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S.1 Supplementary Material Appendix A: Additional Results and
Implementation Details

S.1.1 Power Simulation Settings

In this section we describe the four power simulation settings in greater detail. For each setting, we use J

to represent the sub-settings, where larger values of J represent greater deviations from the null hypothesis,

subjectively labeled from “small” to “large” within each setting.

For the missing quadratic term in setting 1, the true model is

E(Y |X = x) = exp(β0 + β1x+ β2x
2),

but we omit the quadratic term when fitting the model. In this setting, we use X ∼ U(−3, 3). Four sub-

settings are considered, in order to investigate the impact of varying degrees of non-linearity in the linear

predictor. The coefficients β0, β1, β2 are chosen so that the mean of Y is J , 5, and 8 when X = −3, 0 and

−3 , respectively. We use J = 4, 6, 8, 10, representing increasing non-linearity in the linear predictor.

In order to simulate overdispersion for setting 2, we draw realizations of Y given X from a negative

binomial distribution with mean

E(Y |X = x) = exp(β0 + β1x),

and variance

Var(Y |X = x) = E(Y |X = x) + J E(Y |X = x)2

for J = 1/16, 1/8, 1/4, 1/2. The fitted model is Poisson with the same mean structure as the negative

binomial. Larger values of J represent greater overdispersion. In this setting we also use X ∼ U(−3, 3).

For setting 3, the true model is

E(Y |X = x,B = b) = exp(β0 + β1x+ β2b+ β3xb),
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with X ∼ U(−3, 3) and B ∼ Bernoulli(0.5). The fitted model excludes the final interaction term. Four

sub-settings are considered for setting 3, similar to setting 1. The coefficients are chosen so that the mean

of Y is equal to 5, 5, 7, and J when (X,B) = (−3, 0), (−3, 1), (3, 0), and (3, 1) , respectively. We use

J = 8, 12, 16, 20, representing increasing amounts of interactivity.

Finally, in order to assess the effect of an incorrectly specified link function in setting 4, we consider the

square root and identity link functions as two sub-settings, fitting a log-linear Poisson model for both. We

have X ∼ U(−3, 3), and the coefficients are chosen so that the conditional mean of Y is 5 and 8, when X = 0

and 3, respectively.

S.1.2 Further Details

Implementation of the Interval Endpoint Selection Method

The HL test statistic can be viewed as a sum of Pearson residuals where the denominator in each term

includes an estimate related to the average response variance in a given group. To prevent instabilities in the

test statistic when the average variance is small, a special interval endpoint selection method is used in order

to keep
∑n
i=1 σ̂

2(xi)I
(g)
i roughly constant across groups. The same interval endpoint selection procedure

is used for the GHL test. The implementation is based on the “weighted.quantile()” function from the

“spatstat” package in R. Groups with no observations can occur, for example, when a very large fitted value

is present. To prevent this, the weighted (G− 1)/G× 100th percentile is obtained first. Then, observations

that fall into this group are removed, and the weighted (G− 2)/(G− 1)× 100th percentile is obtained from

the remaining data. This process is repeated until G groups are formed.

GLM Convergence with Non-canonical Links

When fitting a Poisson GLM with identity or square-root link in R, certain issues can arise. In general, we aid

convergence of the parameter estimates for these non-canonical link models by providing starting values such

as rounded versions of the true parameter values to the “glm()” function call. On occasion, fitting the GLM

with a noncanonical link results in a warning, in which case the particular simulation realization is omitted,

resulting in fewer than 2500 simulation realizations. For example, warnings such as “step size truncated:

out of bounds” and “glm.fit: algorithm stopped at boundary value” occurred, among other warnings. In

addition, for the null simulations with a dispersion parameter, warnings occurred for the setting with a

negative binomial response and a sample size of n = 100 where less than 3% of the simulation realizations

were discarded.

GHL Test Statistic for Negative Binomial Responses

The negative binomial distribution with an unknown dispersion parameter does not fall into the exponential

3



dispersion family framework presented in the paper. However, in the simulation study we include such a

setting to examine the performance of the GHL test. In this case, the test statistic remains the same except

that we redefine the matrices

V 1/2
n = diag

([
m(β>xi) + φ ·m(β>xi)

2
]1/2) ∣∣

(β,φ)=(βn,φn)
,

W 1/2
n = diag

(
m′(β>xi)

[m(β>xi) + φ ·m(β>xi)2]
1/2

)∣∣∣∣∣
(β,φ)=(βn,φn)

,

because the conditional variance of the response can no longer be written in the form φ · v(m(β>x)). The

test statistic is obtained from (11) without the division by φn.

Normal-Bernoulli model

The Normal-Bernoulli model includes two continuous covariates, X1 and X2, along with a dichotomous

covariate, D. Here we have Xi ∼ N(µi,Σ), where µ1 = (−1,−1), µ2 = (1, 1), and Σ = (1, 0.5; 0.5, 1). The

dichotomous covariate is D ∼ Bernoulli(0.5). The true linear predictor is β0 + β1X1 + β2X2 + β3D, where

the parameter values are described in the tables below.

Correlated covariates

The true linear predictor for this model is β0 + β1X1 + β2X2, where (X1, X2) are drawn from a multivariate

normal distribution with mean (0, 0) and marginal variances equal to one. The correlation between X1 and

X2 is set to be ρ = 0.7.

S.1.3 Assorted Tables

Supplementary tables S.1, S.2, S.3, S.4, and S.5 are included below.

Supplementary Table S.1: Link and inverse link functions considered

Link function name Link function form Inverse link function form

identity µ β>x
log log(µ) exp(β>x)
logit logit(µ) = log(µ/(1− µ)) exp(β>x)/(1 + exp(β>x))
probit probit(µ) = Φ−1(µ) Φ(β>x)
cauchit cauchit(µ) = tan(π(µ− 1/2)) 1/π arctan(β>x) + 1/2
cloglog cloglog(µ) = log(− log(1− µ)) 1− exp(− exp(β>x))
square root

√
µ (β>x)2

S.1.4 Description of GOF Test Competitors

For the simulation study described in Section 4 of the paper, we compare our test to tests given by Su and

Wei (1991) and Stute and Zhu (2002).
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Supplementary Table S.2: Several conditional distributions of Y given X that can be written in the form of
(2). *Negative binomial distribution with the dispersion parameter k assumed to be known.

Distribution θ Θ b(θ) v(m)
Normal(µ, σ2) µ/σ2 (−∞,∞) θ2σ2/2 1
Bernoulli(π) log(π/(1− π)) (−∞,∞) log(1 + eθ) m(1−m)
Poisson(λ) log(λ) (−∞,∞) eθ m
Gamma(µ, k) −k/µ (−∞, 0) −k log(−θ) m2

IG(µ, λ) −λ/(2µ2) (−∞, 0) −
√
−2θλ m3

NB(µ, k)* log(µ/(µ+ k)) (−∞, 0) −k log(1− eθ) m+m2/k

Supplementary Table S.3: Null simulation settings

Setting Distribution of Covariate(s) True coefficients
1 X ∼ U(−3, 3) β0 = 1.15, β1 = 1.15
1b X ∼ U(−3, 3) β0 = 5.16, β1 = 1.61
2 X ∼ U(−3, 3) β0 = 1.15, β1 = 0.384
2b X ∼ U(−3, 3) β0 = 2.08, β1 = 0.360
3 X ∼ U(−3, 3) β0 = −1.15, β1 = 0.384
3b X ∼ U(−3, 3) β0 = 0.658, β1 = 0.114
4 Normal-Bernoulli model β0 = 1, β1 = 0.2, β2 = −0.2, β3 = 0.7
5 Correlated covariates β0 = 1.70, β1 = 0.148, β2 = 0.148
6 X ∼ Exp(1) β0 = 1.15, β1 = 0.384
Dispersion settings X ∼ U(−3, 3) β0 = 1.15, β1 = 0.384

Supplementary Table S.4: Power simulation settings

Setting Description True coefficients

1 Missing quadratic term
β0 = 1.61, β1 = 0.347− 1/6 log(J),

β2 = −0.0633 + 1/18 log(J)
2 Overdispersion β0 = 1.61, β1 = 0.157

3 Missing interaction term
β0 = 1.78, β1 = 0.0561, β2 = 1/2 log(J/5),

β3 = 1/6 log(J/5)

4 Incorrectly specified link
β0 = 2.24, β1 = 0.197 (square root)

β0 = 5, β1 = 1 (identity)

Supplementary Table S.5: Power simulation results - incorrect link function

Statistic / Link Square root Identity

Ĉ∗G 0.063 0.108
X2

GHL 0.062 0.108
X2

SW 0.054 0.130
X2

SZ 0.057 0.136

Using our notation, the Su-Wei (SW) test statistic is defined as

X2
SW = sup

v∈Rd

|R̃n(v)|,

where v ∈ Rd,

R̃n(v) =
1√
n

n∑
i=1

1(Xi ≤ v)[Yi −m(β>nXi)],
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and 1(x ≤ v) is an indicator for the event that each component of x is less than or equal to each respective

component of v. With continuous covariates, finding the supremum can require R̃n(v) to be evaluated

at approximately nd−1 values of v. Adding to the complexity, obtaining p-values relies on a simulation

procedure, described in more detail in Su and Wei (1991). Even for a relatively small sample size, such

as n = 100, computing the SW test statistic and p-value can be computationally intensive with several

predictors.

Stute and Zhu (2002) present a test statistic based on the Cramér-von Mises statistic applied to a

transformed version of the R1
n process, TnR

1
n. Setting x0 to be, say, the 99th percentile of the observed

linear predictors, β>n xi, i = 1, . . . , n, the Stute-Zhu (SZ) test statistic can be defined as

X2
SZ =

1

n · ψ2
n(x0)

n∑
i=1

1(β>n xi ≤ x0)[TnR
1
n(β>n xi)]

2 · σ2
n(β>n xi),

where

ψn(x0) =
1

n

n∑
i=1

1(β>n xi ≤ x0)(Yi −m(β>n xi))
2,

and σ2
n(u) is a consistent estimator of Var(Y | β>0 x = u), satisfying properties mentioned in their paper.

The limiting sampling distribution of the test statistic is described in Stute and Zhu (2002).

Although they pose the null hypothesis in terms of the mean only and do not require a distributional

assumption in the null hypothesis, we generally add such an assumption. A distributional assumption places

restrictions on the forms of nuisance parameters in the SZ test statistic. For example, in the case of Poisson

regression, σ2
n(u) = eu for all n. We also modify the SZ test statistic in the Poisson model by having

ψn(x0) =
1

n

n∑
i=1

1(β>n xi ≤ x0)m(β>n xi).

This modification allows the SZ test to detect violations of our narrower null hypothesis, such as overdisper-

sion, that its original formulation would not permit, although even with this modification the ability of the

SZ test to detect overdispersion is somewhat limited. For the selection of a kernel bandwidth in TnR
1
n, we

use a bandwidth of 0.5/
√
n, which is used as part of a test in Stute et al. (1998).

