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Abstract

Single nucleotide polymorphisms (SNPs) constitute an important mode of genetic variations observed in the human
genome. A small fraction of SNPs, about four thousand out of the ten million, has been associated with genetic disorders
and complex diseases. The present study focuses on SNPs that fall on protein domains, 3D structures that facilitate
connectivity of proteins in cell signaling and metabolic pathways. We scanned the human proteome using the PROSITE web
tool and identified proteins with SNP containing domains. We showed that SNPs that fall on protein domains are highly
statistically enriched among SNPs linked to hereditary disorders and complex diseases. Proteins whose domains are
dramatically altered by the presence of an SNP are even more likely to be present among proteins linked to hereditary
disorders. Proteins with domain-altering SNPs comprise highly connected nodes in cellular pathways such as the focal
adhesion, the axon guidance pathway and the autoimmune disease pathways. Statistical enrichment of domain/motif
signatures in interacting protein pairs indicates extensive loss of connectivity of cell signaling pathways due to domain-
altering SNPs, potentially leading to hereditary disorders.
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Introduction

Hereditary disorders are often linked to rare mutations in the

form of single nucleotide polymorphisms (SNPs) [1]. Evolutionary

forces introduce many new variants into the human genome in

each generation [2]. SNPs affect the tendency to develop autism,

diabetes, and cancer and impact immune response to pathogens,

chemicals, drugs, and vaccines [3,4,5]. The HAPMAP project

presents information concerning genetic variances among ethnic

population subtypes thus implicating SNPs as key differences

across population subtypes [6].

More than ten million SNPs have been identified in the human

genome [7]. SNPs that fall into coding or promoter regions of

proteins comprise only a small fraction of the presently annotated

SNPs. To date, nearly four thousand SNPs have been mapped to

the disease/disorder status [8]. Genome wide association studies

complement clinical studies correlating SNPs to disease. However,

approaches based on statistics alone provide limited insights on

how a genetic variation causes disease.

Current methods for discovery of SNP-phenotype association

include those focusing on non-synonymous SNPs that alter

functional motifs such as binding sites [9], DNA binding motifs

[10] and sites related to protein stability and cellular processing

[11]. Computational intelligence models [12] utilize logic tree

[13,14], neural networks [15], an ensemble learning approach [15]

or evolutionary algorithms [16] to discover correlations between

SNPs and hereditary disorders and provide potential biological

insight for the observed correlation and/or causation. Overall, the

aforementioned approaches have illustrated the potential use of

computational system modeling in the discovery of links between

disease and the genotype.

This study focuses on a specific subset of human genotype-

disease association, namely the annotation of SNPs that alter

protein domains and thus potentially break bonds between

interacting proteins in cell signaling pathways [17]. Protein

domain structure is relatively flexible with respect to the amino

acid sequence defining the domain, as illustrated by the domain

annotation web tools such as Pfam [18] and PROSITE [19].

However, scanning proteins through these web tools, one can

illustrate that even a single SNP could alter the structural

configuration so extensively as to erase a domain from the

structural composition of a given protein.

In this study, we screened the human proteome for domain

annotation using the PROSITE web tool [20]. We projected

the previously annotated SNPs onto proteins and identified

those SNPs with domain altering properties. The resulting set

turned out to be highly statistically enriched among proteins

linked to genetic disorders [19]. We annotated these proteins

using a variety of bioinformatics databases and web tools and

showed that proteins with domain altering SNPs crowd the

protein networks involving focal adhesion, axon guidance,

natural killer cell mediated cytotoxity, and neurotrophin

signaling pathways. Our predictions of linkages broken in these

pathways indicate severe reduction of connectivity in signaling

pathways associated with complex diseases and hereditary

disorders.

PLoS ONE | www.plosone.org 1 September 2010 | Volume 5 | Issue 9 | e12890



Methods

Discovery of domain-altering SNPs
The human SNP database was downloaded from the NCBI

dbSNP database (build 130, released June 2009) [7]. dbSNP is an

archive containing over 10 million human SNPs, and among them,

63,899 missense SNPs. The SNPs were then projected onto

corresponding human protein sequences from the NCBI GenBank.

Peptide sequences of potentially SNP-containing proteins (in SNP-

absent and SNP-containing forms) were screened for annotation of

protein domains using PROSITE (version 20.31) [19]. A domain

with potential to contain a SNP was called D-SNPs.

