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Resistance to androgen deprivation therapy (ADT) is the main challenge for

advanced fatal prostate cancer (PCa), which can gradually develop into metastatic

castration-resistant prostate cancer (mCRPC). However, the pathologic mechanisms

of mCRPC are still far from clear. Given the high incidence and mortality related to

mCRPC, understanding the causes and pathogenesis of this condition as well as

identifying potential biomarkers are of great importance. In the research reported here,

we integrated several gene expression profiles from hormone sensitive prostate cancer

(HSPC) and mCRPC datasets to identify differentially expressed genes (DEGs), key

biological pathways, and cellular components. We found that extracellular matrix (ECM)

genes were significantly enriched, and further filtered them using Pearson correlation

analysis and stepwise regression to find ECM signatures to differentiate between the

HSPC and mCRPC phenotypes. Six ECM signatures were input into K-nearest neighbor,

logistic regression, naive Bayes, and random forest classifiers models. Random forest

algorithm with the six-gene prognostic signatures showed best performance, which

had high sensitivity and specificity for HSPC and mCRPC classification and further the

six ECM signatures were validated in organoid models. Among the six ECM genes,

SPP1 was identified as the key hub signature for PCa metastasis and drug resistance

development; we found that both protein and mRNA expression levels of SPP1 were

remarkably up-regulated in mCRPC compared with HSPC in organoid models and could

regulate the androgen receptor signaling pathway. Therefore, SPP1 is a potential novel

biomarker and therapeutic target for mCRPC. Further understanding of the role of SPP1

in mCRPC development may help to explore effectively therapeutic approaches for the

prevention and intervention of drug resistance and metastasis.
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INTRODUCTION

Prostate cancer (PCa) is the most common malignancy and the second leading cause of death
in males in the world (1). PCa is as an androgen-driven disease. Androgen deprivation therapy
(ADT) is themainstay of systemic treatment for locally advanced andmetastatic prostate cancer (2).
However, most patients initially response to ADT; however, they eventually develop from hormone
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sensitive prostate cancer (HSPC) to castration-resistant prostate
cancer (CRPC) (3). Once PCa progresses to CRPC, tumor
cells gradually develop an invasive phenotype with significant
potential for invasion and metastasis (4). The high mortality
of PCa is mainly attributable to tumor metastasis and drug
resistance, but the mechanisms associated with progression
are largely unknown, and there is an urgent need for the
identification of biomarkers for the development of metastatic
CRPC (mCRPC).

Numerous efforts have been made to identify signatures
of the tumor epithelial components in some retrospective
studies, but few biomarkers are currently considered adequate to
establish the diagnosis and prognosis of prostate cancer (5, 6).
Polyclonal characteristics of tumor heterogeneity and cumulative
genetic alterations provide a significant challenge for biomarker
discovery (7, 8). Recently, elements of the extracellular matrix
(ECM) have been proposed as biomarkers for the progression
and metastasis prognosis for several types of tumor (9, 10). The
interaction between tumor cells and ECM components promotes
tumor cells invasion and metastasis (11). Penet et al. found the
structure and function of ECM could facilitate PCa metastasis
(12). In this prospective study, Lucarelli et al. also found
SPON2, a secreted ECM protein, is a potential biomarker for
prostate cancer diagnosis as well as has good association with
clinicopathological features (13).

Recently, studies have shown that interactions between
tumor cells and ECM constituents are central to key aspects
of drug resistance, especially in solid tumor (14, 15). For
example, in bonemetastasis CRPC, many integrins, transforming
growth factor-beta (TGFβ) family members, bone resident
proteins, nuclear factor kappa B receptor activating factor ligand
(RANKL), and parathyroid hormone related proteins (PTHrP)
are involved in matrix remodeling, which can lead to drug
resistance (16, 17). The results of numerous investigations
suggest that there are many changes in gene expression at
the RNA and protein levels, which are specific to the tumor
microenvironment of prostate cancer (18, 19). However, for
advanced PCa, the association between ECM gene changes and
the occurrence of mCRPC has not yet been studied in depth
(20, 21), and investigating the role of ECM components in drug
resistance and illustrating the cross talk between tumor cells and
microenvironment niches would benefit the development of new
therapeutic strategies.