We denote the percentile of the linear predictors used to define x0 by px0
. We find that calculating

TnR
1
n involves inverting matrices that might not be invertible even when px0 is much lower than 0.99,

particularly when there are binary covariates or many variables present. We therefore try values of px0

in {0.99, 0.98, 0.95, 0.9, 0.85, 0.8, 0.75, 0.7} in a decreasing order, and use the same value of px0
across all

realizations in a given simulation setting. It is our opinion that having px0
< 0.7 does not include enough

of the data for the test statistic to be truly meaningful, and in such cases we omit the calculation of the

statistic unless otherwise stated.
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With regards to the previous comment, the SZ test is not omitted in null setting 3, even though we were

unable to perform some of the simulations even with px0
= 0.7. This can sometimes occur when binary

covariates are present in the model because some matrices that should be inverted in the calculation of the

test statistic become singular. Instead, data that resulted in an inability to compute the SZ test statistic

was omitted, resulting in fewer than 2500 simulation realizations in each sub-setting. For the setting with

larger models, the SZ test is not included because we observe that a large proportion of the data needs to

be omitted when d is large and n = 100 for the test statistic to be computed. This is because at least d− 1

of the matrices that need to be inverted in the calculation of the SZ test statistic have less than full rank.

S.1.5 Application

We study the alcohol consumption dataset used in the study of DeHart et al. (2008), as described in Bilder

and Loughin (2014). The goal of the study was to assess how the number of alcoholic drinks consumed is

associated with factors such as self-esteem and negative romantic-relationship events. Bilder and Loughin

(2014) performed a Poisson regression analysis on a subset of the data. The variable NUMALL, representing

the number of alcoholic drinks consumed by a subject on their first Saturday, was regressed against several

variables. After a fairly extensive analysis of the data, the authors arrived at a final model containing all of

the main effects of the variables in Table S.6, including the following interactions: ROSN × PREL, AGE ×

ROSN, DESIRED × GENDER, DESIRED × AGE, and STATE × NEGEVENT.

Supplementary Table S.6: Description of variables used in the alcohol consumption study. Based on the
subset of the data used in the Poisson regression analysis of Bilder and Loughin Bilder and Loughin (2014),
each variable is derived from measurements for the first Saturday of each subject in the study.

Variable Name Description
NUMALL (response) Number of alcoholic drinks
NEGEVENT Index for negative events
PREL Index for positive romantic-relationship events
AGE Age of the subject
ROSN Long-term (trait) self-esteem level
STATE Short-term (state) self-esteem level
GENDER Gender of the subject
DESIRED Desire of the subject to drink

Understanding the questionable validity of performing GOF tests following model selection on the same

data, we test the fit of three different models using the GOF tests discussed in this paper. We have n = 89,

and we use G = 10 and G = 18 groups. The larger number of groups is included to ensure that G > d, which

is required for the naive HL test as was mentioned in Section 3, while still maintaining an average of about

5 observations per group. Because of the relatively high dimension of the data, the SW test is excluded in

the evaluations of all three models.
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We first examine the overall fit of the model mentioned at the beginning of this subsection (case 1). As

seen in Table S.7, none of the tests considered reject the null hypothesis at the α = 0.05 significance level.

The naive HL gives somewhat larger p-values than the generalized version, matching expectations due to

the moderately large number of variables relative to the sample size. For case 2 we fit a square root link

instead of the original log link, retaining all of the variables from the model in case 1. The GHL results with

both values of G and the naive HL with G = 18 suggest that the square root link may provide a poor fit.

However, the naive HL with G = 10 and the SZ test do not reject the null hypothesis. Finally, in case 3,

we omit all interactions from the the model in case 1. Here, we expect that the tests should detect a poor

fit due to missing variables. In this case we see that the GHL test with 18 groups, the naive generalized HL

test with 10 and 18 groups, and the SZ test reject the null hypothesis. While the GHL test with 10 groups

fails to reject the null hypothesis that the model is correct, the p-value is still very close to 0.05. In general,

tests based on grouped residuals, including our new proposed GHL test, seem to be quite sensitive to the

number of groups used.

Supplementary Table S.7: GOF test results for various alcohol consumption models. Table C.6 from Klein
and Moeschberger (1997) is used to approximate p-values for the SZ test.

Statistic G Case 1 Case 2 Case 3
X2

GHL 10 0.433 0.025 0.050

Ĉ∗G 10 0.675 0.275 0.048
X2

GHL 18 0.065 0.004 0.031

Ĉ∗G 18 0.118 0.035 0.029
X2

SZ — 0.101 0.988 0.002
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S.2 Supplementary Material Appendix B: Discussion, Extensions,
and Proofs

In this supplementary material we begin in Section S.2.1 by restating and proving Theorem 1 from the main

paper. The restatement breaks the theorem into individual statements which are then proved in separate sub-

sections. In Section S.2.2 we give conditions on an exponential family model which would imply conditions

(A), (B), and (C). Section S.2.3 discusses how to check condition (D). In particular we prove that condition

(D2) holds with r ∈ {G − 1, G} under reasonable conditions and show when the two possibilities arise.

Section S.2.4 gives the precise conditions on the alternative distribution under which we have established the

consistency of our test. In that section we state and prove a precise version of the result. Finally, because

the proofs rely on some empirical process results, in Section S.2.5 we state and prove the precise versions we

need, drawing on Kosorok (2007).

S.2.1 Proof of Theorem 1

Theorem 1 is phrased in terms of assumptions based on the work of Stute (1997). That work describes the

behaviour of the process R1
n defined in (6) using assumptions weaker than requiring the conditional density

of Y given X to come from the exponential family density (2) or the exponential dispersion density (3). The

Stute (1997) conditions are enough to deduce asymptotic normality of the vector S1
n defined in (7), which is

the first conclusion of Theorem 1. The result on the limiting χ2 distribution of our statistic requires extra

moment conditions beyond those of Stute (1997); these extra conditions account for the length of condition

(B). Finally, Theorem 1 asserts that the extra assumption that the conditional density of Y given X does

come from the exponential family density (2) or the exponential dispersion density (3) implies some of the

conditions.

S.2.1.1 Restatement of Theorem 1

We now restate Theorem 1 to facilitate the proof and to make it easier for readers to see which assumptions

are important for which precise conclusions. Suppose (X1, Y1), (X2, Y2), · · · are independent and identically

distributed random variables each with the same distribution as (X,Y ) where X takes values in Rd and Y

is real valued. Assume

E(Y 2) <∞.

Let m and v be given functions. Let B0 = {β : P (m(β>X) ∈ b′(Θ)) = 1}. Assume B0 has a non-empty

interior, int(B0). Assume that there is a β0 ∈ int(B0) and a φ0 > 0 such that

E(Y |X) = m(β>0 X) (S.1)
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almost surely and

Var(Y |X) = φ0 · v(m(β>0 X)) (S.2)

almost surely.

The parameter β is estimated by solving the likelihood equations corresponding to (2). The score function

for such a model is

U(β) =

n∑
i=1

Ui(β) =

n∑
i=1

Yi −m(β>Xi)

v(m(β>Xi))
m′(β>Xi)Xi. (S.3)

The β component of the score function for the exponential dispersion model (3) is

U(β)/φ.

These forms are a consequence of the fact that in the exponential density (2) we have

Eθ(Y ) = b′(θ)

and

Var(Y ) = b′′(θ).

Thus, under the exponential family model for the conditional mean of Y given X we have

θ = (b′)−1(m(β>X))

and

Var(Y |X) = b′′
{

(b′)−1(m(β>X))
}
.

Therefore, under the exponential family model (2) the function v is simply

v(m) = b′′
{

(b′)−1(m)
}
.

For the exponential dispersion form we have

Var(Y |X) = φ0 · v(m(β>0 X)).

The likelihood equations for β are usually solved by Iteratively Reweighted Least Squares; these equations

form a set of unbiased estimating equations under the assumptions above.

Our first set of conditions, adapted from Stute (1997), are:

Condition (A)

(i) The matrix

I1(β0) ≡ E

[
XX>

{m′(β>0 X)}2

v
(
m(β>0 X)

) ]
exists and is positive definite.
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(ii) Let `(Xi, Yi, β0) = [I1(β0)]−1Ui(β0). Under the null hypothesis, we have

n1/2{βn − β0} = n−1/2
n∑
i=1

`(Xi, Yi, β0) + oP (1).

Condition (B1): The function m is twice continuously differentiable and the function v is continuously

differentiable. For some δ > 0 we have

E

[
sup

{β:‖β−β0‖≤δ}
{max

j
|Xj m

′(β>X)|}

]
<∞. (S.4)

Condition (C): Define, for u ∈ R H̃(u, β) = E
{

Var(Y |X)1(β>X ≤ u)
}

. Then H̃ is uniformly continuous

in u at β0.

We require stronger conditions to deduce the chi-square limiting distribution of our statistic. We need,

from the main text, condition (D) and the extra moment conditions given in condition (B).

Here is our restatement of Theorem 1 from the main paper.

Theorem S.1. Suppose that E(Y 2) <∞. Assume the cell boundaries kn,g satisfy kn,g
p−→ kg for g = 0, . . . , G

and that the kg are distinct. Assume that β0 belongs to the interior of B0. Then:

1. Under conditions (A), (B1), and (C) we have

S1
n

d−→ MVNG(0, φ0Σ) ≡ S1
∞,

where S1
n is as defined in (7), and Σ is given by (13).

2. Assume conditions (A), (B), and (C) hold. For any sequence of matrices Σn satisfying condition (D),

and any sequence of estimates φn converging to φ0 then, putting r = rank(Σ),

S1>
n Σ+

nS
1
n/φn

d−→ χ2
r.

3. Under conditions (A), (B), and (C), the matrix Σn in (10) converges almost surely to Σ; in particular,

condition (D1) holds.

4. If conditions (i) and (ii) of Section 3.4 are satisfied, then conditions (B1) and (C) hold.

S.2.1.2 Proof of Statement 1

We borrow and modify some of the notation used in Stute and Zhu (2002). Under our conditions they show

that the sequence of processes R1
n, where, for u ∈ R,

R1
n(u) =

1√
n

n∑
i=1

1(β>nXi ≤ u)[Yi −m(β>nXi)], (S.5)
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converges weakly to a centered Gaussian process R1
∞ with continuous sample paths. This process has the

structure

R1
∞(u) = R∞(u)−Q>(u)Γ,

whose terms we now describe. The process R∞ is a centered Gaussian process with continuous sample paths

and covariance kernel K(s, t) = ψ(min{s, t}), where, for w ∈ R

ψ(w) = E
{

Var(Y |β>0 X)1(β>0 X ≤ w)
}

=

∫ w

−∞
Var(Y |β>0 X = u)Fβ0

(du).