The PROSITE output for each sequence was in the form of a

matrix with three columns, with the columns indicating (1) the ID

number of the PROSITE domain, (2) the binary value identifying

the presence or absence of a domain, and (3) the PROSITE

matching score (MS) if the domain was expressed as a profile

(position weight matrix) rather than expressed in the form of a

pattern (regular expression). The second and the third columns of

the output data allowed us to identify those SNPs that either

removed a domain from the protein structure or drastically altered

it when compared to sequences with and without the SNPs (DA-

SNPs). If the PROSITE domain was defined as a regular

expression, the second column was sufficient to identify whether

the domain also existed in the presence of the SNP.

For those domains expressed as a profile, we checked the third

column for the value of the matching score parameter of the same

protein with and without the SNP. We defined a domain distortion

(DD) parameter as the ratio of the difference in the matching score

(due to the presence of the SNP) to the matching score of the

sequence without the SNP. In our scans, DD varied from 0 to 0.3,

which was the maximum domain distortion observed in our

computations. Domains with DA-SNPs were defined as the sets of

domains for which the sequence with SNPs no longer fits the

regular expression, plus a set of profile domains with a finite DD

value cut off in the presence of the SNPs.

Examples of structural diagrams of proteins with DA-SNPs were

obtained using the Protein Data Bank (PDB, April 2010 version)

[21] (for the case of no SNP) and SNPs3D [22] (with SNPs, 2008

version). The structures were aligned using YASARA [23] and the

location of the SNP was marked with yellow. The lists of proteins

with D-SNPs and DA-SNPs were presented as inputs to DAVID

Bioinformatics resources [24] (version 6.7) and enriched KEGG

pathway [25] profiles and Gene Ontology [26] categories at a p-

value cut-off of 0.01.

Bonds broken between a protein with a domain altering
SNP and its neighbors in signaling pathways

We used statistical enrichment to identify protein signatures

(domains, motifs) most likely to be found among binding partners

of the proteins containing domain-altering SNPs. We created a

score matrix with rows indicating domains that can be altered by

an SNP and columns indicating domains and motifs found in

binding partners of proteins with domain altering SNPs. Each

element of the score matrix represented the number of times a

domain with an SNP was found associated with a signature

(domain, motif) on a binding partner. The web tool ELM (2010

version) [27] was used to annotate linear motifs on proteins. We

then created random protein binding partners to proteins with

SNP containing domains and created a score matrix as a

background for statistical enrichment analysis. We used the

hypergeometric test to identify those domains/motifs most likely

to signal a protein-protein interaction involving domains with DA-

SNPs. This procedure allowed us to identify signature pairs (such

as A-B) such that the presence of signature A (domain with an

SNP) in protein K and signature B in protein L would predict a

binding interaction between K and L. The link A-B is a candidate

for a bond potentially broken due to the presence of the domain

altering SNP in a cellular pathway. To eliminate possible false

positives in the estimates of bonds broken, we required the

signature pair (A-B) to be either in the DOMINE (version 2.0) [28]

database or previously annotated as a domain-motif pair as

predictive of binding interactions between two proteins [29].

Results

Our computations show that proteins with SNPs in one or more

of its domains are significantly more likely to be associated with

human disorders. Out of the 63,899 SNPs in the coding regions of

proteins, 1,782 SNPs are present in the Online Mendelian

Inheritance in Man (OMIM) database version 2009 [8]. A total

of 12,965 SNPs fall into protein domains, and 592 proteins with

domain SNPs are associated with a disease or disorder in OMIM.

The p value from hypergeometric test for the SNP enrichment

within the domain regions is zero, which indicating that SNPs in

the domain regions of proteins are highly correlated to genetic

disorders and complex diseases. This observation is consistent with

the important functions protein domains play in establishing

connectivity among proteins in cell signaling pathways [17].

Among proteins with domain SNPs, those with domain-altering

SNPs are even more likely to be associated with disorder/disease.

