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Abstract

The field of protein residue network (PRN) research has brought several useful methods

and techniques for structural analysis of proteins and protein complexes. Many of these are

ripe and ready to be used by the proteomics community outside of the PRN specialists. In

this paper we present software which collects an ensemble of (network) methods tailored

towards the analysis of protein-protein interactions (PPI) and/or interactions of proteins with

ligands of other type, e.g. nucleic acids, oligosaccharides etc. In parallel, we propose the

use of the network differential analysis as a method to identify residues mediating key inter-

actions between proteins. We use a model system, to show that in combination with other,

already published methods, also included in pyProGA, it can be used to make such predic-

tions. Such extended repertoire of methods allows to cross-check predictions with other

methods as well, as we show here. In addition, the possibility to construct PRN models from

various kinds of input is so far a unique asset of our code. One can use structural data as

defined in PDB files and/or from data on residue pair interaction energies, either from force-

field parameters or fragment molecular orbital (FMO) calculations. pyProGA is a free open-

source software available from https://gitlab.com/Vlado_S/pyproga.

Introduction

The science of protein residue network (PRN) models is being developed over almost three

decades. This may indicate that for the community it is appealing to have exact, qualitative and

quantitative protein models to study their structure, topology and dynamics. Let us first, with-

out claim of completeness, establish a framework for the current development stage of PRN

models in order to understand why we felt the necessity to build pyProGA.

As the name suggest, PRN models are network models, in which the constituents are pro-

tein residues (represented as vertices/nodes) and the interactions between them (represented

as edges) [1]. There is a different genre of PIN—Protein Interaction Network research in

which the protein is the node and interactions between proteins are studied at molecular, but

not at residue level [2–4]. These are not the subject of this work.
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The mathematical formalism of network science comes from graph theory [5]. One of the

earlier and influential application to protein residues was by Kannan and Vishveshwara [6],

who attempted to identify side-chain clusters by graph spectral methods. Others have followed

to build PRN models to study the network-like structure of proteins [7]. The fact that these

protein models obey hierarchical structure, as often found in other, unrelated networks, e.g.

small-world character [8], was soon discovered [9–12]. PRNs were used for identification of

efficient communication pathways and used to explain allostery effects in proteins and protein

clusters [13–15] and were shown to be related to some physical phenomena [16, 17]. An inter-

esting topic is the study of Energy Exchange Networks for proteins as done by Leitner [18]

Yamato and others [19–21]. Such and similar models evaluate heat/energy transfer, typically

quantities used in continuum theories, over a discretized irregular mesh represented by the

network.

The focus on dynamical network models, or rather the dynamics of PRN was explored as

well [22]. VanWarth et al. [23] examined dynamic models of allostery, see also [24]. Confor-

mational changes in PRNs were elucidated in several works [25–27] The field of protein fold-

ing also adopted ideas from PRN models [28, 29]. There are software options for such

dynamic PRN models such as gRINN [30] or RIP-MD [31]. We do not include PRN dynamics

in pyProGA, as PyMOL is not particularly suited for analysing molecular dynamics trajecto-

ries, and, as mentioned before, the static models have applications in their own right.

It was discovered that these models are more than useful tools to find interesting clusters of

amino acids or communication pathways [32]. Estrada [33] discovered that there was some

generality in hierarchy of the network and organisation of residues, see also [34]. As the PRNs

were getting more widespread recognition, a natural desire to standardise their creation

emerged. Viloria et al. [35] attempted to define an optimal cut-off distance between residues to

form sensible contact based PRNs. It should be noted that the majority of the models were

based on some distance criteria (either closest atoms, centre of mass or Cα distances). The

work of Vijayabaskar et al. [36] introduced PRNs based on pair interaction energies (PIE)

between the residues. The PIEs in that work were from parametrised force field pair potentials

(as used in molecular dynamics). One of our works [37] attempted to explore differences

between PRNs based on distance (D-PRN) criteria and those based on interaction energies

(PIE-PRN). We found that in D-PRNs the node hierarchy, i.e. ranking by some centrality mea-

sure, tends to be more sensitive to cut-off criteria. Similar behaviour can be observed in case of

community structure. Recently, Yao et al. [38] sought to establish a more concise framework

for using D- and PIE-PRNs. They have found that certain structure equivalence of these two

models is observed, when the distance cut-off between the closest non-hydrogen atoms in two

residues is some 4.5Å and the energy cut-off is about kT, k being the Boltzmann constant, T
the temperature.