Here Fβ0
denotes the distribution of β>0 X.

Define the column vector

q(x, β) =
∂m(β>x)

∂β
= (q1(x, β), . . . , qd(x, β))> = m′(β>x)x.

Stute and Zhu (2002) define, for u ∈ R, the vector-valued function Q(u) with components Qi(u), i = 1 . . . , d

by

Q(u) ≡ Q(u, β0) = E(q(X,β0)1(β>0 X ≤ u));

they show that each Qi is continuous in u at β0. Finally, Γ is a d-dimensional multivariate normal vector

with zero means and covariance matrix [I1(β0)]−1, the inverse of the Fisher information matrix for a single

observation. From Stute and Zhu (2002),

Cov(R∞(u), Q>(s, β0)Γ) = Q>(s, β0) E
[
1(β>0 X ≤ u)

{
Y −m(β>0 X)

}
`(X,Y, β0))

]
.

Because the process R1
∞ has continuous sample paths, for interval endpoints kn,g converging to the

non-random interval endpoints, kg, we have the conclusion

S1
n

d−→
{

(R∞(kg)−Q>(kg)Γ)− (R∞(kg−1)−Q>(kg−1)Γ)
}G
g=1
≡ S1

∞,

where S1
∞ is multivariate normal, MVNG(0,Σ) and Σ is as defined in (13) from the main text.

This completes the proof of Statement 1 of Theorem 1.

S.2.1.3 Proof of Statement 2

Statement 2 follows from Theorem 1 of Andrews (1987) which we now put in our notation. They study

quadratic forms U>n A
+
nUn. Andrews’ first condition is that

Un
d−→ MVNG(0, A)

for some symmetric, non-negative matrix A, whose rank we denote by r. We established this hypothesis

above for our quadratic form with A = Σ. Andrews’ second condition is that

An
p−→ A.

12



This is condition (D1) which we are assuming for the matrix Σn in our second statement. Conclusion (a) of

Andrews’ Theorem 1 is that under these two conditions we have

U>n A
+
nUn

d−→ χ2
r,

if a quantity that Andrews denotes by Qn converges to 0 in probability. However, Andrews observes (on

page 352 in the second sentence of the bottom paragraph) that if rank(An) ≤ rank(A) then Q = 0. In a

comment immediately below Theorem 1, Andrews observes that if his first two conditions given above hold

and rank(An)
p−→ rank(A) then the chi-squared limit above also holds. Because we have assumed Σn satisfies

condition (D2), this proves Statement 2.

S.2.1.4 Proof of Statement 3

We are to prove, under conditions (A), (B) (from the main text) and (C) that Σn
p−→ Σ. This will be a

corollary to Theorem S.2, which we prove below. Theorem S.2 is a somewhat more general result that will

be useful in our study of consistency properties of our test and our results on the rank of Σ. We will see

below that the estimate Σn of the matrix Σ depends on the distribution of X and on the modeled conditional

mean and variance of Y given X (that is, on the functions m and v) as well as the estimates βn and φn. It

does not depend directly on Y—only indirectly through the estimates and perhaps the cell boundaries.

Consider a pair β, φ of parameter values, a distribution of the covariates X, and a set of non-random cell

boundaries k0 = −∞ < k1 < k2 < · · · kG−1 < kg =∞, where φ > 0 and β is such that

E
[
|m′(β>X)|‖X‖)

]
<∞. (S.6)

E

[
‖X‖2

{
m′(β>X)

}2
v(m(β>X))

]
<∞, and (S.7)

E
[
v(m(β>X))

]
<∞. (S.8)

We may then define the following quantities. Define the G×d matrix ∆ with g, jth entry (j ∈ {1, · · · , d})

∆gj(β, k) = E
[
m′(β>X)Xj1(kg−1 < β>X ≤ kg)

]
.

Define

I∗(β) = E

[
XX>

{
m′(β>X)

}2
v(m(β>X))

]
.

Let Σ(1)(β) be the G×G diagonal matrix whose gth diagonal entry is

E
[
v(m(β>X))1(kg−1 < β>X ≤ kg)

]
Let Σ(2)(β) be the G×G matrix

∆I∗(β)−1∆>.

13



Finally, define

Σ(β, φ) = φ
{

Σ(1)(β)− Σ(2)(β)
}
≡ φΣ(β).

It may easily be checked that this definition matches the formula for Σ given in the main text when β = β0

and condition (B1) of Theorem S.1 holds. Condition A and the remaining parts of condition B imply the

moment conditions (S.6), (S.7), and (S.8) hold for β = β0.

We now show that for any sequence of random coefficient vectors, say β̃n, converging to some β∗ we have

Σn(β̃n)
p−→ Σ(β∗),

under some moment conditions which are slightly stronger than those used previously.

To state the conditions, we define

wA(u) =
d

du
v(m(u)) = m′(u)v′(m(u)),

wB(u) = m′′(u), and

wC(u) =
d

du

(m′(u))
2

v(m(u))
.

Then, for δ > 0, define

MA,β∗,δ(x) = ‖x‖ sup{|wA(β>x)|, ‖β − β∗‖ ≤ δ},

MB,β∗,δ(x) = ‖x‖2 sup{|wB(β>x)|, ‖β − β∗‖ ≤ δ}, and

MC,β∗,δ(x) = ‖x‖3 sup
{
|wC(β>x)|, ‖β − β∗‖ ≤ δ

}
.

We now introduce our stronger moment conditions. Condition (E), which follows, extends condition (B).

Condition (E(β∗))

There is a δ > 0 such that

E
{
M2
A,β∗,δ(X)

}
<∞,

E
{
M2
B,β∗,δ(X)

}
<∞,

and

E {MC,β∗,δ(X)} <∞.

Moreover:

E
[
v2(m(β∗>X))

]
<∞,

E
[{
m′(β∗>X)

}2 ‖X‖2] <∞,
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and

E

[{
m′(β∗>X)

}2
v(m(β∗>X))

‖X‖2
]
<∞.

Below we write condition (E) for condition (E(β0)), the crucial special case where the null hypothesis

holds and β∗ is the true parameter vector.

In order to state the following theorem carefully we will emphasize the dependence of the covariance

matrix Σ on both β and a limiting set of cell boundaries k = (k0, . . . , kg). Correspondingly we will indicate

the dependence of the estimate Σn on a parameter vector β (which will not necessarily be the MLE βn)

and cell boundaries kn = (kn,0, . . . , kn,G). That is, we write Σ(β, k) and Σn(β, kn). Let K be the set of all

k = (k0, . . . , kG) with k0 < k1 · · · < kG.

Theorem S.2. Assume condition (A). Assume that the distribution of X satisfies condition (C). Let β̃n be

a sequence of random vectors converging in probability to some β∗. Let kn denote a possibly random sequence

of cell boundaries converging in probability to k ∈ K. Assume that condition (E(β∗)) holds. With δ > 0 as

given by condition (E(β∗)) define, for any 0 < κ < δ the ball Nκ = {β : ‖β − β∗‖ ≤ κ < δ}. Then,

1. Almost surely, for every κ < δ,

Σn(β, kn)→ Σ(β, k),

uniformly for β ∈ Nκ and k ∈ K.

2. The matrix Σ(β, k) depends continuously on β, k on the set Nr ×K.

3. The sequence of matrices Σn(β̃n, kn) converges in probability to Σ(β∗, k).

Corollary 1. Under the conditions of Theorem S.2, if φ̃n is any sequence of random positive scalars con-

verging to some φ∗ in probability, then

Σn(β̃n, kn, φ̃n) = φ̃nΣn(β̃n, kn)→ φ∗Σ(β∗, k)

in probability.

The most important case of this theorem arises when the null hypothesis holds, β̃n is the MLE, βn, and

β∗ is the true parameter value β0. In that case Theorem S.2 becomes:

Corollary 2. Under conditions (A), (B), and (C), our estimator Σn, given by (10), is consistent for Σ

under the null hypothesis. That is, condition (D1) is satisfied.

Proof of Theorem S.2 Define the G× n matrix-valued function, Gn(β), by

(Gn(β, kn))gi = 1(kn,g−1 < β>Xi ≤ kn,g),
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for i = 1, . . . , n, and g = 1, . . . , G. Similarly, define the n× n matrices

V 1/2
n (β) = diag

([
v(m(β>Xi))

]1/2)
W 1/2
n (β) = diag

(
m′(β>xi)

v(m(β>xi))1/2

)
.

The estimator Σn(β̃n, kn) can be written in the form

An(β̃n, kn)−Bn(β̃n, kn)C−1n (β̃n)B>n (β̃n, kn),

where An(β̃, kn) is a G × G matrix, Bn(β̃, kn) is a G × d matrix, and Cn(β̃) is d × d. These matrices are

given by

An(β̃, kn) =
1

n
Gn(β̃, kn)Vn(β̃)Gn(β̃, kn)

>
,

Bn(β̃, kn) =
1

n
Gn(β̃, kn)V 1/2

n (β̃)W 1/2
n (β̃)X∗, and

Cn(β̃) =
1

n
X∗>Wn(β̃)X∗.

The matrices Gn(β̃, kn), Vn(β̃), and Wn(β̃) are the same as Gn, V , and W defined in the main text, except

that β̃n replaces both β0 and βn in the definitions. Here we have emphasized the dependence of each entry on

β̃; we will show that under our conditions each of An, Bn, and Cn converges to its expected value uniformly

in (β, k) ∈ N ×K where N = {β : ‖β − β0‖ ≤ δ} with δ from condition (E). We will also show those limits

are continuous functions of β. This will finish our proof of consistency.

Each of these three matrices can be written in the form

1

n

n∑
i=1

H(Xi, β).

Under our assumptions, the matrix valued functions H involved have finite expectations for all β ∈ N . Our

proof then uses Glivenko-Cantelli theorems, that is, uniform laws of large numbers; see Lemmas 1 and 2

below.

Consistency of An

For the matrix An the g, g′ entry in H(x, β) is

1(kg−1 < β>x ≤ kg)v(m(β>x))1(kg′−1 < β>x ≤ kg′),

which vanishes unless g = g′, in which case it is simply

1(kg−1 < β>x ≤ kg)v(m(β>x)).
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We apply Lemma 2. For u ∈ R and β ∈ Rd define the function fβ,u by

fβ,u(x) = v(m(β>x))1(β>x ≤ u),

and the class of functions FA by

FA = {fβ,u : ‖β − β0‖ ≤ δ, u ∈ R}.

We apply Lemma 2 with β∗ = β0, h(β, x) = v(m(β>x)), and M = MA,β∗,δ.