Herein, to identify the ECM signatures during the
development of mCRPC, we investigated the gene expression
profiles of HSPC and mCRPC samples and integrated a variety of
benchmark datasets. Through analyzing differentially expressed
genes (DEGs), key biological pathways, and cellular components,
ECM genes were significantly enriched, and then K-nearest
neighbor, logistic regression, naive Bayes, and random forest
classifiers were employed to identify ECM signatures which
could distinguish between HSPC and mCRPC phenotypes.
Finally, organoid models were built to validate the results
in vitro. This study made a substantial contribution to our
understanding of the roles of ECM CRPC progression, and
helps to the discovery of new potential biomarkers and
treatment targets.

MATERIALS AND METHODS

Gene Expression Data and Processing
Gene expression profiles GSE32269, GSE101607, and GSE3325
of mCRPC and PCa tissue were obtained from GEO database,
a public functional genomics data repository. GSE32269 series
consists of 22 primary PCa (hormone-dependent) and 29
mCRPC acquired using the GPL96 platform (Affymetrix Human
Genome U133A Array). GSE101607 compares eight HSPC vs.
40 mCRPC acquired using the GPL10558 platform (Illumina
HumanHT-12 V4.0 expression beadchip). There are five primary
PCa and three mCRPC in GSE3325, which were produced using
the GPL570 platform (Affymetrix Human Genome U133 Plus
2.0 Array). We also downloaded GSE74685, which contains
data pertaining to 149 visceral and bone metastases from 62
mCRPC patients.

We integrated and processed the GSE32269, GSE101607, and
GSE3325 data sets using the sva package in the R language to
reduce the bias and variability inherent in different sequencing
results. The sva package supports the use of sva functions for
proxy variable estimation, the ComBat function to directly adjust
known batch effects, and the fsva function to adjust batch
and latent variables in predictive problems. Class comparison
analysis for DEGs was conducted with the limma Bioconductor
package (R version 3.5.1) and DEGs with p < 0.05 and
|log2FC| >1 were selected for further analysis. Kolmogorov
Smirnov test was used for comparing the expression of genes in
different metastatic sites in the mCRPC samples from GSE74685
data set.

Gene Ontology (GO) and KEGG Pathway
Enrichment
KEGG pathway enrichment was analyzed using Clusterprofiler,
an R package with analysis and visualization. The Database for
Annotation, Visualization and Integrated Discovery (DAVID,
https://david.ncifcrf.gov/) (22) was used for GO biological
pathway and cellular component enrichment. The GOplot
package was used to combine and integrate expression data
with the results of the DAVID analysis. Membrane molecules
annotated to the ECM by GO cellular component (GO_CC) were
used to construct a protein-protein interaction network using
data from the STRING database. The network of interactions
was visualized using Cytoscape 3.5.1 (23). Gene Set Enrichment
Analysis (GSEA) (24) was also employed to find biological
function gene sets regulated by the hub gene in the network.
Based on the median expression of hub gene (25), all the
datasets were divided into two groups (high expression vs.
low expression). GSEA v2.0 (http://software.broadinstitute.org/
gsea/downloads.jsp) was used with the parameter of number of
permutations set at 5, and the threshold pf enrichment result was
P < 0.05.

Classification by Machine Learning
Pearson correlation analysis was applied to eliminate low
correlation and high-auto-correlation between phenotypes
and signatures. The phenotypes of HSPC and mCRPC
were indicated as “0” and “1,” respectively. Genes with
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a correlation coefficient <0.1 were removed, and if the
coefficient between two phenotypes was beyond 0.9, the gene
with a lower correlation coefficient was also deleted. The
remaining genes with p < 0.05 were further analyzed by
a stepwise regression approach, which considered variable
size, significance, and contribution. Finally, the regression
equation was established by considering signatures one
by one. Every new regression equation was subjected to
a significance test to evaluate the addition of each new
signature. The process terminated when there were no new
signatures imported or deleted. Using the selected gene
signatures, we used K-nearest neighbor (KNN), logistic
regression (LR), naive Bayes (NB), and random forest (RF)
algorithms to construct HSPC and mCRPC classification
models, using Orange Canvas 3.13 (26). The performance
of models was estimated by 5-fold, random sampling and
leave-one-out cross-validation.