Practical applications for PRNs were also found. Haratipour et al. [39] characterised some

typical structural unit via quantitative analysis of PRNs such as centrality calculation etc.

Capriotti et al. [40] examined protein stability upon single point mutations. We shed some

light on community structure in PRNs and the relation to protein-peptide binding analysis

[37]. Estrada [41] recently published a topological analysis of the SARS CoV-2 protease Mpro

using a residue network model. Not long ago the binding of nucleic acids to proteins was

examined by Miao and Westhof [42]. It should be noted that while we saw these practical

applications, most of them were carried out by researchers in the field of protein residue net-

works, i.e. mostly using original “in-house” code. This presents an obstacle, to some degree,

for a “trickle down” effect by which also non-experts in PRN research could use these methods

and algorithms in their labs, albeit there is some current progress at this front as well. Aydinkal

et al. [43] developed the ProSNEx web server. The NAPS web tool by Chakrabarty and Parekh
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[44] is currently available. Felline et al. [45] offered their webPSN v2.0 web server including

their elastic network model for normal mode analysis [46]. RING 2.0 [47] is another web-

server capable of identifying different kinds of covalent and non-covalent interactions in PDB

structures. The tool by Yan et al. [48] is dedicated to find different kinds of functional residues.

xPyder by Pasi et al. [49] is a plugin for PyMOL 1.5. We recommend also the work by Shcher-

binin and Veselovsky [50] to look for an extensive overview in this field.

The reasons for us to develop pyProGA—python Protein Graph Analyser are multifarious.

Most importantly, the fact that pyProGA is a PyMOL [51] plugin is in our view a significant

plus. The PyMOL package is widely used in molecular research [52] and thus enjoys a large

degree of familiarity in the chemical community. Additionally, PyMOL offers a plethora of dif-

ferent visualization options enabling us to utilise them for display of the PRNs themselves or

the results of various analyses. We also view the open source nature of PyMOL and pyProGA

as advantageous, as it facilitates modular extension of its’ contents. Hence, we hope to have

created a platform that may be adopted in other research groups to build upon. We have

included basic network analytic algorithms for node and edge centralities, network partition,

etc. We include the possibility to calculate the residue folding degree [53, 54]. Strong accent

was given to a user-friendly interface with accent to powerful protein-protein interaction ana-

lytical techniques, sensible visualization of results, visualization of the networks themselves

and good documentation in the manual. A detailed introduction of graph theory with its ter-

minology and use in network science is beyond the scope of this paper. Nonetheless, we

attempts to provide such introduction with explanations in the accompanying manual.

PyProGA was designed to be used on both D-PRN and PIE-PRN protein models, where the

PIE-PRNs can be based on either Fragment Molecular Orbital (FMO) results [55] or force-

field PIEs. The same network analysis can be performed on all types of PRNs, facilitating direct

comparison of results, which is unique.

Methods

The Methods section will describe the structure and functionality of pyProGA. Fig 1 is a sum-

marisation of this. In the Discussion part we will provide some use examples. We are not

going to deal with technicalities such as the installation process or step-by-step examples,

which are detailed in the manual. Nonetheless, this is the basic software framework used for

Fig 1. Basic overview of pyProGA functionality. Input requirements are on the left, data structure in the centre and various

analytical and output options are shown. The subsystem analysis requires the same kind of files to be loaded for the monomers

as was for the super-system (dimer).

https://doi.org/10.1371/journal.pone.0255167.g001
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developing pyProGA; it was written in Python 3.7 using the PyQt 5 GUI toolkit which works

well and is recommended with PyMOL 2.4 (current distribution version).

Input and data structures

In order to use this plugin a minimum requirement is to load a .pdb file of the molecular sys-

tem that will be studied. We use the Bio.PDB parser [56] to accomplish this. From this we can

directly proceed to create a distance based residue network, D-PRN. In this case each residue

as defined in the .pdb file is one node in the network. In order to create a pair interaction

energy based network (PIE-PRN), we must additionally supply either an output from an

Gamess FMO (Fragment Molecular Orbital) calculation or an Amber .prmtop file.

Gamess [57, 58] is a quantum chemistry package including the FMO method [59, 60].