With these choices, conditions i-iii of the Lemma come immediately from condition (E). We conclude

that FA is P -Glivenko-Cantelli. That is,

sup

{∣∣∣∣∣ 1n
n∑
i=1

fβ,u(Xi)− E(v(m(β>X))1(β>X ≤ u))

∣∣∣∣∣ ;β ∈ N , u ∈ R

}
→ 0

almost surely. Let

J(β, u) = E
{
v(m(β>X))1(β>X ≤ u)

}
,

and

Jn(β, u) =
1

n

n∑
i=1

v(m(β>Xi))1(β>Xi ≤ u).

The g, g entry in An is

Jn(βn, kn,g)− Jn(βn, kn,g−1).

We have shown that, uniformly over (β, k) ∈ N ×K we have

{Jn(β, kg)− Jn(β, kg−1)} − {J(β, kg)− J(β, kg−1)} → 0

almost surely. Consistency of An then follows from continuity in β, k of J(β, k) which we now establish. The

dominated convergence theorem shows that for any deterministic sequence βn converging to β0 we have

lim
n→∞

E
{
h(βn, X)1(β>nX ≤ kg)

}
= E

{
h(β0, X)1(β>0 X ≤ kg)

}
,

provided P (β>0 X = kg) = 0. This last follows from condition (C).

Consistency of Bn

For the matrix Bn, the g, j entry in H(xi, β) is

1(kg−1 < β>xi ≤ kg)m′(β>xi)xij .

We define, for u ∈ R, β ∈ Rd, and j ∈ {1, . . . , d}, the function fβ,u,j to be the jth component of

fβ,u(x) = m′(β>x)1(β>x ≤ u)x.
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The argument for An together with the assumption on MB,β∗,δ may be followed to prove that Bn(βn, kn)

converges almost surely to ∆(β, k∞).

Consistency of Cn

Finally, we consider the matrix Cn and show that Cn(βn) is a consistent estimator of the Fisher infor-

mation matrix for a single observation. This matrix has the form

Cn(β) =
1

n

n∑
i=1

XiX
>
i

(m′(β>Xi))
2

v(m(β>Xi))
.

Define

JC(β) = E

(
XX>

(m′(β>X))2

v(m(β>X))

)
,

and observe that JC(β0) = I1(β0), the Fisher Information matrix. (It is a consequence of this observation

and condition (E) that JC(β) is finite for each β ∈ N .) We now apply Lemma 1; the Lemma is applied to

the j, j′ component of Cn but we can use the same bounding function for all components. In the Lemma we

take h(β, x) to be the j, j′ entry in

xx>
(m′(β>x))2

v(m(β>x))
,

and M(x) = MC,β∗δ(x).

S.2.1.5 Proof of Statement 4

Assumption (ii) of Section 3.4 includes the statement that the support of X is compact which makes all the

moment conditions easy; this establishes condition (B). Assumption (ii) also includes the assertion that the

law of β>X is absolutely continuous with a bounded Lebesgue density for all β in a neighbourhood of β0;

this clearly implies condition (C).

S.2.2 Verifying Conditions (A), (B), and (C) for Various GLMs

In this section we discuss how to verify the conditions (A), (B), and (C) when we assume the response variables

follow the model (2). For specific GLM families and a variety of common link functions we translate our

conditions into simpler terms. We consider the following choices of pairs m, v: the normal family with identity

link and v ≡ 1; the Poisson model with log or square root link and v(m) = m; the Bernoulli model with m

being a cumulative distribution and v(m) = m(1 −m); the Gamma model with log link and v(m) = m2;

the inverse Gaussian with log link and v(m) = m3, and the Negative Binomial with v(m) = m+m2/λ – we

assume λ is known.
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S.2.2.1 Condition (A)

Conditions for asymptotic normality and weak consistency of the MLE βn for β0 in GLMs can be found in

Fahrmeir and Kaufmann (1985). They show that in a GLM without a dispersion parameter and with the

canonical link function there is, under very mild conditions, a root βn of the likelihood equations that is

consistent for β0 in the case of iid covariates.

We first consider canonical (natural) link functions, since such links make the log-likelihood convex. If X

has compact support and E(XX>) is positive definite (i.e., the covariance matrix of X is positive definite),

then βn asymptotically exists and is strongly consistent, by Corollary 3 of Fahrmeir and Kaufmann (1985).

We now consider the case where the support of X is not compact and introduce condition (Rs) of Fahrmeir

and Kaufmann (1985):

(Rs)(i) : I1(β0) exists and is positive definite, and

(Rs)(ii) : E
[
maxβ∈N XX

>v
{
m
(
β>X

)}]
exists for some compact neighbourhood, N , of β0.

If condition (Rs) holds, then βn asymptotically exists and is strongly consistent, also by their Corollary 3.

The expansion in condition (A) follows.

For link functions other than the canonical link, it can be the case that the score function has multiple

roots. In this case, results from Fahrmeir and Kaufmann (1985, 1986) assert that there is a consistent root

and that this root satisfies the expansion in condition (A). Some additional conditions might be required to

establish weak consistency of βn with noncanonical links.

S.2.2.2 Condition (B)

The inverse link functions considered are mentioned in Section 3.4 of the paper. All of these are continuously

differentiable on the whole real line. Let Θ be the set of θ for which
∫

exp(yθ)ν(dy) < ∞. Then Θ is an

interval in the real line. On the interior of that interval the function b has infinitely many derivatives and is

strictly convex so in particular b, b′ and b′′ are all continuous on the interior of Θ. The function b′ is strictly

monotone and has an infinitely differentiable inverse. Continuity of the map u 7→ v(m(u)) thus holds, since

v(m(u)) = b′′(θ) = b′′(b′−1(m(u)))).

Thus the first part of condition (B) is met.

The second part of condition (B) imposes 6 moment conditions on the covariates. We consider the 6

conditions in turn. Since conditions (B1), (B4), and (B5) depend only on the choice of inverse link function

m we do them first. The other 3 conditions depend on the combination of v and m.
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To verify condition (B1) it is enough to prove that there is a function M(x) such that

E(M(X)) <∞.

and

sup
{β:‖β−β0‖≤δ}

{max
j
|Xj m

′(β>X)| ≤M(X)

almost surely. Consider first the log link, for which m(µ) = eµ. If there is a neighbourhood of β0 in which

X has a moment generating function then condition (B1) holds. For the logit, probit, cauchit, cloglog, and

identity links it is enough that X have a finite mean; that is, for each 1 ≤ j ≤ d we have E(|Xj |) < ∞.

For the square root link we require finite variances: for each j we require E(X2
j ) <∞. All of these moment

conditions are immediate consequences of an overall assumption that the covariates X lie in some bounded

set with probability 1. Here are some details.

Consider the log link, i.e., m(β>x) = exp(β>x). Suppose that for some κ > 0 the random vector X has

a finite moment generating function E(exp(β>X)) < ∞ for all β such that ‖β − β0‖ ≤ κ. Then it can be

shown using the convexity of β 7→ exp(β>x) that for any 0 < δ < κ and any c > 0 we have

E

[
sup

{β:‖β−β0‖≤δ}
‖X‖c exp{β>X}

]
<∞.

Our sufficient condition for (B1) given above then holds with

M(x) = ‖x‖ exp {(‖β0‖+ δ)‖x‖} .

Indeed, for j = 1, . . . , d, we have, for all β with ‖β − β0‖ ≤ δ,

|qj(x, β)| =
∣∣m′ (β>x)xj∣∣

=
∣∣xj exp(β>x)

∣∣
≤M(x).

For the identity link we have qj(x, β) = xj . For the four bounded links the derivative m′ is also bounded

and we have

|qj(x, β)| ≤ ‖x‖‖m′‖∞.

For the square root link we see m′(u) = 2u and

|qj(x, β)| ≤ 2‖x‖ sup
{β:‖β−β0‖≤δ}

|β>x| ≤ 2‖x‖2 sup
{β:‖β−β0‖≤δ}

‖β‖2.

Thus for this link, and any of our models we need finite second moments of the covariates to deduce condition

(B1).
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It remains to interpret condition (B) for each combination of inverse link m and each variance function v

considered in this paper. We run through our models, which determine v, and then consider those m which

might be used for that model. We first present a table of link and variance combinations, along with the

functions appearing in our conditions.

Supplementary Table S.8: Several distribution and link function combinations.

Distribution m(u) v(m) m′(u) m′(u)v′(m(u)) m′′(u) (m′(u))2/v(m(u))
Normal(µ, σ2) u 1 1 0 0 1
Poisson(λ) eu m eu eu eu eu

Poisson(λ) u2 m 2u 2u 2 4
Bernoulli(π) F (u) m(1−m) f(u) (1− 2F (u))f(u) f ′(u) f2(u)/[F (u)(1− F (u))]
Gamma(µ, k) eu m2 eu 2e2u eu 1
IG(µ, λ) eu m3 eu 3e3u eu 1/eu

NB(µ, k) eu m+m2/k eu eu + 2e2u/k eu eu/(1 + eu/k)

Normal Family: Here v(m) ≡ 1 and we may take MA,β0,δ(x) = M = 0 for any link and any δ > 0. The

most common link for the normal family is the identity for which m′ ≡ 1, m′′ ≡ 0, and MB,β0,δ = 0. In this

case condition (B) reduces to assuming that the covariates have finite second moments. The conditions on

v(m(β>0 X)) and on m′(β>0 X) are both trivial.

Poisson Family: Here v(m) = m. Common links are the log link (m(u) = eu) and the square root link

(m(u) = u2).

For the log link we find that v(m(u)) = eu so that

MA,β0,δ(x) = ‖x‖ sup{eβ
>x : ‖β − β0‖ ≤ δ},

which means our condition is that X has a finite moment generating function in a neighbourhood of 2β0.

We also have

m′′(u) = m′(u) = eu,

and

MB,β0,δ(x) = ‖x‖2 sup{eβ
>x : ‖β − β0‖ ≤ δ}.

The condition is the same as the one associated with MA,β0,δ. Finally,

d

du

(m′(u))2

v(m(u))
= eu,

so our condition is that X has a finite moment generating function in a neighbourhood of β0. We also need

E(e2β
>
0 X) <∞ and E(e2β

>
0 X‖X‖2) <∞. These lead to the same condition as the one associated with both

MA,β0,δ and MB,β0,δ. That is: for the Poisson family with log link, condition (B) holds as long as X has a

finite moment generating function in a neighbourhood of 2β0.
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For the square root link we have m(u) = v(m(u)) = u2. We find that

wA(u) = 2u.

Thus,

MA,β0,δ(x) = 2‖x‖ sup{|β>x| : ‖β − β0‖ ≤ δ}.

Writing β in the form β0 + ax + bz with z any vector perpendicular to x shows that we can regard b = 0,

and then

MA,β0,δ(x) = 2‖x‖ sup{|β>0 x|+ a‖x‖2 : |a|‖x‖ ≤ δ}.

The maximum of this piecewise linear function of a that occurs in the braces must occur on the boundary

of the interval imposed on a, so it is easily checked that

MA,β0,δ(x) = 2‖x‖
(
|β>0 x|+ δ‖x‖

)
.