Organoid Development and Culture
Biopsy tissues were obtained from patients with advanced
prostate cancer after ethical approval. The tissues were
washed with cold PBS containing antibiotics and chopped
into small pieces with surgical scissors. Tissues were further
washed with 10mL AdvancedDMEM/F12 and digested in
10mL AdvancedDMEM/F12 containing 2% FCS and 2 mg/ml
collagenase (Sigma, C9407) on an orbital shaker at 37◦C
for 0.5–1 h. The pellet was resuspended in 10ml Advanced
DMEM/F12 containing 2% FCS and centrifuged again at 400
rcf. Dissociated cells were collected in Advanced DMEM/F12
(Thermo Fisher Scientific, Waltham, MA, USA), suspended
in growth factor reduced (GFR) matrigel (Corning Inc.,
Corning, NY, USA), and seeded. The matrigel was then
solidified and overlaid with 500 µl of complete human
organoid medium, which was subsequently refreshed every
two days. PDOs were cultured in Advanced DMEM/F12,
supplemented with 1x B27 additive and 1x N2 additive
(Thermo Fisher Scientific, Waltham, MA, USA), 0.01% bovine
serum albumine, 2mM L-glutamine, 100 units/ml penicillin-
streptomycin, and containing the following additives: EGF,
noggin, R-spondin 1, gastrin, FGF-10, FGFF-basic, Wnt-3A,
prostaglandin E2, Y-27632, nicotinamide, A83-01, SB202190,
HGF (Pepro-Tech, London, UK). Passaging of PDOs was
performed using TrypLe. PDOs were biobanked in FBS (Thermo
Fisher Scientific, Waltham, MA, USA), containing 10% DMSO
(Sigma- Aldrich, St. Louis, MI, USA). In this study, we
used three HSPC (KOPCa-030,031,032) and three mCRPC
(KOPCa-001,012,017) organoid models. Organoid models were
evaluated with inverted microscope and hematoxylin-and-
eosin (H&E) staining. The inverted microscope was used for
bright field image analysis. Prostate cancer organoids were
stained with hematoxylin-and-eosin (H&E) for analyzing the
histomorphometry. The organoid was cultured with prostate-
specific medium, and the ingredients of culture media were
reported in previous study (27). The organoids were cultured
in a cell culture incubator at 37◦C and 5% CO2. The culture
was replenished with fresh media every 3–4 days during
organoid growth.

Real-Time Quantitative PCR (RT-qPCR)
The mRNA expression levels of ECM genes, hPSMA, hAR, and
hPSA in human prostate organoids were detected using RT-
qPCR. The qRT-PCR protocol has been described in previous
publications (28). One hundred organoids (∼1 × 106 cells)
were collected and total RNA was extracted from cell pellets
using Easy pure RNA Kits (TransGen Biotech, BJ, China). RNA
was performed reverse transcription using TransScript First-
Strand cDNA Synthesis SuperMix (TransGen Biotech, BJ, China)
following the manufacturer’s protocol. After an initial hot start
at 95◦C for 10min, PCR amplification was carried out for 40
cycles, denaturation at 95◦C for 15 s, and annealing and extension
at 60◦C for 1min. The relative levels of gene expression were
detected by the cyclic threshold method.

Immunohistochemical Staining
Immunohistochemical staining was utilized to determined SPP1
expression in human prostate organoids. The details of organoid
staining procedures were similar to the description in previous
study (29). After dewaxing in xylene and rehydration in ethanol,
the sections were immersed inmethanol containing 3% hydrogen
peroxide, then rinsed in tap water and immersed in distilled
water. Slides were incubated with anti-SPPl antibody (ab8448,
Abeam, MA) in PBS at 1:800 dilution overnight at 4◦C and then
treated with a secondary antibody. Sections were stained with
hematoxylin, dehydrated and fixed, and sections lacking primary
antibodies were used as negative controls.

Statistical Analysis
All data in this study were showed as means ± standard error.
Student’s t-test was used to examine the statistical significance
between HSPC and mCRPC groups, and the significant p-value
was considered to be lower than 0.05.