There are various orders of approximation in FMO [61], however, for our purpose the two-

body approximation is sufficient, as we are mostly interested in the pair interactions, some-

times called Inter Fragment Interaction Energies (IFIEs). For objectivity sake we note that

there are other programs facilitating FMO calculations, most notably Abinit MP [62] and

PAICS [63]. pyProGA is currently not able to parse their outputs. Nevertheless, we are open to

include such support if demand arises, albeit direct cooperation with the developers will prob-

ably be necessary to assure bug-free functionality. In case of PIE-PRNs from FMO calculations

the nodes correspond to FMO fragments. These, in general, are not equal to amino acid resi-

dues as per PDB standards (the C,O atoms assignment is shifted by one to the neighbouring

residue). This is because fractioning at the peptide bond led to accuracy issues in FMO [64].

For covalently non-bonded and non amino acid residues the correspondence between frag-

ments and residues can exist. Very recent research [65] promises correction of this minor

drawback when density fitted tight binding (DFTB) is used in FMO. Additionally, we recom-

mend the use of some solvation model with FMO [66, 67]. The use of PIEDA (PIE Decomposi-

tion Analysis) is supported in pyProGA [68–70]. We recommend the Facio toolkit (available

from http://zzzfelis.sakura.ne.jp/index.html) [71] to work with FMO fragments.

For PIE-PRN models based on PIE values coming from force field (FF) data one must sup-

ply a Amber .prmtop file [72]. For simplicity, let’s designate these as PIE-PRN(FF). As of now

we do not support other formats of parsing FF parameters to pyProGA. At this point we

should emphasize that we need the FF parameters only to calculate the PIEs in the structure as

is in the .pdb file. We do not need any MD trajectory nor any other files related to other spe-

cific MD software.

The main data structure/object in pyProGA holding the network topology plus some addi-

tional data is a graph G. A graph is a collection of a set of vertices and edges, G ¼ ðV; EÞ. The

graph object is as standardised by the NetworkX (v. 2.5) python module [73]. A undirected

graph is most suited for our PRN models. The graph G is created when the user sets the edge

acceptance criteria. In case of D-PRNs it is the cut-off value Rlim for the centre of mass distance

of two residues/nodes, i, j, in the structure. For any PIE-PRN the primary and only mandatory

criterion is the PIE cut-off value Elim. Rlim is a secondary optional criterion. Finer specification

of PIE energy terms is possible; Etot i.e. the total pair interaction energy is available for any

PIE-PRN. If PIEDA was used, then any of its terms can be chosen. One has to bear in mind

that not all PIEDA terms necessarily acquire negative values, which is a consequence of the

physical definition of these terms. For PIE-PRN(FF) one can use, in addition to Etot, also the

electrostatic or the van der Waals component. The user sets how the edge weight relates to

the energy (for PIE-PRNs) or distance (for D-PRNs). In general, the default options that

wij’ |Eij|−1 or wij’ Rij are advised, see [37]. The edge importance is always the inverse of the

edge weight.
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Simple network analysis

pyProGA enables the user to analyse the PRNs in terms of node and edge centralities. We rely

on the NetworkX modules, except for the weighted efficiency centrality [74] for which we use

our own code [75], together with the evaluation of the weighted global and local efficiencies

[76]. For now, we include several well known centralities; closeness centrality, betweenness

centrality, degree centrality and the current flow betweenness centrality. In addition, we define

the total energy centrality CEtot
k . It is a variation of the degree centrality, where we sum total

energy terms Etot for all edges E i;k adjacent/connected to the node k in G. A node with low

(more negative) CEtot
k is considered to be “strongly bound” in G—an interpretation often used

for FMO based studies [77, 78].

The results can be viewed in several forms. PyProGA creates a new PyMOL object after cal-

culating any of the centralities (one object for each centrality type and network type). A colour

gradient is applied to the atoms corresponding to the nodes (residues) to indicate the magni-

tude of the centralities. This facilitates quick visual inspection of results. In addition, a bar plot

of the centralities per node can be examined in an additional window. The bar plot is clickable,

hence centrality values for a particular node are easy to acquire. A histogram is also always

depicted. All the plots can be further manipulated by standard Matplotlib functions. Finally,

the results are saved in text format as well.

In addition to centralities, graph partitions can be evaluated as well. As of now, we support

the calculation of spectral clustering [6, 79] and modularity based communities via the Lou-

vain algorithm [80]. Also here a new PyMOL object is created to show the colour-defined par-

titions. Also, each of the partitions can be highlighted individually. Text files with results are

saved.

