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The complex interplay between the gut microbiota, the intestinal barrier, the immune
system and the liver is strongly influenced by environmental and genetic factors that can
disrupt the homeostasis leading to disease. Among the modulable factors, diet has been
identified as a key regulator of microbiota composition in patients with metabolic
syndrome and related diseases, including the metabolic dysfunction-associated fatty
liver disease (MAFLD). The altered microbiota disrupts the intestinal barrier at different
levels inducing functional and structural changes at the mucus lining, the intercellular
junctions on the epithelial layer, or at the recently characterized vascular barrier. Barrier
disruption leads to an increased gut permeability to bacteria and derived products which
challenge the immune system and promote inflammation. All these alterations contribute
to the pathogenesis of MAFLD, and thus, therapeutic approaches targeting the gut-liver-
axis are increasingly being explored. In addition, the specific changes induced in the
intestinal flora may allow to characterize distinctive microbial signatures for non-invasive
diagnosis, severity stratification and disease monitoring.
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INTRODUCTION

Metabolic dysfunction-associated fatty liver disease (MAFLD), previously known as non-alcoholic
fatty liver disease (NAFLD), is a major cause of liver-related morbimortality, with an estimated
global prevalence of 25.24% (1). The burden of MAFLD is expected to increase paralleling the
growing incidence of obesity and diabetes mellitus (2). MAFLD represents the hepatic manifestation
of an underlying multisystemic metabolic dysfunction, and, thus, patients are not only at risk of
liver-related complications (cirrhosis and/or hepatocellular carcinoma), but also cardiometabolic-
related events, which are the leading cause of mortality (1). The term reflects the wide spectrum of
the disease, which ranges from simple steatosis, to liver inflammation (steatohepatitis), fibrosis and
cirrhosis. The extent of fibrosis is the strongest predictor of overall and liver-specific mortality (3).

Recently, the diagnostic criteria for MAFLD have been reformulated, and now are based on the
evidence of hepatic steatosis (demonstrated by biopsy, imaging or validated blood biomarkers), in
addition to one of the following criteria: overweight/obesity, type 2 diabetes mellitus, or metabolic
dysregulation defined by the presence of at least two metabolic risk factors (4). Therefore, currently
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it is not mandatory to exclude alcohol consumption or other
concomitant liver diseases to make a positive diagnosis of
MAFLD, as it can frequently coexist with other conditions.

The interaction between the gut, its microbiome and the liver,
is key to the pathogenesis of MAFLD, and thus, a significant
number of reviews addressing the role of the gut-liver axis have
been published over the past few years (5–7). This evolving field
has recently achieved promising therapeutic advances based on
microbiota composition manipulation. In addition, the
characterization of distinctive microbiota signatures for disease
diagnosis and stratification is increasingly been explored. In light
of the new evidence, this review aims to summarize the
characteristic alterations at the different components of the
gut-liver axis, their contribution to the pathogenesis of
MAFLD, and the most recent and clinically relevant advances
involving the gut-liver axis as a potential therapeutic target and
non-invasive diagnostic tool in patients with MAFLD.
THE ROLE OF THE GUT-LIVER AXIS IN
LIVER DISEASE

The term gut-liver-axis has been coined to highlight the close
interaction between the intestine and the liver, which also involves
a complex interplay with the gut microbiome and the immune
system (8). The portal vein serves as the main functional link
leading nutrients and gut-derived antigens toward the liver, which
in turn provides bile acids, proteins, lipids and immune
components. Although highly specialized epithelial and vascular
barriers regulate the transport across the intestinal mucosa, a wide
variety of microbial products and bacteria reach the liver through
the portal circulation. Most of them are harmless dietary and
commensal products, and thus, the immune system cells involved
in surveillance remain tolerant upon recognition. However, when
gut-derived bacterial pathogens reach the liver sinusoids, an
effective immune response is activated in order to prevent their
spread through the systemic circulation. The disruption of the gut-
liver axis alters the balance between immune activation and
tolerance (9), and the subsequent immune dysfunction critically
contributes to the pathogenesis and progression of liver diseases,
and in particular, to MAFLD (5).