Thus, MA,β0,δ is square integrable if X has 4 finite moments. We see that

m′′(u) = 2,

and thus

MB,β0,δ(x) = 2‖x‖2,

which requires 4 finite moments. Finally, it is easily checked that for this link

Cn(β) =
4

n

n∑
i=1

XiX
>
i ,

which does not depend on β. For the Poisson family with a square root link, we also require E((β>0 X)4) <∞

and E(4(β>0 X)2‖X‖2) <∞, but these do not add any further moment conditions. That is: for the Poisson

family with square root link, condition (E) holds as long as X has 4 finite moments.

Bernoulli Family: For the Bernoulli(θ) model we have v(m) = m(1 −m). The inverse links we consider

all have the form

m(u) = F (u),

for a smooth cdf F with corresponding smooth density f . We therefore have

v(m(u)) = F (u)(1− F (u)),

which is bounded by 1, and

m′(u) = f(u).
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For all 4 links (logit, probit, cauchit, and cloglog) we find that there is a constant, C, such that, for all u,

f(u) ≤ C.

For all 4 links there is also another constant, C2, such that, for all u,

|f ′(u)| ≤ C2.

Therefore,

|wA(u)| = |f(u)(1− 2F (u))| ≤ C,

and so

MA,β0,δ(x) ≤ ‖x‖C,

which amounts to 2 finite moments. Also,

MB,β0,δ(x) ≤ C2‖x‖2,

which amounts to 4 finite moments.

The quantity

|wC(u)| =

∣∣∣∣∣ ddu (m′(u))
2

v(m(u))

∣∣∣∣∣ =

∣∣∣∣∣ 2f(u)f ′(u)

F (u)(1− F (u))
− f3(u)(1− 2F (u))

[F (u) {1− F (u)}]2

∣∣∣∣∣
is bounded by some constant. Therefore, our condition on MC,β0,δ(x) amounts to requiring three finite

moments for X.

Gamma Family: Here v(m) = m2. We consider the log link, m(u) = eu. The square root link, m(u) = u2,

is included to highlight how to deal with other link functions.

For the log link we find that v(m(u)) = e2u, and m′(u) = eu, so that

m′(u)v′(m(u)) = 2e2u.

Thus,

MA,β0,δ(x) = 2‖x‖ sup
{
e2β
>x : ‖β − β0‖ ≤ δ

}
,

which means our condition on MA,β0,δ is that X has a finite moment generating function in a neighbourhood

of 4β0. We also take

MB,β0,δ(x) = ‖x‖2 sup
{
eβ
>x : ‖β − β0‖ ≤ δ

}
,

which leads to the strictly weaker condition that X has a finite moment generating function in a neighbour-

hood of 2β0. Finally,

(m′(u))2

v(m(u))
= 1,
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whose derivative is 0 so we need only

MC,β0,δ(u) = 0.

Thus, Cn(β) does not depend on β, so consistency is a consequence of two finite moments for X. The

conditions on v(m(β>0 X)) and on m′(β>0 X) are the same as those above; they amount to a finite moment

generating function of X at 4β0 and at 2β0.

For the square root link, we have v(m) = m2/k, m(u) = u2, and v(m(u)) = u4/k. We find

m′(u)v′(m(u)) = 4u3/k.

Thus,

MA,β0,δ(x) = 4‖x‖
(
|β>0 x|+ δ‖x‖

)3
/k,

which means we require X to have 8 finite moments. Evidently, m′′(u) = 2. Thus, we may take

MB,β0,δ(x) = 2‖x‖2,

which leads to a weaker condition, namely, 4 finite moments for X. Finally,

(m′(u))2

v(m(u))
=

4u2k

u4
=

4k

u2
.

This function diverges at u = 0, so we need to add an assumption: there is an ε > 0 and a δ > 0 such that,

for all β with ‖β − β0‖ ≤ δ, we have

P (β>X ≥ ε) = 1.

In this case,

d

du

(m′(u))2

v(m(u))
= −8u3,

and MC,β0,δ(x) ≤ 8‖x‖3/ε3. This amounts to three finite moments for X. The conditions on v(m(β>0 X)) and

on m′(β>0 X) amount to E((β>0 X)8) < ∞ and E((β>0 X)2‖X‖2) < ∞, i.e., 8 finite moments which matches

the requirement for MA,β0,δ.

Inverse Gaussian Family: Here v(m) = m3/λ. For the log link, m(u) = eu, we find that v(m(u)) = e3u/λ

so that

MA,β0,δ(x) = 3‖x‖ sup{e3β
>x : ‖β − β0‖ ≤ δ}/λ,

which means our condition on MA,β0,δ is that X has a finite moment generating function in a neighbourhood

of 6β0. We also have

m′′(u) = m′(u) = eu,
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and therefore take

MB,β0,δ(x) = ‖x‖2 sup{eβ
>x : ‖β − β0‖ ≤ δ},

which leads to the strictly weaker condition that X has a finite moment generating function in a neighbour-

hood of 2β0. Finally,

(m′(u))2

v(m(u))
=

λ

eu
,

and so

d

du

(m′(u))2

v(m(u))
=

d

du

λ

eu
=
−λ
eu
.

Thus,

MC,β0,δ(u) = λ‖x‖3 · sup{e−β
>x : ‖β − β0‖ ≤ δ}.

Our condition is that X has a finite moment generating function in some neighbourhood of −β0. We also

need E(e6β
>
0 X) <∞, and E(‖X‖2e2β>0 X) <∞. Our overall condition is therefore that X has a finite moment

generating function in some neighbourhood of 6β0 and in some neighbourhood of −β0. We remark that the

set of β where a moment generating function is finite is convex and will include both these neighbourhoods

and a tube containing them.

Negative Binomial Family: We have v(m) = m+m2/k, with k > 0. We consider the log link, although

the square root and identity links are also sometimes used. For the log link, m(u) = eu, and

|wA(u)| = eu +
2e2u

k
,

so that

MA,β0,δ(x) = ‖x‖ sup{eβ
>x + 2e2β

>x/k, ‖β − β0‖ ≤ δ}.

Our condition then amounts to X having a finite moment generating function in a neighbourhood of 4β0.

Also,

MB,β0,δ(x) = ‖x‖2 sup{eβ
>x, ‖β − β0‖ ≤ δ},

which leads to the strictly weaker condition of X having a finite moment generating function in a neighbour-

hood of 2β0. For Cn, we see that ∣∣∣∣∣ ddu (m′(u))
2

v(m(u))

∣∣∣∣∣ =
eu

(1 + eu/k)2
≤ C,

for some constant C > 0. Therefore, our condition associated with MC,β0,δ(x) is that X has three finite

moments. We also require E(v2(m(β>0 X))) < ∞, E(e2β
>
0 X‖X‖2) < ∞, and E(‖X‖2) < ∞, but these hold,

provided that the above conditions on the moment generating function of X are satisfied.

For each row of in Table S.8 we examined the 6 required conditions and identified the most stringent

moment assumptions required. These are presented in Table S.9.
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Supplementary Table S.9: Moment conditions on X for the consistency of Σn. For the Negative Binomial
distribution the parameter k is assumed to be known.

Distribution m(u) v(m) Moment Conditions
Normal(µ, σ2) u 1 Covariates have finite second moments
Poisson(λ) eu m X has a finite MGF in a neighbourhood of 2β0
Poisson(λ) u2 m Covariates have finite fourth moments
Bernoulli(π) F (u) m(1−m) Covariates have finite fourth moments

Gamma(µ, k) eu m2 X has a finite MGF in a neighbourhood of 4β0, and
the covariates have finite second moments

IG(µ, λ) eu m3 X has a finite MGF in neighbourhoods of 6β0 and −β0
NB(µ, k) eu m+m2/k

X has a finite MGF in a neighbourhood of 4β0, and
the covariates have finite third moments

S.2.2.3 Condition (C)

This condition requires that β>0 X have a continuous distribution. In particular, it will not be satisfied with

only discrete covariates or with β0 = 0. This is a real restriction; if the covariates are unrelated to the

response then in the limit all of the observations will be in a single cell.

S.2.3 Condition (D) and the rank of the covariance

In Theorem S.2 we gave conditions under which condition (D1) holds for the particular estimator Σn(βn).

In our discussion below we show that under somewhat stronger conditions on the choices of cell boundaries,

and on the distribution of the covariates, we have rank(Σ) ∈ {G,G− 1}, and identify conditions on the link

and variance functions that determine which of the two possibilities is correct. We also establish that these

stronger conditions imply condition (D2), that rank(Σn)
p−→ rank(Σ). More generally, however, condition

(D2) can be more difficult to verify. Our simulation results from Section 5 suggest that the verification of

condition (D2) should not be a major concern. Nevertheless, we provide an alternative approach that can

be taken to avoid this potential problem.

Along the lines of Proposition 2 of Lütkepohl and Burda (1997) and the “trimmed” or “Winsorized”

tests of Davidov et al. (2018), the main idea is to make use of the eigendecompositions of Σn and Σ, so

that Σn = EnΛnE
>
n and Σ = EΛE>, where the columns of E,En are orthogonal, and Λ,Λn are diagonal

matrices. Then, we can “trim” Σn by setting all entries of Λn that are smaller than some c > 0 to zero.

This prevents undesirable instabilities when making use of generalized inverses of Σn in test statistics. We

refer readers to Lütkepohl and Burda (1997) and Davidov et al. (2018) for more information. We have not

needed to use this suggestion in our simulations.
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S.2.3.1 Condition (D2)

In this subsection we present results on the rank of Σ(β) and on the limit of the rank of Σn(β̃n) when the

sequence of random parameter values β̃n converges to some β∗.

S.2.3.2 Rank of the covariance matrix

Note that the rank of Σ(β, φ) does not depend on φ > 0, so we take φ = 1 and drop the symbol from our

notation.

The rank in question depends on how many of the cells have positive probability for the distribution of

β>X. It is certainly possible to have distributions for X and cell boundaries kg such that

P (kg−1 < β>X ≤ kg) = 0

for one or more values of g. If this happens, then such a cell could be combined with an adjacent cell without

changing the law of our test statistic. We will compute the rank under the assumption that β, the law of X,

and the cell boundaries are related in such a way that there is, in the limit, no chance of any empty cells.

The rank of Σ(β) may depend on whether or not our model has an intercept. We now introduce notation

to allow us to talk about both cases. In models with an intercept we assume that the first column of the

design matrix X∗ is a column of 1s. Then there are d columns corresponding to a d-dimensional covariate X.

In models without an intercept there is no column of 1s, just d columns of the covariate X. The column of

1s is distinguished from other columns of X because of the assumption made below that X has a Lebesgue

density.