Finally, pyProGA enables the search for the shortest path connecting any pair of nodes.

This function can be useful in specific cases.

The edge properties, such as energy Eij and its components if PIEDA was used, node dis-

tance Rij, and several other, can be viewed in an interactive 2D map.

Network analysis of supramolecular systems

In this section we are going to discuss the analysis of supramolecular systems, which the user

deliberately sets up for this purpose. By a supramolecular system we understand any system of

at least two molecules. For our purpose we are going to limit ourselves to systems, which may

be thought of as dimers, i.e. containing subsystems A and B. In such case we create additional

graphs/networks GA(B) representing the monomers. They may be e.g. both proteins forming a

protein complex or one a protein and second a ligand. To create GA(B) one must load the same

kind of input as for the dimer graph G, see Fig 1.

Recalling that a graph is a collection of a set of vertices and edges, G ¼ ðV; EÞ, then, in gen-

eral for two graphs G0 and G@, their union is defined as G0 [ G@ : ðV 0 [ V@; E 0 [ E@
Þ. Hence, we

can formally write that G = GA [ GB [ GPPI. Therefore when the user defines the graphs GA(B),

both sub-graphs of G, we can define the bipartite graph GPPI. This graph describes the topology

of the interactions in the protein-protein interface (PPI). Having this formalism allows for fur-

ther investigation of the PPI interactions. The straight-forward step is to save a figure of GPPI

in pyProGA.

FMO binding energy. Fedorov and Kitaura [81] have proposed a way how to divide the

total (supramolecular) interaction energy into contributions of each fragment as used in the

FMO calculation. Such energy is then called the binding energy and it is not the same as a sim-

ple sum of the PIEs for each node like CEtot
k . We can think of it as a measure of how much each
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fragment in one monomer, A or B, contributes to the binding of the second monomer. The

assignment of the binding energies can be done either symmetrically to fragments in both A

and B or asymmetrically to either A or B. In this way one can examine dominant fragments

contributing to the stabilization of the dimer. This method itself is not based on a typical net-

work analysis, yet we find it very useful, hence it is included in pyProGA. The results are, as

usually, saved in a text file and displayed in the PyMOL window where the residues are col-

oured by a colour map scale reflecting the magnitude of the binding energy. Clickable Matplo-

tlib bar plots and histograms are drawn on demand.

3D SPIE. Lim et al. [82] have proposed the 3D Scattered PIE as a useful way to investigate

PPI interfaces. In essence it is a 3D scatter plot where the GPPI nodes from monomer A and B

are on the two independent axes, and the data points in the third direction represent the mag-

nitude of the interaction energy. We can add a colour palette to differentiate the repulsive and

attractive interactions. pyProGA enables the creation of such plots for any of the energy com-

ponents used for the construction of the graph.

SVD analysis of PPI. Tanaka et al. [78, 83] have shown how the singular value decompo-

sition (SVD) technique can be used to investigate protein-protein interfaces. The authors

describe their analysis as “network-like”. In fact, we can argue that it is a network analysis, con-

sidering that they use a specific part of the weighted adjacency matrix. Specifically, they use the

block(s) corresponding to the PPI interactions, see the yellow rectangles in Fig 2. From the

SVD procedure they identify dominant motifs in the PP interface, similarly to a principal com-

ponent (PC) analysis. This way, one can asses the importance of individual nodes/residues

and/or clusters of nodes. This technique is implemented in pyProGA. Moreover, we provide

an adapted version of it, where we subject the full adjacency matrix of the GPPI to the SVD

algorithm. There is no inherent advantage to this, except that in specific cases one can deal

with smaller matrices and hence the interpretation can be somewhat more straightforward. To

see the difference, let us consider this example; the original method by Tanaka et al. [78] deals

with a matrix of the size NA × NB if we assume NA and NB nodes in monomers A and B, respec-

tively. If the proteins are large, then this matrix will be large as well and contain nodes that do

not contribute to the PPI in any way. In such case it may prove efficient to use the square

matrix APPI, as this is a representation of GPPI, which contains only NPPI nodes constituting

the PPI, see Fig 2. In general, the matrix M subjected to SVD will be of shape n ×m, where n
and m may or may not equal, depending on which matrix is analysed.