Gut Microbiota as a Key Regulator of the
Metabolic Profile
The gut microbiota comprises a diverse spectrum of
microorganisms involved in metabolic, synthetic and
regulatory functions, including fermentation of non-digestible
dietary substrates, synthesis of vitamins, bile acids metabolism,
regulation of epithelial cell proliferation or modulation of the
inflammatory response (10). The gut microbiota also hinders
pathogen colonization by competing for nutrients and space, and
thus, it represents the first-line defense of the intestinal barrier.

Microbiota composition is critically influenced by genetic and
environmental factors, such as diet, alcohol consumption, or
certain drugs. These factors lead to quantitative and qualitative
alterations that significantly impact the metabolic activity of the
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bacterial community and are involved in the pathogenesis of
multiple diseases (11–13). In particular, dysbiosis and the
alteration of the intestinal barrier are strongly associated with
inflammation and metabolic disorders (14). Preclinical studies
have shown that microbiome from obese mice has an increased
capacity to harvest energy from the diet and also influences how
this energy is used and stored (15). In humans, low bacterial
richness and distinctive alterations of the metagenome allow to
define subsets of individuals with high-risk metabolic profiles
(16), and, also, identify specific microbiome signatures for
related diseases such as type-2 diabetes (17) or obesity (18).

The Impact of Gut Microbiome in the Pathogenesis
of MAFLD
Consistent with the growing evidence that suggest an strong
correlation between the microbiome and the metabolic
dysfunction, the role of the microbiota in the pathogenesis of
MAFLD has also been explored (19). In this regard, germ-free
mice have shown a significant decreased susceptibility to diet
induced hepatic steatosis (20). This pathogenic role is further
highlighted by the fact that microbiota composition can
determine the response to the administration of high-fat diet,
leading to hyperglycemia and hepatic steatosis depending on the
bacterial host profile. Interestingly, the propensity to develop
MAFLD in response to high-fat diet may be transmissible by gut
microbiota transplantation (21).

Taxonomic studies have proposed distinctive microbiome
signatures based on the flora modifications associated to the
different stages of the disease (22). On one hand, some authors
have shown that, compared with healthy subjects, the
Proteobacteria and Fusobacteria phyla are more abundant in
patients with MAFLD (23). Conversely, a lower abundance of
Bacteroidetes, and in particular, the genera Prevotella, has been
found in this group. With regards to steatohepatitis, increased
abundance of Bacteroides and decreased concentrations of
Prevotella were independently associated with liver inflammation
in a well-characterized population of adult MAFLD (24). These
quantitative changes were accompanied by significant shifts in the
modulatory functions of the microbiota and the metabolism of
carbohydrates, lipids, and amino acids (24).

As MAFLD progresses from liver steatosis and inflammation to
fibrosis, other distinctive signatures have been found. Metagenomic
sequencing has identified an association between advanced fibrosis
and an increased abundance of Escherichia coli and Bacteriodes
vulgatus (25). Of note, both E. Coli and B. vulgatus are also increased
in other metabolic-syndrome related diseases and, as such, their
abundance parallels the increasing body mass index, hemoglobin
A1c levels (26), and insulin resistance (27). Other authors have
found that the genera Ruminococcus is independently associated
with significant fibrosis (24), and, in non-obese MAFLD patients,
Ruminococcaceae and Veillonellaceae families were associated with
fibrosis severity (28). Interestingly, a recent study proposes an
“extra-hepatic” signature that combines the association of muscle
fat infiltration (myosteatosis) and a reduction of fecal Clostridium
sensu stricto for identifying obese patients at higher risk of liver
fibrosis (29).
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There is, however, substantial heterogeneity and conflicting
results among studies aiming to characterize specific signatures
associated to the different clinical phenotypes. These
discrepancies are probably related to the underlying complex
interplay among the different pathogenic elements and the effect
of potential confounders (22). For instance, multiple factors such
as demographic features (ethnicity, sex, geographical location,
etc.), drug consumption, or the circadian oscillations (30) have
been shown to impact gut microbiota in terms of proliferation,
composition, function and metabolite production, determining
the selection of specific genera independently of the disease stage.