RESULTS

Screening of DEGs
The GSE32269, GSE101607, and GSE3325 data sets, totally
including 35 HSPC and 72 mCRPC samples, were merged and
processed using the sva package in R. Totally, 8,364 genes were
analyzed and normalized (Figure 1A). The limma Bioconductor
package was employed to analyze the DEGs in the integrated
data sets. After filtration with a threshold of p < 0.05 and
|log2FC| > 1, there were 130 up-regulated DEGs and 184 down-
regulated DEGs in mCRPC tissues compared with HSPC tissues
(Supplement 1). The DEGs are shown in the volcano map
(Figure 1B) and their P-value and log2FC value were listed in
the supplements.

GO and Pathway Enrichment Analysis
All the DEGs, totally 314 genes, were employed as input for GO
and KEGG enrichment analysis. The Clusterprofiler R package
was applied to analyze the enrichment of KEGG pathways. There
were 13 KEGG pathways (Figure 2A) meeting the cutoff value
of p < 0.05, including cell adhesion molecules (CAMs), the
HIF-1 signaling pathway, transcriptional misregulation in cancer,
tyrosine metabolism, fluid shear stress and atherosclerosis,
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FIGURE 1 | Screening of differentially expressed genes (DEGs) in mCRPC tissues compared with HSPC tissues. (A) GSE32269, GSE101607, and GSE3325 datasets

(35 PCa and 72 mCRPC samples) were merged and normalized by sva package in R language. (B) Volcano plots of all quantified genes in the gene expression

profiles analysis of mCRPC and HSPC. Volcano map identified statistically significant DEGs (p < 0.05 and |log2FC| > 1), and totally there were 130 up-regulated

DEGs (red dot) and 184 down-regulated DEGs (green dot).

FIGURE 2 | Functional enrichment analysis. (A) KEGG analyses of the pathways of DEGs. The x axis shows the gene numbers and the color of bar represents the

p-value. There were 13 pathways meeting the cutoff value of p < 0.05. (B) Gene Ontology analyses of DEGs according to their biological process. ECM genes, likes

POSTN, COL8A1, SPP1, and FN1 were the key intersectional points of the GO_BP terms. (C) GO cellular component enrichment analysis.

arachidonic acidmetabolism, cell cycle, osteoclast differentiation,
platinum drug resistance, endocrine and other factor-regulated
calcium reabsorption, mineral absorption, PI3K-Akt signaling
pathway, and the TNF signaling pathway. Among them, CAMs
had the highest significance and the PI3K-Akt signaling pathway
was enriched with the most DEGs. GO biological pathway
(GO_BP) enrichment was analyzed using the DAVID database
and its tools (Figure 2B). Cell adhesion, ECM organization,
response to hypoxia, angiogenesis, and response to drug were the
top GO_BP terms having high significance and including 10 or
more genes. ECM genes, likes POSTN, COL8A1, SPP1, and FN1
were the key intersectional points of the GO_BP terms. GO_CC
enrichment (Figure 2C) was used to summarize the main cellular
component in themCRPC progression. According to enrichment
results, there were 53 ECM genes (enriched in extracellular space
or extracellular exosome) significantly differently expressed in
mCRPC compared with HSPC samples. Based on the analysis

of the interactions of ECM genes conducted using STRING
(Figure 3A), SPP1 was identified as the key hub gene in the
network with the highest degree (Figure 3B).

In silico Analysis of ECM Genes
To explore the ECM signatures modulated during mCRPC
development, HSPC and mCRPC classifiers were built using
machine learning algorithms. Before developing the models,
Pearson correlation analysis were applied to filter the 53 ECM
genes (Supplement 2). There were 39 genes with p < 0.05, which
were used as the input variables for stepwise regression. Stepwise
regression basically performs multiple regressions, removing the
weakest relevant variables each time. After stepwise regression,
six variables were left, which can illustrate the distribution
best, including SPP1, CEACAM6, COL15A1, FN1, POSTN, and
ARG1. The six genes were used as ECM signatures to build
NB, KNN, LR, and RF classification models. Table 1 shows
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FIGURE 3 | Extracellular matrix (ECM) gene interaction and selection. (A) ECM genes interaction network built using STRING The red circles represent up-regulated

genes and the blue circles represent down-regulated genes. The fold-change values of DEGs present with different color shades. (B) The degree of the ECM gene

with count of node more than four. (C) ECM signatures identified by machine learning methods during mCRPC development. ROC curves of four PCa and mCRPC

classification models.