M ¼ USV� ð1Þ

~MðrÞ ¼
Xr

i¼1

siui � v�i ð2Þ

The SVD method allows to rewrite the matrix M in terms of three special matrices as in Eq 1.

Therein U 2 Rn�k
, S 2 Rk�k

and V� 2 Rk�m
, where k = min(n, m). The columns of U,

{ui=1. . .k}, are called left singular vectors of M and the rows of V�, fv�i¼1:::kg, (also columns of V)

are the right singular vectors. The vectors {ui} are orthogonal and so are the vectors fv�i g. The

matrix Σ is a diagonal matrix, and its diagonal elements σi = 1. . .k are called the singular values.

Typically, they are ordered in such way that σi� σi+1. This allows to approximate M to a r-th

degree as in Eq 2 via the sum of the outer (dyadic) products of the r leading vectors of U and

V�. Since the lengths of ui and v�i are n and m, respectively, the matrix ~MðrÞ will be of shape

n ×m, as is M. For r = k we get Eq 1, ergo ~Mðr¼kÞ ¼ M. A way to judge the relative degree to
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which ~MðrÞ approximates M is by the factor f(r) defined as

f ðrÞ ¼
Pr

i¼1
si=
Pk

i¼1
si ; f ðr¼kÞ ¼ 1 ð3Þ

The way how this method is included in pyProGA allows for a simple choice of whether we

intent to look at attractive, repulsive or both types of PPI interactions. The original authors

seem not to entertain these possibilities and we assume that they analysed both types at once.

Additionally, we may choose whether we look at motifs in the monomer A or B. Within each

i-th motif (see Eq 2) we look at the dominant nodes, and we automatically see their strongest

interacting partners (connected nodes) from the other monomer.

Fig 2. Subunits of the network. The PRN of the supersystem consisting of monomers A and B and the protein-protein interface (PPI): G =

GA [ GB [ GPPI. GA and GB contain all nodes and edges within protein A and B, respectively. a) GPPI contains vertices from both

monomers, but only those vertices, which have at least one edge connecting it to a vertex from the other monomer. The edges in GPPI are

only those which connect the subgraphs GA and GB (dashed lines) and no edges within the subgraphs GA, GB. Hence, GPPI is a bipartite

graph. Part b) shows how blocks in the adjacency matrix A correspond to parts of G and the adjacency matrix APPI of GPPI (circles

indicating edges in GPPI).

https://doi.org/10.1371/journal.pone.0255167.g002
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Network Differential Analysis (NDA). We have briefly outlined how one can use com-

mon centrality algorithms to rank the nodes in a PRN. If ve have also graphs for the mono-

mers, we can examine how the edges connecting them affect the centrality ranking of each

node. We do this by calculating the node centralities Ck in G, the PRN of the complex, as well

as in graphs GA and GB. The difference of the centralities can indicate which nodes gain higher

rank when edges forming the PPI are present. In pyProGA we call it Network Differential

Analysis (NDA). However, this procedure would lead us to compare centralities between

graphs of different size (number of nodes). Consequently, since centrality measures are often

not directly transferable/comparable between different graphs, the ranking may not be always

reliable. To overcome this issue we define the centrality difference as

DCk ¼ CkðGÞ � CkðGA[BÞ ð4Þ

This is the default way to calculate NDA centrality in pyProGA. The graph GA[B has all nodes

of G and only the edges present in the graph GPPI are missing.

Results

We use the de novo synthesized TIM barrel protein [84] (PDB ID: 5BVL) to demonstrate

selected features of pyProGA. The structure in the pdb file is four-fold symmetrical and has

missing residue number 17. This is just behind the first helix. We took advantage of this as it

enables us to treat this system formally as a complex of one helix (monomer A) with the

remainder of the protein (monomer B). All data to reproduce this test are provided with the

distribution of pyProGA. Please do read the S1 File for much more in-depth comments.