Other authors have proposed disease classification signatures
based on the metabolomic analysis of substrates derived from gut
flora metabolism. Among these products, 3-(4-hydroxyphenyl)
lactate, which is derived from aromatic amino acid metabolism,
is associated with advanced fibrosis in patients with MAFLD
(31). Similarly, circulating levels of trimethylamine N-oxide,
which results from choline metabolism, has been shown to
correlate with the severity of MAFLD (32).

Experimental and translational studies also support the
contribution of small intestine bacterial overgrowth (SIBO) to
hepatic steatosis (33). In this regard, patients with MAFLD
present an increased prevalence of SIBO, which correlates with
the severity of steatosis (34) and hepatic inflammation (35). Of
interest, SIBO is associated with higher serum endotoxin levels
and higher expression of toll-like receptor 4, CD14 and NFkb
(35), a well-known proinflammatory signaling pathway.

The gut microbiota also plays a critical role as modulator of
bile acids (BAs) pool size and composition, by deconjugating
primary into secondary BAs. The BAs also regulate microbiome
diversity by inducing the production of antimicrobial peptides
and modulating the expression of genes related with the innate
immunity response, intestinal tight junctions, and lipid
metabolism (36). The altered interplay among the circulating
BAs and the gut microbiota decreases Farnesoid X receptor
(FXR) intestinal signaling, which contributes to the
development and progression of the metabolic abnormalities
present in MAFLD (37). Conversely, experiments with germ-free
mice transplanted with protective gut microbiota against
MAFLD, led to increased specific secondary BA, the induction
of hepatic BAs transporters, and the repression of hepatic
lipogenic genes (38).

Most of the studies targeting the microbiota are focused on
the bacterial components, however, fungi and viruses are also
present in the intestinal flora. Recently, the analysis of fecal
viromes from MAFLD patients has identified a decreased viral
diversity compared to healthy volunteers (39). The severity of
MAFLD (considered as a NAFLD Activity Score 5-8 or liver
cirrhosis) was associated with a significant reduction in the
proportion of bacteriophages (viruses that specifically infect
and kill bacteria). The addition of viral diversity data to clinical
variables in the multivariate analysis, significantly improved
model accuracy to identify patients at increased risk of severe
disease. The potential infection of the gut by the recently
described SARS CoV-2, may exacerbate an existing state of
increased intestinal permeability and mucosal inflammation,
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thereby contributing to the systemic immune dysfunction
characteristic of severe COVID-19 (40).

In summary, microbiota dysbiosis and decreased diversity are
present in patients with MAFLD as in other metabolic
syndrome-related diseases. These alterations are linked to the
pathogenesis, but the exact mechanisms underlying disease
initiation and progression are partially unknown. Aiming to
characterize different MAFLD phenotypes, significant efforts are
being made to identify specific microbiome signatures. The
multifactorial pathogenesis of the disease hinders these
approaches, which, however, may contribute to non-invasive
diagnosis, severity stratification, and monitoring in
these patients.

Intestinal Barrier Integrity Regulates
Cross-Talk Between the Gut and the Liver
The intestinal barrier controls the transport from the gut to the liver
and systemic circulation, promoting the absorption of nutrients and
water while preventing translocation of pathogens and derived
products (pathogen associated molecular patterns or PAMPs)
(41). The barrier is composed by a mucus layer and an epithelial
monolayer of specialized cells connected by intercellular junctions
that seal the space and control the paracellular passage. The mucus
prevents the direct contact between the bacteria and the epithelial
lining, and is mainly composed by large glycosylated proteins
(mucins) secreted by intestinal globet cells (42). In addition to the
mucus and the epithelial layer, recent evidence has characterized the
gut-vascular barrier, which prevents translocation of bacteria and
PAMPs directly into the portal circulation (43) (Figure 1).

Increased Intestinal Permeability in MAFLD
Increased intestinal permeability has been demonstrated in
preclinical models and in patients with MAFLD. Specifically,
F11r-knockout mice (a gene which encodes the junctional
adhesion molecule A), develop more severe steatohepatitis than
control mice following a diet high in saturated fat, fructose and
cholesterol (44). In humans, Miele L. et al. investigated intestinal
permeability in patients with MAFLD by measuring the urinary
excretion of 51Cr-ethylene diamine tetraacetate (51Cr-EDTA)
and analyzing tight junctions integrity by immunohistochemical
expression of zona occludens-1 in duodenal biopsy specimens
(34). They found that, compared with the values observed in
healthy volunteers, 51Cr-EDTA excretion was significantly
increased, especially in those with moderate/severe steatosis.
Further, zonula occludens-1 expression was reduced in
intestinal crypts and villi as compared to healthy subjects.
Together these data support that disruption of the intercellular
tight junctions contributes to increase intestinal permeability and
has an important role in the pathogenesis of hepatic steatosis.