TABLE 1 | Performance of Naive Bayes (NB), K-nearest Neighbor (KNN), Logistic Regression (LR) and Random Forest (RF) models estimated by 5-fold, random

sampling, and leave-one-out cross-validation.

Classification model 5-fold cross validation Random sampling Leave one out

Precise AUC Precise AUC Precise AUC

Logistic Regression (LR) 0.842 0.849 0.846 0.786 0.842 0.741

Random Forest (RF) 0.954 0.995 0.915 0.989 0.954 0.953

Naive Bayesian (NB) 0.889 0.948 0.896 0.799 0.880 0.925

K-Nearest Neighbors (kNN) 0.925 0.927 0.874 0.895 0.925 0.879

the performance of the four models, as estimated using 5-fold,
random sampling and leave-one-out cross-validation. The RF
classification model showed the best performance, and both of
precise and AUC of the three evaluation methods were beyond
0.915. ROC analysis also showed that the RF algorithm with the
six-gene prognostic signature had high sensitivity and specificity
for PCa and mCRPC classification (Figure 3C).

Validation in Patient Derived Organoids
(PDTO) Model
The PDTO model technique is a cutting-edge technology for
in vitro three-dimensional culture of tumor precision medicine.
The PDTOmodel can replicate the tissue complexity and genetic
heterogeneity of tumors, showing good potential in modeling
success rate, maintenance difficulty and screening difficulty (30).
Fresh tumor tissues from six patients with prostate cancer were
successfully used for organoid development. From the bright
field image analysis and H&E staining results (Figures 4A,B), the
organoid model could retain certain tumor tissue pathological
information. The tumor cells in the 3D cultured organ in vitro
formed a compact spherical structure. H&E staining showed
that the epithelioid-like structure formed by the organoid model.
It was found that the molecular markers (hPSMA, hAR, and
hPSA) were detected from three HSPC (KOPCa-030,031,032)
and three mCRPC (KOPCa-001,012,017) in Figure 4C. To

investigate the prognostic prospects of the six ECM gene, we
further examined the expression of SPP1, CEACAM6, COL15A1,
FN1, POSTN and ARG1 in HSPC, and mCRPC organoids
using RT-qPCR. Among the six signatures, SPP1 had the most
significant variation. Figure 5A shows that high levels of SPP1
mRNA were expressed in mCRPC (p < 0.01). COL15A1, FN1,
and POSTN were also highly expressed in mCRPC with p <

0.05, which was also consistent with the GEO expression profiles
analysis. ARG expression was significantly down-regulated in
mCRPC organoids (p < 0.05), but CEACAM6 expression was
not significantly changed. Carcinoembryonic antigen-related
cell adhesion molecule 6 (CEACAM6) is a member of the
immunoglobulin supergene family, and its expression is elevated
many solid tumor, but variable as a function of histotype (31,
32). Herein, the expression of CEACAM6 was not significantly
dysregulated in mCRPC organoids.

Role of SPP1 in Promoting mCRPC
Progression
According to the bioinformatics analysis described above,
SPP1 was the key hub ECM gene for the development of
mCRPC, and SPP1 mRNA expression was also most significantly
dysregulated among the six ECM signatures. SPP1, also known
as Osteopontin (OPN), is an important secretory phosphorylated
glycoprotein producted by both tumor cells and a variety
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FIGURE 4 | Development of patient-derived prostate cancer models. (A) Bright field image analysis (magnification X100, scale bar 200µm) of prostate cancer

organoid (KOPCa-031). (B) Prostate cancer organoid (KOPCa-031) is stained with hematoxylin-and-eosin (H&E) (magnification X100, scale bar 200µm). (C) Molecular

characterization of patient-derived prostate cancer models through evaluating the mRNA expression of hPSMA, hAR, and hPSA by real-time PCR. All the prostate

cancer organoid models [three HSPC (KOPCa-30,31,32) and three mCRPC (KOPCa-001,012,017)] could express the prostate cancer-specific molecular markers.