We load the whole system AB via the pyProGA interface and apply the edge acceptance cri-

terion Etot� −1kcal mol−1 to all types of bonds (incl. peptide) with the remaining settings kept

at default. In the first step we calculate the total energy centrality CEtot
k and the efficiency cen-

trality Ceff
k in the dimer PRN G, see S4a and S5a Figs in S1 File. We see that these are rather

inconclusive if we are interested in how the monomers A and B interact. Therefore we load the

monomer data into pyProGA and construct the monomer PRNs GA and GB (same rules as for

G apply). This allows us to calculate the centrality differences DCEtot
k and DCeff

k according to Eq

4, see Fig 3 and S4b and S5b Figs in S1 File. S6 and S7 Figs in S1 File show the centralities

depicted as bar plots for each node/residuum which make it easy to identify high-scoring

nodes. The residues Lys2 and Asp29 can be readily picked out as important for the binding of

the two monomers. Similarly, albeit with somewhat lower centrality score, residues Lys169

and Glu15 are seen as important. In general, we can conclude that both DCEtot
k and DCeff

k are

useful in identifying key nodes with respect to the dimer stabilization. There are some differ-

ences, mainly because the efficiency centrality score accounts also for how central given resi-

dues are within the monomers, es exemplified on Asp3 from monomer A in S7 Fig in S1 File.

The fact that Asp3 is covalently bound (very low edge weight) to Lys2 also adds to its higher

DCeff
k rank.

In the next step we employ the SVD method to investigate the attractive interactions in the

bipartite PPI graph GPPI. The particular implementation in pyProGA facilitates us to investi-

gate either GPPI containing only attractive, only repulsive or both kinds of interactions. In any

case, the matrix, which is subjected to the SVD method, contains the corresponding Etot ener-

gies. The results in Fig 4 reflect this. We see that the first/dominant principal coordinates (PC)

found by the algorithm (a.k.a. motifs) do correlate strongly to the magnitude of the interaction

energy. If we define a measure f(r) of convergence of the matrix approximation, see Eqs 3 and

2, then the first two PCs accounts for about 40% of all terms in the sum. The first four PCs
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Fig 3. Network Differential Analysis (NDA). The protein structure coloured to represent the magnitude of the

centrality for each residuum. The PyMOL colour palette rainbow is used (red colour for high centrality, blue for low

values). In a) DCEtot
k is shown and in b) we show DCeff

k results. Selected high scoring residues are labelled.

https://doi.org/10.1371/journal.pone.0255167.g003
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Fig 4. PPI analysis in pyProGA. a) The attractive GPPI. Green monomer A, blue B. Thickness of edge corresponds to interaction strength, colour to

character; red for prevailing electrostatic, blue for dispersion, see [85]. b) First four most dominant principal coordinates (interaction motifs in the PPI) as

identified by the SVD analysis of GPPI. Colour coded assignment of residues to PC. Factor f(r) is defined by Eq 3. c) 3D-SPIE plot helps to identify strongest

attractive and repulsive interactions between monomers A and B. More details in S1 File.

https://doi.org/10.1371/journal.pone.0255167.g004
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make up to 64% and capture all the dominant PIEs as seen in Fig 4a (for details see also S8–

S10 Figs in S1 File).

In general, we can conclude that the results from the SVD method correlate well with the

prediction from the DCEtot
k analysis. Minor discrepancies from the DCeff

k can be observed. These

are explained by the fact that the methods centred purely on Etot do not account for the net-

work character of the PRN model, see S5 Fig in S1 File for detailed explanation.

Lastly, we look at the community structure of our PIE-PRN model. The concept of finding

communities is to identify groups of vertices, which, broadly speaking, are more densely con-

nected than the average edge density in the whole graph. The implicit assumption is that such

communities (partitions in general) form components of the graph within which nodes “have

something in common”, see [80]. Our analysis revealed fourteen communities in G, see S11

Fig in S1 File. Quickly it becomes evident that the community structure does, to a large degree,

reveal secondary structure elements such as helices etc. This was found also previously, e.g.

[37], and is not surprising, as secondary structure is formed due to relatively strong interac-

tions, often with a characteristic motif like in helices. However, the correspondence of a com-

munity to a secondary structure is not absolute and in several occasions residues from distinct

secondary structure elements belong to one community. This enables us to focus attention to

interactions responsible for tertiary structure. pyProGA has several ways in which the network

partitions can be visualized, see S11 Fig in S1 File.

Finally, we note that pyProGA can write graphs in .gexf and .graphml format for further

freedom in visualising your results in other programs, e.g. Gephi which was used to prepare

S12 Fig in S1 File [86].