Alterations at the mucus layer have been also linked to the
pathogenesis of MAFLD. For instance, Mucin-2 deficient mice
were protected from high-fat diet induced weight gain, fatty liver,
and insulin resistance (45). On the other hand, decreased
abundance of Akkermansia muciniphila, a mucin-degrading
bacteria which represents more than 1% of the microbial
community in healthy humans (46), has been associated with
April 2021 | Volume 12 | Article 660179
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thinning of the mucus layer, and a subsequent increase in gut
permeability and inflammation (47). Depletion of this gram
negative bacteria has been linked to obesity, insulin resistance,
hypertension and liver inflammation (48, 49). In line with this
findings, oral supplementation with A. muciniphila in
overweight/obese insulin-resistant volunteers, improved insulin
sensitivity, and reduced insulinemia, total cholesterol, markers of
liver dysfunction and inflammation (50). On addition, dietary
emulsifiers such as carboxymethylcellulose and polysorbate-80
are widely used as components of processed foods. These
additives induce a reduction of mucus thickness, which leads
to a higher contact of bacteria with the epithelium, and an
increased permeability to dextrans, contributing to low grade
inflammation and metabolic syndrome (51).

Diet Impacts Intestinal Barrier Integrity by
Modulating Gut Microbiota
Microbial fermentation of dietary indigestible fibers produces
short-chain fatty acids (SCFAs), mainly, acetate, propionate, and
butyrate (52). SCFAs serve as energy substrates to the colonic
epithelium, modulate cell functions such as histone deacetylation
(53), and contribute to control gut inflammation (54), immune
homeostasis (55) and appetite (56). Western-style diet (WSD) is
rich in saturated fats and simple carbohydrates but poor in dietary
fiber, and thus, lower concentrations of SCFAs are found in mice
Frontiers in Immunology | www.frontiersin.org 4
fed with WSD (57). These mice also showed functional defects in
the intestinal barrier, specifically, an increased mucus penetrability
and a reduced growth rate of the inner mucus layer. Both defects
were prevented by fecal microbiota transplantation from chow-fed
donors. Of note, administration of Bifidobacterium longum
restored mucus growth, but not the increased penetrability,
which was instead prevented by fiber supplementation (57).
Likewise, microbiota transplantation and supplementation with
Quercetin (a flavonoid with antioxidant and anti-inflammatory
properties) restored SCFAs production in mice fed with high-fat
diet (58, 59). Quercetin and other prebiotic compounds, such as
polyphenol-rich extracts or some dietary fibers as inulin, may also
counteract lipid metabolism dysregulation, and liver and systemic
inflammation in preclinical models (60–62). In addition,
probiotics, such as wild rice, which is a genus of grasses
(Zizania), have shown to reduce body weight, liver steatosis and
inflammation in high-fat diet-fed mice (63).

The above preclinical evidences are in line with clinical
studies in patients with type 2 diabetes mellitus who received
high-fiber diet vs standard of care. Increased availability of non-
digestible but fermentable carbohydrates was sufficient to induce
a clinically relevant improvement in hemoglobin A1c levels.
Fiber supplementation also induced selective promotion of
SCFA-producing bacterial strains. This coincided with a
significant increase in postprandial glucagon-like peptide-1 and
FIGURE 1 | The gut-liver axis: MAFLD induces profound alterations in the gut-liver axis. Beneficial autochthonous bacteria are replaced by potentially pathogenic
species leading to dysbiosis and bacterial overgrowth. The increased penetrability of the mucus layer and the increased permeability of the epithelial and vascular
barriers allow the translocation of bacteria and related products. Bacterial translocation promotes the activation of gut and liver pro-inflammatory pathways, which
play a key role in the pathogenesis of MAFLD. SCFAs: short-chain fatty acids; FXR: Farnesoid X receptor; TLR: toll-like receptor.
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higher levels of fasting peptide YY, which favors insulin secretion
and glucose regulation (64). Vitamin D supplementation, that
has shown potential anti-fibrotic, anti-inflammatory, and
insulin-sensitizing properties, is under investigation following
conflicting results about its beneficial effects in MAFLD (65).