of host cells, including multiple immune cells, osteoclasts,
fibroblasts, endothelial, smooth muscle and epithelial cells (25).
SPP1-induced interaction between tumor cells and stromal
cells promotes tumor progression and angiogenesis, and drug
resistance. However, there are rare studies of OPN mediated
drug resistance of prostate cancer, and the role of SPP1 in
mCRPC is still elucidated. Bone metastasis frequently occurs
in majority of patients with PCa, which lead to devastating
complications due to skeletal-related events (SREs) and reducing
patients’ survival. Expression of SPP1 varied in different
metastatic sites (Figure 5B), and especially high expression
of SPP1 was observed in bone metastasis. Actually, SPP1
could promote bone metastasis progression by stimulating
immune cells, activating endothelial cells and fibroblasts, and
regulating osteoclasts and osteoblasts mediated formation and
resorption in the bone microenvironment (33). According to
the expression of SPP1 in GSE32269, GSE101607, and GSE3325
data sets (35 HSPC and 72 mCRPC samples), the data sets

were divided into SPP1 low-expressed datasets and SPP1
high-expressed datasets. Based on GSEA results, SPP1 could
significantly regulated androgen receptor signaling pathway in
high-expression group, which has been considered as the main
driver of CRPC progression (Figure 5C). Figure 6 showed the
results of IHC for HSPC and mCRPC organoids with the
SPP1-specific monoclonal antibody. Weak staining of SPP1
was observed in PCa organoids (Figures 6A,B), while the
intensity of staining in mCRPC organoids was significantly
stronger than in PCa organoids (Figures 6C,D). Therefore,
SPP1 mRNA and protein levels were highly elevated in
mCRPC organoids.

DISCUSSION

In this study, we integrated three GEO datasets and performed
bioinformatics analysis using several machine learning
algorithms to find signatures related to mCRPC progression.
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FIGURE 5 | Identification of the role of SPP1 in mCRPC. (A) Real-time PCR results of SPP1, CEACAM6, COL15A1, FN1, POSTN and ARG1 mRNA expression in

HSPC and mCRPC organoids. (B) Expression of SPP1 in different metastatic sites in GSE74685, including the lymph nodes, liver, lung, and bone. P values were

obtained by two-tailed unpaired Student’s t-tests, *p < 0.05, **p < 0.01, and ***p < 0.001. (C) Gene Set Enrichment Analysis (GSEA) of SPP1 regulated pathways.

According to the expression of SPP1 in GSE32269, GSE101607, and GSE3325 data sets (35 HSPC and 72 mCRPC samples), the data sets were divided into SPP1

low-expressed datasets and SPP1 high-expressed datasets. Single-gene GSEA was analyzed to identify the pathways regulated by SPP1. The androgen receptor

signaling pathway is significantly enriched.

FIGURE 6 | IHC analysis of SPP1 in HSPC and mCRPC organoid samples. (A,B) The negative controls for HSPC and mCRPC, respectively. (C,D) Expression of

SPP1 in mCRPC organoids is significantly lower than that of HSPC organoids. Original magnification 100X.

By performing GO and pathway enrichment analysis, we found
that cell adhesion, extracellular matrix organization, and drug
resistance-related pathways were significantly dysregulated and
ECM genes appeared to be related to mCRPC development
(Figures 2, 3).

The dysfunction of CAMs is a hallmark of the epithelial-to-
mesenchymal transition, leading to the aggressive phenotype
transformation of tumor cells, such as that exhibiting stem
cell-like features and treatment resistance (34). The CAMs

are mainly cadherins and integrins. CDH2 (cadherin 2, also
known as N-cadherin) is a transmembrane glycoprotein,
which was significantly up-regulated in the mCRPC group.
CDH2 could mediate calcium-dependent cell adhesion
and promote prostate cancer cells metastatic activity,
and its aberrant expression has been reported in both
metastatic cancer and CRPC (35). It is well known that the
PI3K/Akt pathway regulates tumor cell progression, adhesion,
invasion and survival (36, 37). In addition, the crosstalk

Frontiers in Oncology | www.frontiersin.org 7 September 2019 | Volume 9 | Article 924

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Pang et al. SPP1 in mCRPC

between PI3K-Akt signaling pathway and androgen receptor
(AR) signaling axis plays an important role in the CRPC
progression (38).