Most of the methods implemented in pyProGA were published elsewhere (see the Intro-

duction and Methods sections). The purpose of this paper in not to reevaluate their correct-

ness. The network differential analysis (NDA) is new in this respect, hence we validated its

predictions against the results of the other methods. We see that they largely agree. Nonethe-

less, in order to provide comparison to experimental data, we add a short discussion of an sys-

tem that will be subjected to a separate more in depth study in the future. The system is the

protein complex of the human cytomegalovirus protein UL141 with the TRAIL-R2 receptor

protein (death receptor DR5) [87]. The authors of that work have performed mutations of the

protein at specific sites to asses the effect of such mutation on the stability of the protein com-

plex, from which one can in hindsight asses the importance of the native amino acid in the

binding. In some cases they mutated isolated amino acids and in some cases groups of amino

acids. We calculated FMO/DFTB PIEs (just like for the TIM barrel protein) and performed the

NDA algorithm to obtain the differential centralities DCeff
k . The NDA predictions and the sum-

mary of the experimental conclusions are presented in Fig 5. On the first glance, we can tell

that several of the residues the mutation of which causes loss of stability of the protein complex

can be picked out by the DCeff
k results. Notably Glu151, Arg133 attain high scores and the

mutation of these amino acids seems to prevent the complex formation. However, a simple

quantitative relationship cannot be drawn from this data, e.g. the combined mutation of

Tyr103/Asn134 disrupts the binding as well, yet these residues score lower than e.g. Asp109,

the mutation of which (together with Glu78) causes only a 10-fold lower binding rate. But still,

all the residues which are predicted by SPR as important for the complex stability attain rela-

tively high score in our NDA analysis. In contrast, the residues which have lower effect on the

binding stability (Pro150, Met152, Lys155) attain also low DCeff
k values. Combined mutations

like the one of Val167/Trp173/Val179 are harder to relate to the DCeff
k values. Nonetheless on

the qualitative level the NDA predictions are very nicely relatable to the experimental data.

One must bear in mind that in this preliminary study no dynamic effects were considered.

PLOS ONE pyProGA—Plugin for PRN analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0255167 July 30, 2021 11 / 17

https://doi.org/10.1371/journal.pone.0255167


Also, the SPR protocol cannot determine whether the loss in binding affinity is solely due to

the loss of interactions of the mutated amino acid or other effects. Most notably, the structure

of the mutated protein may be quite different from the native geometry. Our analysis at this

point considers only the native complex structure. We hope to elucidate the effects of dynam-

ics in a future work.

Conclusion

This paper introduces pyProGA as a tool for analysis of static protein residue networks. The

use example exhibits a subset of its capabilities, yet we believe the investigation of protein-pro-

tein interfaces is amongst it strongest features. The usefulness of this software is not limited to

Fig 5. NDA predictions and experimental data. The NDA DCeff
k scores for the residues in the UL141. . .TRAIL-R2 complex based on an FMO/DFTB

calculation. The top panel shows the scores of residues in both proteins (the border is depicted by the dashed line) and the bottom is a detailed plot for the

residues of the TRAIL-R2 protein. The table contains experimental SPR (surface plasmon resonance) data published elsewhere [87]. Specific site mutations

in the TRAIL-R2 protein to alanine (so called alanine scan), resulted in altered stability of the complex. The NDA bars corresponding to the residues that

were mutated in the SPR experiments are labelled.

https://doi.org/10.1371/journal.pone.0255167.g005
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protein-protein interactions. Interactions of proteins with other kinds of ligands, such as

nucleic acids, oligosaccharides etc. can be studied equally well. The results achieved by various

approaches, be it network differential analysis of DCEtot
k and DCeff

k , the FMO binding analysis

(see S13 Fig in S1 File) and the identified principal components via the SVD method are to a

large degree self consistent. It seems that the relationship of high and low DCeff
k score to experi-

mental data can be established at a qualitative level even from static models.

There are several ways how to inspect the results visually directly in pyProGA windows

and/or in the PyMOL main window. This should provide sufficient flexibility for achieving a

close-to-optimal solution for users. In addition, most of the results are also written in text for-

mat, which gives even more freedom for alternate modes of representation. As to the depiction

of the network(s), we provide 3D models which can be overlaid with any of the objects in

PyMOL and the option to save the graph (with node and edge attributes) to standard formats

(.gexf, .graphml). We hope to have created a useful tool, which will open the way for PRN

models to reach a wider part of the proteomics community.

Supporting information

S1 File. The file contains additional figures with extended captions.

(PDF)
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