All these evidences indicate that the alterations in the
intestinal barrier are potentially reversible by modifying the
composition of the microbiota with fecal transplantation or
dietary approaches.

Emerging Data on Gut Vascular Barrier Contribution
to MAFLD
The role of the gut vascular barrier in the pathogenesis of
MAFLD has also been explored. Data from patients with celiac
disease and altered serum transaminases suggest that the
disruption of the endothelial barrier may also contribute to
liver inflammation and damage (43). Recently, studies have
found that high-fat diet modifies the microbiota leading to an
early disruption of the epithelial barrier and an increased
vascular permeability. The disruption of the endothelial barrier
induced by dysbiosis allows bacterial translocation to the liver,
and has been found to be an early and required event in MAFLD
development (66). Mechanistically, the alteration of the vascular
barrier involved the WNT/b-catenin signaling pathway, and,
consistent with these findings, obeticholic acid, a FXR receptor
agonist that drives b-catenin activation in endothelial cells,
protected against barrier disruption and limited steatohepatitis
development in mice fed with a high-fat diet. This suggests that
protection against vascular barrier disruption could be an
additional mechanism by which obeticholic acid may improve
outcomes in MALFD.

The Role of the Immune System in the
Pathogenesis of MAFLD
The immune system plays a critical role in the homeostasis and
regulation of the gut-liver axis. The accurate balance between
immune activation and tolerance is controlled by a network of
innate and adaptive immune cells present not only in the liver,
but also in the intestine and the adipose tissue (67). The first
defense against intestinal pathogens is the gut-associated
lymphoid tissue (GALT), which is composed by intraepithelial
lymphocytes, Peyer’s patches, the mesenteric lymph nodes and
the immune effector cells within the lamina propria (68). The
GALT also extends to the large intestine which contains
cryptopatches and isolated lymphoid follicles. On the other
hand, the liver displays a number of specialized innate and
adaptive immune cells responsible for detecting and clearing
pathogens that reach the sinusoids. Liver-resident immune cells
include antigen presenting cells (APCs) (Kupffer, dendritic and
liver sinusoidal endothelial cells), T cells, B cells, natural killer
cells and monocytes (69). In addition, the hepatocytes produce
essential immune components, and may also act as APCs by
expressing MHC-I and II and costimulatory molecules (70).

Despite the continuous challenge, in basal conditions, the gut
and the liver immune system act coordinately screening and
classifying gut-derived antigens as harmless dietary elements or
Frontiers in Immunology | www.frontiersin.org 5
bacterial pathogens, balancing tolerance and immune activation.
However, specific pro-inflammatory pathways are triggered in
patients with MAFLD (71). In particular, TLR4 signaling has been
identified as a key driver of inflammation and steatohepatitis in
diverse experimental animal models of MAFLD (72, 73). On the
other hand, NLRP3 inflammasome deficiency attenuates
dysbiosis, systemic inflammation and the total cholesterol
increase induced in mice exposed to high fat diet (74). Fructose-
induced MAFLD is also associated with intestinal bacterial
overgrowth and increased intestinal permeability, subsequently
leading to an endotoxin-dependent activation of hepatic Kupffer
cells (75). Additionally, increased visceral adipose tissue is
infiltrated by pro-inflammatory macrophages that induce the
release of chemokines and cytokines involved in liver
inflammation and hepatic insulin resistance (76).

Immunemechanisms have also been involved in the progression
from steatosis to fibrosis. Emerging data highlight the important
role of CD4+memory T cells, specifically IL-17A-secreting Th17
and IFNg-secreting Th1 subsets. Humanized mouse models of diet-
induced MAFLD showed a remarkable liver infiltration of CD4+,
CD8+T cells and macrophages (CD68+), which were largely
confined to fibrotic regions. Conversely, depletion of CD4+T cells
abrogated diet-induced inflammatory response and liver fibrosis
development (77). Further studies have shown that blocking
integrin receptor a4b7-mediated recruitment of CD4+ T cells
to the intestine and liver, not only attenuates hepatic
inflammation and fibrosis, but also improves metabolic
alterations associated with MAFLD (78).

