, 16)
per population) m 2.008 0.714 (48, 12)

misid 0.019 0.968 (48, 8)
2-population ν1 7.616 0.987 (64, 16)
Split Migration ν2 5.828 0.985 (48, 12)
(ns = 160 haplotypes T 0.455 0.609 (48, 8)
per population) m 1.927 0.736 (64, 16)

misid 0.012 0.987 (64, 8)
3-population νA f 11.504 0.985 (64,16)
Out of Africa νB 23.7371 0.495 (64, 16)
(ns = 20 haplotypes νEu0 22.609 0.451 (48, 8)
per population) νEu 17.67 0.921 (48, 16)

νAs0 24.06 0.405 (64, 16)
νAs 14.435 0.934 (64, 16)
TA f 0.299 0.435 (64, 4)
TB 0.322 0.366 (48, 12)
TEuAs 0.303 0.515 (64, 12)
mA f B 2.919 0.092 (64, 16)
mA f Eu 2.038 0.733 (16, 16)
mA f As 2.075 0.712 (64, 8)
mEuAs 2.171 0.676 (64, 12)
misid 0.014 0.987 (48, 16)

Table S2: dadi demographic parameter range used for simulation in this
study.

Parameter Symbol Lower bound Upper bound
Population size change ν 0.01 100
Time of event(*) T 0.01 2
Migration rate m 0 10
Ancestral state misidentification misid 0 0.25
* For models with more than one T parameter, the range specified for time

T applies to the sum of all T parameters (Tsum). For each demographic
model, we drew different Tsum values according to the desired number of
data sets. For each data set, we then drew a set of T parameters that sum
to Tsum by sampling from the Dirichlet distribution.
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Table S3: donni inferred compared to dadi
inferred parameter values in genetic units
for the Out-of-Africa model using data from
(Gutenkunst et al. 2009).

Parameter dadi donni donni 95% C.I.
θ 2788.2 2644.9* n.a.

νA f 1.68 2.029 0.877 - 4.695
νB 0.287 0.192 0.011 - 3.500

νEu0 0.129 0.145 0.004 - 5.627
νEu 3.74 1.068 0.149 - 7.658

νAs0 0.070 0.045 0.001 - 2.433
νAs 7.29 1.276 0.200 - 8.135

mA f B 3.65 5.089 -0.378 - 10.556
mA f Eu 0.44 1.673 -1.082 - 4.428
mA f As 0.28 0.373 -1.591 - 2.337
mEuAs 1.40 4.871 -0.262 - 10.004

TA f 0.607 0.432 -0.124 - 0.989
TB 0.396 0.22 -0.310 - 0.749

TEuAs 0.058 0.119 -0.084 - 0.321
* donni infers a slightly negative value for the

probability of ancestral state misidentification
(misid = −0.00048). These data were previ-
ously corrected for ancestral state misidentifi-
cation using the approach of Hernandez et al.
(2007). We thus rounded to misid = 0 when
calculating θ.

Table S4: Hyperparmeters tuned with KerasTuner for each demographic model parameter.
Tuner Hyperparameter Value range
Hyperband First hidden layer 16, 32, 48, 64

Second hidden layer 4, 8, 12, 16
Learning rate log sampling, [0.0001, 0.01]
Max epochs 100

RandomSearch Learning rate log sampling, [0.0001, 0.01]
Max trials 100
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