Our discussion will be simpler if we temporarily let ξ be the vector of coefficients of the random covariates

X and α be the intercept if one is present. Then, β = ξ if there is no intercept and β = (α, ξ>)> if there is

an intercept. The linear predictor is correspondingly either η(X) = ξ>X or η(X) = α+ξ>X. In this section

and again when we study consistency of our test in Subsection S.2.4 we will repeatedly use the dependence

of η(X) on β.

We now consider a parameter vector β satisfying the following condition:

Condition (C*(β))

The Xi are i.i.d. with a joint density, say gX . The vector β lies in the interior of B0. There is an ε > 0 such

that the density of the linear predictor, η(X), is positive almost everywhere on the interval

Lε ≡ [k1 − ε, kG−1 + ε].

To compute the rank we study the quadratic form

a>Σ(β)a,

27



for a = (a1, . . . , aG)> ∈ RG. The rank is G minus the dimension of the vector subspace consisting of those

a for which the quadratic form is 0. We have the following theorem.

Theorem S.3. Let a = (a1, . . . , aG)> ∈ RG and fix a vector β such that the basic moment conditions (S.6),

(S.7), and (S.8) all hold. Assume that v, m, and m′ are continuous functions. Under condition C*(β) we

have the following conclusions:

1. If the entries ag are not all equal then

a>Σ(β)a > 0.

2. If the entries ag are all equal and non-zero and our model has an intercept then

a>Σ(β)a > 0

unless there are constants b and c such that

v(m(u)) = m′(u)(b+ cu) (S.9)

for all u in the support of η(X).

3. If the entries ag are all equal and non-zero and our model does not have an intercept then

a>Σ(β)a > 0

unless there is a constant c such that

v(m(u)) = m′(u)cu (S.10)

for all u in the support of η(X).

4. If the entries ag are all equal, our model has an intercept and there are b and c such that (S.9) holds

for all u in the support of η(X) then

a>Σ(β)a = 0.

5. If the entries ag are all equal, our model does not have an intercept and there is a c such that (S.10)

holds for all u in the support of η(X) then

a>Σ(β)a = 0.

Thus, under our condition C*(β), the rank of Σ(β) is G unless the conditions of parts (4) or (5) of

Theorem S.3 hold, in which case the rank is G− 1.
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Proof of Theorem S.3: In this proof we usually suppress the dependence of objects on β; it is useful to

remember that η(X) depends on β.

The quadratic forms in the theorem of the form a>Σa and a>Σna arise from the residuals in a linear

regression problem. To be specific, from a data point X we define a response variable L(a, X) by

L(a, X) =
∑
g

ag1 (kg−1 < η(X) ≤ kg) v1/2(m(η(X))).

Let Xc = X if we have no intercept and let Xc = (1, X>)> of we do have an intercept. Our predictor is

w1/2(X)Xc, where

w1/2(X) =
m′(η(X))

v1/2(m(η(X)))
.

Thus we fit, with β fixed, the model

L(a, X) = w1/2(X)X>c γc + Ξ,

where Ξ is a notional error and γc = (γ0, γ
>)> is a d + 1 vector to be fitted if the model has an intercept

and γc = γ is a d vector if the model does not have an intercept. The mean squared error when L(a, X) is

predicted by w1/2(X)X>c γc is

MSE(γc) ≡ E
{

[L(a, X)− w1/2(X)X>c γc]
2
}
.

Since the weight w is positive everywhere, this function of γc is quadratic and has a positive minimum unless

there is a γc such that

P
(
L(a, X) = w1/2(X)γ>c Xc

)
= 1. (S.11)

Expanding out and simplifying we see that the mean square error at the given γc is

MSE(γc) = a>Σ(1)(β)a− 2a>∆γc + γ>c I(β)γc.

This quantity is minimized over γc by the choice

γc = I−1(β)∆a.

At this choice of γc the MSE simplifies to

a>
{

Σ(1) −∆I−1(β)∆>
}

a = a>Σ(β)a.

We now prove that if the ag are not all the same number then the probability in (S.11) is less than 1 and

that if the ag are all equal then this probability is less than 1 unless the appropriate identity holds for all u

in the support of η for some c and, in the case of models with an intercept, some b.
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Fix a γc and let ML denote the set of x for which

L(a, x) 6= w1/2(x)γ>c xc.

Suppose first that the ag are not all equal. Then there is a g∗ with ag∗ 6= ag∗+1. Consider the following

functions on the real line:

H1(u) =
∑
g

ag1 (kg−1 < u ≤ kg) v1/2(m(u))

and

H2(u) =
m′(u)

v1/2(m(u))
.

Then ML is the set of x such that

H1(η(x))

H2(η(x))
6= γ0 + γ>x,

where we take γ0 = 0 if our model has no intercept.

We can always write γ in the form cξ + ζ where ζ>ξ = 0. Then ML is the set of x such that

H1(η(x))

H2(η(x))
6= γ0 − cα+ c(η(x)) + ζ>x. (S.12)

Without an intercept we drop the term α and recall γ0 = 0.

Every term in (S.12) except ζ>x depends on x only through ξ>x. It follows that, almost surely,

Var(ζ>X | ξ>X) = 0.

If X has a joint density, ζ 6= 0, ξ 6= 0, and ζ>ξ = 0, then the vector (ζ>X, ξ>X) also has a joint density

and the indicated conditional variance is almost surely not 0. We deduce ζ = 0. (The existence of the joint

density in question can be seen by making a change of variables from the original X variables to OX where

O is an orthogonal matrix whose first two rows are ζ/‖ζ‖ and ξ/‖ξ‖. Then, marginalize to the joint density

of ζ>X/‖ζ‖, ξ>X/‖ξ‖. Finally, make a scale change of variables to see that (ζ>X, ξ>X) has a joint density.)

Thus, ML is the set of x for which

H1(η(x))

H2(η(x))
6= γ0 − cα+ cη(x).

The difference between the two sides is H3(η(x)), where

H3(u) =

∑
g ag1 (kg−1 < u ≤ kg) v(m(u))

m′(u)
− γ0 + cα− cu.

This function of u is discontinuous at u = kg∗ ; it is left continuous but discontinuous from the right at that

point. It is continuous on (kg∗ − δ, kg∗ ] and on the interval (kg∗ , kg∗ + δ) for all sufficiently small δ. Choosing

δ < ε from Condition C*(β), we find that there is a δ > 0 so small that ML contains either

{x : kg∗ < α+ β>x ≤ kg∗ + δ}
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or

{x : kg∗ − δ < α+ β>x ≤ kg∗}.

Since both of these intervals are in the support of η(X) the minimized value of the quadratic form is positive.

We have now proved the first statement of the theorem so that the null space of Σ(β) must be 0 or the

span of the vector a with all ai = 1. In turn, we see that the rank of Σ(β) is either G or G− 1.

To prove the remaining four assertions in the theorem we now assume without loss of generality that

ag = 1 for all g. Then, H1 simplifies to

H1(u) = v1/2(m(u)).

The function H3 above becomes

H3(u) =
v(m(u))

m′(u)
− γ0 + cα− cu.

Let M be the set of u ∈ supp{η(X)} for which H3(u) 6= 0. If there is a γc for which M is empty then our

vector a = (1, . . . , 1)> is in the null space of Σ(β) and rank(Σ(β)) = G − 1. In particular, if there is no

intercept and identity (S.10) holds for all u ∈ supp{η(X)}, then M is empty. This proves assertion 5 of the

theorem. Similarly, if there is an intercept and identity (S.9) holds for all u ∈ supp{η(X)}, then M is empty.

This proves assertion 4 of the theorem.

Finally, if the set M has positive Lebesgue measure for every choice of γc then a = (1, . . . , 1)> is not in

the null space and we have rank(Σ(β)) = G. These are assertions 2 and 3 of the theorem.

This concludes the proof of Theorem S.3.

Remark 1. The relevant identities hold in some important special cases:

1. We are fitting an intercept in a Gaussian model and take v(m) constant and m the identity function.

2. We are fitting a Poisson regression model with the square root link so that m(u) = u2 and v(m) = m.

Since (S.10) holds, we get rank G− 1 whether or not we are fitting an intercept.

3. We are fitting a Poisson regression model with the log link so that m(u) = eu and v(m) = m. Since

(S.10) holds, we get rank G− 1 whether or not we are fitting an intercept.

S.2.3.3 Rank of the covariance estimator

We now turn to the rank of the estimate Σn(β̃n) where β̃n is a sequence of possibly random parameter

vectors. We want to give conditions under which

rank(Σn(β̃n))
p−→ rank(Σ(β)). (S.13)
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We will need to strengthen condition (C*(β)) to make it uniform in a neighbourhood of β.

Condition (C*(β, δ))

The Xi are i.i.d. with a joint density, say gX . There is a ε > 0 such that for every β′ such that ‖β′ − β‖ ≤ δ

the density of the linear predictor, η(X,β′), is positive almost everywhere on the interval

Lε ≡ [k1 − ε, kG−1 + ε].

Then, we will need to add conditions to guarantee that Σ is continuous in a neighbourhood of β; those

will be condition (A) and condition (E(β)). These imply

Σn(β̃n)
p−→ Σ(β);

see Theorem S.2. Unless one of the identities (S.9) or (S.10) holds (on the support of η(X)), the rank of

Σ(β) is G under our conditions. Since Σn converges to Σ(β) and β∗ ∈ BG, we find that Σn has rank G for

large n in this case.

Next, we consider models in which one of our identities does hold for all u.

Theorem S.4. Fix a parameter vector β. Assume that the possibly random interval endpoints kn,g converge

in probability to non-random limits kg that are distinct. Assume that condition (C*(β, δ)) holds for some

δ > 0. Assume condition (E(β)). Let β̃n be a sequence of possibly random parameter vectors converging in

probability to β. Then, Σn(β̃n)
p−→ Σ(β). Moreover:

1. If our model has an intercept and for every pair of reals (b, c)

P {v(m(η(X))) = m′(η(X))(b+ cη(X))} < 1, (S.14)

then

rank(Σn(β̃n))
p−→ rank(Σ(β)) = G.

2. If our model has an intercept and there is a pair of reals (b, c) such that

P {v(m(η(X))) = m′(η(X))(b+ cη(X))} = 1, (S.15)

then

rank(Σn(β̃n))
p−→ rank(Σ(β)) = G− 1.

3. If our model does not have an intercept and for every real c

P {v(m(η(X))) = m′(η(X))cη(X)} < 1, (S.16)

then

rank(Σn(β̃n))
p−→ rank(Σ(β)) = G.
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4. If our model does not have an intercept and there is a real c such that

P {v(m(η(X))) = m′(η(X))cη(X)} = 1, (S.17)

then

rank(Σn(β̃n))
p−→ rank(Σ(β)) = G− 1.