Therapeutic Interventions Targeting the
Gut-Liver-Axis in Patients With MAFLD
Taken together, all the above evidences show that disruption of
the gut-liver-axis contributes to the pathogenesis of MAFLD, and
thus, there is a great interest in the modulation of their
components for therapeutic purposes. These strategies have
shown promising results in preclinical studies, however,
evidence in human clinical trials is limited so far. Below we
have selected emerging therapeutic approaches targeting the gut-
liver axis on MAFLD, whose results highlight the complex
pathophysiology underlying the disease (Table 1).

Fecal microbiota transplantation (FMT) can potentially
restore microbial diversity and function. Therefore, Craven L.
and colleagues hypothesized that fecal transplantation from
healthy lean donors to MAFLD patients could have metabolic
benefits by restoring the integrity of the intestinal barrier.
Allogenic FMT failed to decrease insulin resistance or the
percentage of hepatic fat assessed by magnetic resonance,
however, it did improve intestinal permeability evaluated by
the lactulose/mannitol ratio urine test (79). These results are in
contrast with the findings of Vrieze et al. that found that infusion
of microbiota from lean donors, increased insulin sensitivity in
recipients with metabolic syndrome (80). Another interesting
study has demonstrated that FMT from metabolically
compromised obese donors temporarily worsens insulin
sensitivity in recipients with metabolic syndrome, whereas a
non-significant increase in insulin sensitivity was observed in
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recipients of FMT from healthy postgastric bypass donors (81).
These results suggest that the response to FMT is modulated by
differences in fecal microbiota composition and could explain in
part the heterogeneity of the results obtained so far.

Non-absorbable carbons of controlled porosity (Yaq-001) have
shown to selectively modulate the composition and function of
stool microbiome (82), and thus, safety and tolerability of Yaq-001
is currently under investigation (NCT03962608). Other
ongoing study aims to assess the feasibility and safety of
endoscopic duodenal mucosal resurfacing in this population
(NCT03536650), which can potentially mimic the beneficial
metabolic effects on glucose metabolism achieved by surgical
upper-intestinal bypass (83). Other strategies aiming to improve
insulin resistance and metabolic dysfunction by Glucagon-like
peptide-1 analogues have shown positive results in terms of
steatohepatitis resolution (84, 85), however, no significant
differences in fibrosis regression have yet been achieved. In this
Frontiers in Immunology | www.frontiersin.org 6
regard, an interim analysis from a multicenter, randomized,
placebo-controlled trial with obeticholic acid has demonstrated
to be the only strategy that significantly improves fibrosis as well as
other key components of MAFLD, and warrants further
evaluation (86).
CONCLUSIONS

MAFLD is the most prevalent liver disease worldwide. The
disruption of the gut-liver axis drives its pathogenesis and
progression. Dietary factors may induce profound qualitative
and quantitative changes in the gut microbiota, which
subsequently impairs the integrity of the epithelial and vascular
barriers. The increased translocation of bacteria and PAMPs
induce a persistent immune activation that promotes gut and
liver inflammation. A better understanding of the different
TABLE 1 | Selected therapeutic interventions targeting the gut-liver axis.

Study Identification Main results

Safety and efficacy of hydrothermal duodenal mucosal resurfacing in patients with
type 2 diabetes: the randomized, double-blind, sham-controlled, multicenter REVITA-
2 feasibility trial

NCT02879383 DMR is safe and exerts beneficial disease-modifying
metabolic effects in T2D with or without non-alcoholic liver
disease (Phase 2)

Effect of duodenal mucosal resurfacing in the treatment of NASH (DMR_NASH_001) NCT03536650 Completed, no results posted yet
Cenicriviroc treatment for adults with nonalcoholic steatohepatitis and fibrosis: final
analysis of the phase 2b CENTAUR study

NCT02217475 A similar proportion on CVC or placebo achieved ≥1-stage
fibrosis improvement and no worsening of NASH (Phase 2b)