Six ECM-derived signatures were identified and used to
build PCa and mCRPC classification models based on four
machine learning algorithms, including NB, KNN, LR, and RF,
which were further validated through 5-fold, random sampling,
and leave-one-out cross-validation. ECM-derived signatures
included SPP1, CEACAM6, COL15A1, FN1, POSTN, and ARG1,
which mRNA expression was validated in organoid models.
PCa tissue specimens obtained from patient biopsy, were
performed organoid culture, and rapidly realize tissue culture
and amplification. Figure 4 showed the HSPC and mCRPC
organoid models preserved the histopathology and molecular
characteristics of PCa. According to RT-qPCR results, among the
six ECM signatures, only the expression of CEACAM6 was not
significantly changed. CEACAM6 is overexpressed in many solid
tumors, including pancreatic, colon, breast, and lung cancer, but
its expression is variable in different histological phenotypes of
metastases (32). The mRNA expression of SPP1, COL15A1, FN1,
POSTN, and ARG1 were significantly dysregulated in mCRPC
organoid models compared with HSPC organoid models. In the
basement membrane zones, COL15A1 is the highest expressed
COL and its expression has a strong relationship with drug
resistance in ovarian cancer cell lines (39). FN1 (fibronectin
1) is the most important member of the fibronectin family,
which is essential ECM glycoprotein, regulating tumor cell
adhesion and migration. Fibronectin can up-regulate matrix
metalloproteinases (MMPs) expression in human prostate cell
lines (40). High POSTN expression was found to be correlated
with aggressive tumor behavior, advanced or poor prognosis,
indicating that POSTN is a useful biomarker for advanced
cancer (41). ARG1, which encodes Arginase1, is involved in
anti-inflammation, tumor immunity, and immunosuppression-
related diseases (42).

The data mining results showed that SPP1 expression
was highly elevated in mCRPC, and network analysis of
ECM interactions also revealed SPP1 to be the central
hub gene (Figure 3A). The RT-qPCR results also suggested
SPP1 mRNA levels had the most significantly changed,
and immunohistochemical staining was further performed to
determine SPP1 protein levels. The protein and mRNA levels
of SPP1 were significantly increased in mCRPC compared with
HSPC (Figure 6), in addition, SPP1 expression varied in different
metastatic site (Figure 5B). SPP1 is a secreted chemokine-like
glycophosphoprotein participated in tumor cell proliferation,
invasion, and metastasis (43). Clinically, SPP1 expression level in
tumor tissue and plasma is associated with poor prognosis and
survival in patients with PCa (44, 45). It also suggested that SPP1
could upregulated the expression p-glycoprotein (P-gp), which
mediates multidrug resistance in PCa cells (46). In a randomized
phase III trial, SPP1 combined with other serum biomarkers,
such as hepatocyte growth factor and C-peptide can predict the
prognosis of ADT in metastatic androgen-dependent prostate
cancer (mADPC) patients (47). However, the role of SPP1 in the

ADT-induced acceleration of mCRPC still need further study.
According to the GSEA result with respect to the SPP1 regulated
pathways, the AR signaling pathway was significantly enriched.
Therefore, SPP1 is a potential biomarker and action target for
mCRPC diagnosis and treatment. Decreasing of SPP1 at the
transcriptional or protein level, or inhibiting SPP1 binding to
integrin avβ3 and CD44 receptor or the downstream pathways,
was able to be effective therapeutic methods for mCRPC.

In conclusion, different series from the GEO database were
integrated and processed to investigate the pathogenesis of
mCRPC, and six ECM signatures were identified as capable
of distinguishing mCRPC from HSPC with RF classification
models. In addition, combining the validation results in organoid
models, we found SPP1 was the potential hub signature for
predicting mCRPC progression for the first time. Further
understanding of the role of SPP1 in mCRPC could help in
the development of effective therapeutic approaches for the
prevention and intervention of metastasis and drug resistance in
advanced PCa.
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