Proof of Theorem S.4: Theorem S.3 shows that the ranks asserted for Σ(β) are correct. The same theorem

guarantees that Σ(β′) is continuous in β′ in some δ neighbourhood of β and that Σn(β′) to Σ(β′) uniformly

for β′ in that δ neighbourhood of β. It follows that Σn(β̃n)
p−→ Σ(β).

If a sequence of square G× S matrices Mn converges to a matrix M then

lim inf rank(Mn) ≥ rank(M).

If rank(M) = G this means

lim rank(Mn) = G.

Applied to the sequence Σn(β̃n) with limit Σ(β) we learn that

rank(Mn)
p−→ G.

This proves the first and third enumerated assertions. Under the conditions of the second and fourth

assertions we need only identify some a such that

P
{
a>Σn(βn)a = 0

}
→ 1.

We show this holds for a with all ag = 1. The matrix in question multiplied by n is the error sum of squares

in a regression. Let η̃n(X) be the linear predictor using β̃n. The response vector is the n vector with ith

entry ∑
g

ag1 (kn,g−1 < η̃n(Xi) ≤ kn,g) v1/2(m(η̃n(Xi))) = v1/2(m(η̃n(Xi))).

If there is an intercept in the model the predictor matrix is the n× (d+ 1) matrix with ith row

m′(η̃n(Xi))

v1/2(m(ηn(Xi)))
(1, X>i ).

If there is no intercept in the model, drop the 1. If we multiply the matrix of predictors on the right by the

column vector β̃ we get a column vector with ith entry

m′(η̃n(Xi))

v1/2(m(η̃n(Xi)))
η̃n(Xi).
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If there is no intercept the relevant identity guarantees that after multiplying by some non-zero c this is

exactly the response vector. Thus

rank(Σn(β̃n)) ≤ G− 1.

The fourth assertion follows.

The argument for the second assertion is only a bit more difficult. This concludes the proof of Theo-

rem S.4.

S.2.4 Consistency of our test

In this section we discuss power in terms of consistency; we outline one possible set of conditions on the

alternative distribution, the specific model, and the choice of cell boundaries that will ensure that our test

is consistent. We generalize Theorem 3 of the main paper and prove the generalization. In order to do so

we will need to extend our discussion of ranks.

Our conclusions are affected by the presence or absence of an intercept term. Again, our linear predictor

is η(X) = α + ξ>X if there is an intercept and η(X) = ξ>X if there is no interecpt. We use β for the

complete parameter vector which we define as β = (α, ξ>)> if we have an intercept and just ξ if not.

S.2.4.1 Behaviour of coefficient estimator under the alternative

Our first set of assumptions (in which all expectations are computed under the alternative) are used to verify

the conditions in White (1982), which guarantee that the estimate βn has a limit under the alternative being

considered; we denote this limit by β∗ and use the corresponding notation α∗ and ξ∗ in order to differentiate

between models with and without an intercept.

Condition (K1)

The following all hold:

1. Var(Y ) <∞.

2. The model does not have an unknown dispersion parameter. (This assumption can easily be weakened

to the existence of a non-zero limit of the sequence of estimates of the dispersion parameter.)

3. The model fitting exercise is restricted to {β ∈ B} for some specified compact subset B of Rd or Rd+1

with a non-empty interior contained in B0. The parameter space B (for the regression parameters) is

a subset of Rd+1 if we fit an intercept and Rd if not.

4. If the model does not have an intercept then we have 0 6∈ B. If the model has an intercept then for

every α we have (α,0) 6∈ B.
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5. For all β ∈ B the model mean function is square integrable, that is,

E(m2(β>X)) <∞.

6. The Fisher information matrix I1(β) is defined and positive definite for all β ∈ B and depends contin-

uously on β over B.

7. Condition (E(β)) holds for all β ∈ B.

8. The (Xi, Yi) are i.i.d. with a joint density g.

The conditions above guarantee that a number of the assumptions in White (1982) hold. These assump-

tions are enough to ensure the existence of a (possibly not unique) maximizer, over B, of the GLM likelihood.

We now add further assumptions, also taken from White (1982), to guarantee that this maximizer is unique

and that our estimator, βn, converges to the unique value, which we call β∗.

Condition (K2)

The following hold:

1.

E(|log g(X,Y )|) <∞,

and there is a random variable ZKL such that for all β ∈ B,

|Y · (b′)−1
{
m(β>Xc)

}
− b

(
(b′)−1

{
m(β>Xc)

})
| ≤ ZKL

and

E {ZKL} <∞.

2. The Kullback-Leibler divergence,

KL(g : f, β) = E log [g(X,Y )/f(X,Y, β)] ,

has a unique minimizer over β ∈ B, denoted β∗.

Note that whether the second assumption in (K2) holds depends on the true alternative; we follow White

(1982) and simply add this assumption of uniqueness. Our conditions (K1) and (K2) now imply Assumptions

A1, A2, and A3 of White (1982). In turn, these imply almost sure convergence of βn to β∗ ∈ B. Let η∗(X)

be the linear predictor evaluated at β∗, that is, η∗(X) = α∗ + ξ∗>X if our model has an intercept and

η∗(X) = ξ∗>X if not.
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S.2.4.2 Behaviour of interval endpoints under the alternative

In our discussion of the null distribution we considered both fixed and random interval endpoints. In our

consistency results we need assumptions about the probability that η(X) belongs to each of the limiting

intervals; these probabilities depend on β and will be false for any β with ξ = 0. (This motivates (K1.4).)

If the support of η(X) (which can depend on which β is considered) is bounded, then for some choices of

intervals there will be intervals with no observations. We need to assume that this does not happen for the

predictor η∗. The following condition strengthens condition (C).

Condition (K3)

The following hold:

1. Under the alternative, the interval endpoints kn,g converge in probability to some limit values kg. The

kg are all distinct.

2. Condition C*(β) holds with β = β∗. That is, if BG is defined to be the set of β ∈ B such that there

is an ε > 0 for which the density of the linear predictor, η(X), is positive on the interval

Lε ≡ [k1 − ε, kG−1 + ε],

then the limit β∗ is in BG.

Under condition (K3), no vector β with ξ = 0 is in BG. Therefore, at a minimum we are assuming

ξ∗ 6= 0. For other β it is possible that the support of η is bounded; in that case some methods of choosing

boundaries (like fixed boundaries) may eliminate that β from BG. In our simulations we have chosen cell

boundaries using the estimate βn so as to make all the cells have approximately the same sum of variances

of the responses.

S.2.4.3 Behaviour of covariance estimator under the alternative

Next, we consider our estimate Σn of Σ. Condition (E(β0)) implies that our estimate Σn is consistent for

Σ(β0) under the null hypothesis. We extend these conditions to every β ∈ B so that they apply to the

unknown value β∗. Specifically, we assume

Condition (K4)

Condition (E(β)) holds for every β ∈ B.

We now show that under reasonable conditions (including the assumption that β ∈ BG) the matrix Σ(β)

has rank G or G− 1; when n is large Σn(β) has the same rank with high probability. Rank G− 1 arises only

in some special cases that we will describe. Under our conditions these ranks are the same for all β ∈ BG.

Our next theorem is an easy consequence of Theorem S.4.
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Theorem S.5. Assume conditions (K1), (K3), and (K4). Then,

Σn(βn)
p−→ Σ(β∗),

and

rank {Σn(βn)} p−→ rank(Σ(β∗)).

S.2.4.4 Consistency

Our consistency result requires that we have modeled the mean incorrectly in a fairly strong sense. For

1 ≤ g ≤ G, define

µg(β) = E {1(kg−1 < η(X) ≤ kg)m(η(X))}

and

µg,A(β) = E {1(kg−1 < η(X) ≤ kg)Y }.

Also define

µ̄(β) =
1

G

G∑
g=1

µg(β)

and

µ̄A(β) =
1

G

G∑
g=1

µg,A(β).

Condition (K5)

One of the following holds:

1. The model fitted does not have an intercept, the set of u in the support of β∗>X where the identity

(S.10) does not hold has positive Lebesgue measure for every choice of c, and for all β ∈ B

∑
g

(µg(β)− µg,A(β))
2
> 0.

2. The model fitted does not have an intercept, the identity (S.10) holds for all u, and for all β ∈ B

∑
g

(µg(β)− µg,A(β)− µ̄(β) + µ̄A(β))
2
> 0.

3. The model fitted has an intercept, the set of u in the support of α∗ + β∗>X where the identity (S.9)

does not hold has positive Lebesgue measure for every choice of b and c, and for all β ∈ B we have

∑
g

(µg(β)− µg,A(β))
2
> 0.
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4. The model fitted has an intercept, the identity (S.9) holds for all u, and for all β ∈ B we have∑
g

(µg(β)− µg,A(β)− µ̄(β) + µ̄A(β))
2
> 0.

We now restate and prove Theorem 3 from the main paper.

Theorem S.6. Under conditions (K1), (K2), (K3), (K4), and (K5),

X2
GHL

p−→∞,

and the test based on X2
GHL is consistent against the alternative in question.

Proof of Theorem 3: Suppose first that (K5.1) or (K5.3) holds. Then, rank(Σ(β∗)) = G. Our statistic is

at least as large as

λmin(Σ−1n )S1>
n S1

n =
1

λmax(Σn)
S1>
n S1

n,

where λmin(M) denotes the smallest eigenvalue of the matrix M . The eigenvalue λmax(Σn) has a non-zero

limit so our claim is that

S1>
n S1

n
p−→∞.

Clearly, it is enough to show that

1

n
S1>
n S1

n
p−→
∑
g

(µg(β)− µg,A(β))
2
,

in probability, since we have assumed the indicated limit is positive.

Our proof is much like the proof of consistency of σn(βn). Let δ > 0 be a value for which E(β∗) holds

and let κ ∈ (0, δ). Let Nκ = {β : ‖β − β∗‖ ≤ κ}. Define

h(X,Y, β) = Y −m(β>X).

Apply Lemma 2 with this function h, with X,Y playing the role of X and K = Nκ. This function h satisfies

conditions (i) and (ii) of Lemma 2 in view of (K.1) and (E(β∗)). Then, Lemma 2 shows that the family Fh,K

is a Glivenko-Cantelli class. In particular,

Wn(u, β) ≡ 1

n

n∑
i=1

{
Yi −m(β>X)

}
1(β>Xi ≤ u)

converges almost surely, uniformly over (u, β) ∈ R×Nκ to its expectation, which is

τ(u, β) ≡ E
{

(m∗(X)−m(β>X)
}
1(β>Xi ≤ u).

The function τ(u, β) is continuous in both β and u by the dominated convergence theorem (dominating

function (m∗(X))2 + (M∗(X))2 with M∗ as given in Lemma 2). This conclusion uses the fact that β>X has

a density for all β ∈ B to deduce that

P (β>X = u) = 0
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for all β ∈ Nκ and all real u.

The gth entry in the vector S1
n is

√
n {Wn(kn,g, β)−Wn(kn,g−1, β)} .