Cenicriviroc for the treatment of liver fibrosis in adults with nonalcoholic
steatohepatitis: AURORA phase 3 study design

NCT03028740 Recruiting (Phase 3)

The fatty acid-bile acid conjugate aramchol reduces liver fat content in patients with
nonalcoholic fatty liver disease

NCT01094158 Aramchol is safe, tolerable, and significantly reduces liver fat
content in patients with NAFLD (Phase 2)

A Phase 2b, randomized, double-blind, placebo-controlled study evaluating the safety
and efficacy of efruxifermin in non-cirrhotic subjects with nonalcoholic steatohepatitis

NCT04767529 Recruiting. Preliminary results indicate a high percentage of
fibrosis resolution (Phase 2)

Resmetirom (MGL-3196) for the treatment of non-alcoholic steatohepatitis: a
multicenter, randomized, double-blind, placebo-controlled, phase 2 trial

NCT02912260 Significant reduction in hepatic fat in patients with NASH
(Phase 2)

Investigation of efficacy and safety of three dose levels of subcutaneous semaglutide
once daily versus placebo in subjects with non-alcoholic steatohepatitis.

NCT02970942 Semaglutide resulted in a significantly higher percentage of
patients with NASH resolution than placebo. It did not show a
significant difference in fibrosis stage (Phase 2)

Researching an effect of GLP-1 agonist on liver steatosis (REALIST) NCT03648554 Completed, no results posted yet (Phase 4)
Randomized global phase 3 study to evaluate the impact on NASH with fibrosis of
obeticholic acid treatment (REGENERATE)

NCT02548351 Interim analysis showed that obeticholic acid 25 mg significantly
improved fibrosis and key components of NASH
(Phase 3)

Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a
multicenter, double-blind, randomized, placebo-controlled phase 2 study

NCT01237119 Liraglutide was safe, well tolerated, and led to histological
resolution of NASH
(Phase 2)

Safety and tolerability of yaq-001 in patients with non-alcoholic steatohepatitis NCT03962608 Not yet recruiting
The effect of consecutive fecal microbiota transplantation on non-alcoholic fatty liver
disease

NCT04465032 Recruiting
(Phase 4)

The effect of probiotics on the clinical outcomes and gut microenvironment in patients
with fatty liver

NCT04074889 Recruiting

An adaptive design study for the assessment of the safety, tolerability, and
pharmacokinetics of RYI-018 (Anti-CB1 monoclonal antibody) after repeat dosing in
subjects with non-alcoholic fatty liver disease

NCT03261739 Completed, no results posted yet
(Phase 1)

Polyunsaturated fatty acids in patients with NAFLD NCT02647294 Completed, no results posted yet
An investigator initiated prospective, four arms randomized comparative study of
efficacy and safety of saroglitazar, vitamin e and life style modification in patients with
nonalcoholic fatty liver disease/non-alcoholic steatohepatitis

NCT04193982 Recruiting

A double-blind, randomized, placebo-controlled, phase 2 study to explore the
efficacy and safety of elobixibat in adults with nonalcoholic fatty liver disease or
nonalcoholic steatohepatitis

NCT04006145 Completed, no results posted yet
(Phase 2)

Effect of silymarin in patients with non-alcoholic fatty liver disease NCT03749070 Recruiting
Study to assess the efficacy, safety and tolerability of LCQ908 (Pradigastat) in NAFLD
patients

NCT01811472 Completed. Preliminary results suggest that LCQ908 was
effective, safe and well tolerated (Phase 2)
DMR: duodenal mucosal resurfacing; T2D: type 2 diabetes; NASH: non-alcoholic steatohepatitis; CVC: cenicriviroc; NAFLD: non-alcoholic fatty liver disease; GLP-1: Glucagon-like peptide 1.
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mechanisms involved in the pathogenesis of MAFLD will
contribute to develop better diagnostic and therapeutic approaches.
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58. Porras D, Nistal E, Martıńez-Flórez S, Olcoz JL, Jover R, Jorquera F, et al.
Functional interactions between gut microbiota transplantation, quercetin, and
high-fat diet determine non-alcoholic fatty liver disease development in germ-free
mice. Mol Nutr Food Res (2019) 63:e1800930. doi: 10.1002/mnfr.201800930
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