We deduce that the gth entry in S1
n/
√
n converges in probability to

τ(kg, β
∗)− τ(kg−1, β

∗).

(The convergence is not guaranteed to be almost sure unless the kn,g converge almost surely to the kg.)

Finally, this convergence implies

1

n
S1>
n S1

n
p−→
∑
g

(µg(β)− µg,A(β))
2
,

in probability, as was needed.

Now suppose (K5.2) or (K5.4) holds. Then except for an event of probability converging to 0 as n→∞,

the rank of Σn is G− 1. When the rank of Σn is G− 1 the matrix Σn has G− 1 non-zero eigenvalues and

the matrix Σ+
n also has G − 1 non-zero eigenvalues. Let λ∗min(Σ+

n ) denote the smallest non-zero eigenvalue

of Σ+
n . We have

λ∗min(Σ+
n ) =

1

λmax(Σn)
.

The remaining eigenvalue is 0 and corresponds in both cases to the eignvector 1G, a column vector of G

ones. Let IG be the G×G identity matrix and

HG = IG −
1

n
1G1>G.

Since 1G is in the null space of Σn, we have

S1>
n Σ+

nS
1
n =

(
HGS

1
n

)>
Σ+
n

(
HGS

1
n

)
≥ 1

λmax(Σn)
S1>
n HGS

1
n.

An argument similar to that for the previous case shows that

1

n
S1>
n hGS

1
n

p−→
∑
g

(µg(β)− µg,A(β)− µ̄(β) + µ̄A)
2
.

Again, we see that

S1>
n S1

n
p−→∞.

Consistency is an immediate consequence of this limit and the existence of the limit law given in Theorem 1

of the main text.
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S.2.5 Empirical Process Lemmas

The proofs above used two lemmas, which in turn depend on a third. All of the lemmas synthesize results

in Kosorok (2007).

Lemma 1. Suppose X1, X2, . . . are i.i.d. d-dimensional vectors with the same distribution as X, and β is

a d-dimensional vector taking values in some open set O. Suppose h is a real-valued function of the pair

(x, β), which is continuously differentiable in β for each x. Let K be some compact subset of O with diameter

denoted by diam(K). Assume:

1. there is some β∗ ∈ K such that

E {|h(X,β∗)|} <∞,

2. there is a function M(x) such that for all x in the support of X and all β ∈ K∥∥∥∥ ∂∂β h(x, β)

∥∥∥∥ ≤M(x),

and,

3. the random variable M(X) is integrable:

E(M(X)) <∞.

Then,

1. The family of functions

Fh,K = {x 7→ h(β, x);β ∈ K}

is pointwise measurable.

2. This family has bounded uniform entropy integral with respect to the integrable envelope

M∗(x) = {M(x) + diam(K)|h(β∗, x)|.

3. The class Fh,K is P -Glivenko-Cantelli, that is,

sup
β∈K,u∈Rd

∣∣∣∣∣ 1n
n∑
i=1

h(Xi, β)− E {h(X,β)}

∣∣∣∣∣→ 0

almost surely.

4. The map

β 7→ E {h(X,β)}

is uniformly continuous on K.
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Proof :

To prove the first statement we must find a countable subset G of Fh,K such that every f ∈ Fh,K is the

pointwise limit of a sequence of elements of G. We find G by a route which helps with our proof below of

the second and third statements.

A set of closed balls of radius δ covers a set B ⊂ O if B is contained in the union. The covering number

of B, denoted by N(δ,B, ‖ · ‖) is the smallest integer N for which there is a set β1, . . . , βN of elements of B

such that for every β ∈ B there is a j with ‖β − βj‖ ≤ δ. The set of such balls is said to δ-cover B. We now

bound, by a standard volume argument, the value of N when B is a ball.

The volume of a ball of radius r in Rd is proportional to rd. Thus if there are N disjoint balls of radius ε

in Rd all of which lie in some ball of radius R then the volume of those N small balls is N times the volume

of a single one and less than the volume of the ball of radius R. So N ≤ (R/ε)d. Consider now a set of such

balls of maximal size; this collection is said to pack B and the corresponding value of N is the ε packing

number. The collection of N balls with the same centers but radius 2ε contains the ball of radius R for if

not we could fit in another ball of radius ε. So for any ball B of radius R we get

N(ε, B, ‖ · ‖) ≤ (2R/ε)d.

For each ε > 0 we have identified a finite set say Bε of points in K such that every point in K is within

ε of some member β of Bε. Take B to be the union over positive integers n of B1/n and let G be the

corresponding elements of Fj,K . Evidently B and G are countable and B is dense in K. Every β ∈ K is

thus the limit of a sequence of points βn ∈ B and the corresponding fβ is the pointwise limit of fβn because

h is continuous in β. This proves Statement 1.

Now we turn to the second statement. Take B to be a ball of radius R ≤ diam(K) which contains K.

Find β1, . . . , βN in B so that N = N(ε, B, ‖ · ‖) and the N balls centered at the βj having radius ε cover B.

For each such ball which intersects K let β∗j be in the intersection. Every point in K is within the union of

the balls centered at those βj for which the intersection with K is not empty. So every point in K is within

balls centred at β∗j but with radius 2ε. Thus,

N(ε,K, ‖ · ‖) ≤ (4diam(K)/ε)2.

Now suppose that β ∈ K. Fix ε > 0 and find N = N(ε,K, ‖ · ‖) points, say {β1, . . . , βN}, in K such that

K is contained in union of the N balls of radius ε centered at the βj . For each f ∈ Fh,K we have f = fβ for

some β ∈ K. Find j so that ‖β − βj‖ ≤ ε. If Q is a finite discrete measure on the support of X there is a

set of points x1, . . . , xk and corresponding probabilities q1, . . . , qk such that
∑k

1 qi = 1 and Q(X = xi) = qi
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for j = 1, . . . , k. Now ∣∣fβ(xi)− fβj
(xi)

∣∣ ≤ ‖β − βj‖M(xi),

by Taylor’s theorem. Thus, the L1(Q) norm of fβ − fβj satisfies

‖fβ − fβj‖Q,1 =

k∑
i=1

|fβ(xi)− fβj (xi)|qi

≤ ‖β − βj‖
k∑
i=1

|M(xi)|qi

≤ ε
k∑
i=1

|M∗(xi)|qi

≤ ε‖M∗‖Q,1.

Increasing the first argument in the covering number cannot increase the covering number itself. Thus,

N (ε‖M∗‖Q,1,F , L1(Q)) ≤ N (ε,K, ‖ · ‖) ≤ (4diam(K)/ε)2 <∞.

This proves the bound on the uniform covering numbers

sup
Q
N(ε‖M‖Q,1,F , L1(Q)) ≤ N(ε,K, ‖ · ‖) ≤ (4diam(K)/ε)2 <∞. (S.18)

This is Statement 2.

Since pointwise measurability implies P -measurability for every P , we have verified all the conditions of

Theorem 8.14, page 145 in Kosorok (2007). Statement 3 follows.

The fourth assertion of the lemma is an application of the Dominated convergence theorem. If the

sequence βn converges to some β ∈ K then |fβn(x) − fβ(x)| < supn ‖βn − β‖M(x) and the right hand

side of this inequality is integrable. Uniform continuity is automatic because K is compact. (Indeed, the

assumptions on M guarantee that this expectation is a differentiable function of β on the interior of K.)

Our second Lemma deals with processes involving indicators. It deduces Glivenko-Cantelli results from

Donsker results; it seems likely that this contributes to an increase in the strength of our moment conditions.

Lemma 2. Suppose X1, X2, . . . are i.i.d. d-dimensional vectors with the same distribution as X, and β is

a d-dimensional vector taking values in some open set O. Suppose h is a real-valued function of the pair

(x, β), which is continuously differentiable in β for each x. Let K be some compact subset of O with diameter

denoted by diam(K). Assume:

i) there is some β∗ ∈ K such that

E
{
h2(X,β∗)

}
<∞,
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ii) there is a function M(x) such that for all x in the support of X and all β ∈ K∥∥∥∥ ∂∂β h(x, β)

∥∥∥∥ ≤M(x),

and,

iii) the random variable M(X) is square integrable:

E
(
M2(X)

)
<∞.

Then,

1. The class of functions

Fh,K = {fβ : fβ(x) = h(β, x), β ∈ K}

has square integrable envelope

M∗(x) =
√

2

√
{diam(K)M(x)}2 + h2(β∗, x).

2. The class of functions Fh,K is pointwise measurable.

3. The family of functions

FI ≡ {x 7→ 1(β>x ≤ u), β ∈ Rd, u ∈ R} (S.19)

is P -measurable for any P and has Vapnik-Chervonenkis dimension d + 2. This family has bounded

uniform entropy integral with envelope 1.

4. The family

FA = {f : f = f1f2, f1 ∈ FI , f2 ∈ Fh,K}

has bounded uniform entropy integral with respect to the envelope M∗. This envelope is square inte-

grable.

5. The family FA is P -measurable for any P . For each 0 < δ ≤ ∞ the family

FA,δ =
{
f − g : f, g ∈ FA,E {f(X)− g(X)}2 < δ2

}
is P -measurable for any P . The family

F2
A,∞ =

{
(f − g)2 : f, g ∈ FA

}
is P measurable for all P .

6. The family FA is P -Donsker.
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7. The family Fh,K is P -Donsker.

8. The family Fh,K is P -Glivenko-Cantelli.

Proof :

The first statement is elementary. The second statement is contained in Lemma 1. The third statement

is Lemma 9.12 on page 161 of Kosorok (2007).

The fourth statement is a consequence of Theorem 9.15 of Kosorok (2007) which asserts that given two

classes F1 and F2 which have bounded entropy integral with envelopes M1 and M2 the class of all products

of a function from each has a bounded uniform entropy integral with envelope the product M1M2.

The fifth statement follows from a small extension of Lemma 8.12 on page 143 in Kosorok (2007); see

Lemma 3 below.

The sixth statement is a consequence of the fourth and fifth and Theorem 8.19 on page 149 in Kosorok

(2007). Any subfamily of a P -Donsker family is P -Donsker; the seventh assertion follows. The final statement

is the assertion that P -Donsker implies P -Glivenko-Cantelli which is contained in Lemma 8.17 on page 148.

Lemma 3. Let G be a pointwise measurable family of functions on Rd and let FI be the family in (S.19).

Then, the family

H ≡ GFI ≡ {fg : f ∈ FI , g ∈ G}

is P -measurable for all P . Moreover, if we define for 0 < δ <∞ the class

Hδ =
{
f − g : f, g ∈ H,E {f(X)− g(X)}2 < δ2

}
and the class

H2
∞ =

{
(f − g)2 : f, g ∈ H

}
,

then all these classes are P -measurable for any P .

The proof of the Lemma is entirely analogous to that of Lemma 8.12 on page 143 in Kosorok (2007).
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