Domain-altering SNPs discovered in our PROSITE screening

method consists of two subsets. The first subset consists of SNPs

the sequence no longer satisfies in the regular expression for the

domain. The second subset is composed of domains defined as a

profile above a prescribed domain distortion (DD) parameter

cutoff. An example of a domain with DA-SNP is p53. Figure 1

shows the 3D structure of TP53 in the presence and absence of a

DA-SNP (SNP rs28934571), as well as the poor alignment of these

structures due to the presence of the SNP. This SNP occurs at

sequence position 249 and causes losses of hydrogen bonds and

salt bridge bonds. The root mean square deviation (RMSD) [30]

between TP53 and its DA-SNP structure is 52.6496 A. Another

example of a domain-altering SNP is SNP rs29001653. This SNP

alters the visual pigments retinal binding site of the protein coded

by the RHO gene, resulting in night blindness. The altered

structure is over packed in the 3D space and the RMSD is 2.9835

A. Because 3D domain structure is not available for most domains

with synonymous SNPs at present time, it is not possible to define

domain-altering SNP based on the RMSD evaluations, and hence

the use of domain-altering SNP definition described in the

methods section.

We evaluated the statistical enrichment of the domain altering

SNPs in the OMIM Database as a function of the DD cutoff, as

shown in Table 1. In all cases, the p value ,0.05 indicates

significance of enrichment with respect to all domains with SNPs.

The list of proteins with domain-altering SNPs in which both the

protein and the SNP were linked to the same disease/disorder is

presented in Table S1 for DD .0.10. The phenotypes were

identified by reading through the OMIM disease/disorder

documentations. The table covers proteins associated with a

variety of diseases ranging from pancreatic cancer, epilepsy, and to

carpal tunnel syndrome. Beside the OMIM evaluations, SNPs

reported in various cancer lines were tested [31] for their position

relative to domains and domain altering potential. Out of 13

unique SNP IDs presented in Table 2 of Zhang [31], one was

found in the PROSITE domain region, and it corresponded to a

domain-altering SNP associated with pancreas cancer.

Domain SNPs and Disease
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Proteins with domain-altering SNPs crowd GO molecular

function categories involving calcium ion binding, adenyl

ribonucleotide binding, protein kinase activity, and endopeptidase

activity at DD .0.10. The DD cutoff of 0.10 corresponds to 598

domain-altering SNPs present in 505 proteins. Among these

proteins, 242 had at least one known binding partner in the

Human Protein Reference Database (HPRD) [32]. The GO level

5 molecular function gene ontology categories shown in Figure 2A

are statistically enriched with proteins with domain altering SNPs

(p,0.01). The list of GO categories shown in the figure indicates

that proteins with domain-altering SNPs comprise key nodes in

protein networks; their loss of connectivity would likely have a

significant effect on cellular signal transduction.

Shown in Figure 2B is the list of KEGG pathways statistically

enriched (p,0.01) in proteins with domain-altering SNPs at DD

.0.10. The list contains pathways closely associated with cancer,

neurological, and immunological diseases. Proteins with domain

altering SNPs are marked in the pathways for focal adhesion and

natural killer cell mediated cytotoxicity in Figure 3. Nodes colored

in pink in these figures indicate proteins with domain-altering

SNPs, while those in blue are their immediate binding partners as

identified in HPRD. The purple nodes are proteins that belong to

both the pink and blue groups. The pathway diagrams shown in

Figure 3 illustrate the presence of proteins with domain altering

SNPs from the very beginning of the pathway at the cell

Figure 1. Alteration of 3D structure of TP53 due to presence of SNP rs28934571. The TP53 protein wild type (light blue) and the same
protein with the SNP (pink) are shown on the left, and their optimal alignment on the right. The SNP position is colored as yellow in resulting
structure.
doi:10.1371/journal.pone.0012890.g001

Table 1. Statistical enrichment of domain altering SNPs in the
OMIM database.

# D-SNP
# D-SNP &
OMIM DD cut-off # SNPs

OMIM
match p value

12965 801 0.05 1152 75 0.0444

0.1 598 46 0.0197

0.15 497 40 0.016

0.2 451 35 0.028

Each row gives the overall statistics of domain-altering SNPs and the p value for
statistical enrichment in OMIM at a given domain distortion (DD) parameter
cutoff. The p values are computed based on hypergeometric test.
doi:10.1371/journal.pone.0012890.t001
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membrane all the way to the transcription factors regulating

important cellular processes.

Next, we estimated the links broken in these pathways due to

domain-altering SNPs. We have determined domain-domain and

domain-motif pairs (signature pairs) statistically enhanced in protein-

protein interactions involving proteins with domain-altering SNPs.

The results show that only a very small fraction of possible signature

pairs are statistically enriched in PPIs presented in HPRD [26].

Table 2. The top ten most highly connected proteins with domain altering SNPs (DD.0.10).

Gene Protein Name # broken # intact

ADRBK1 beta-adrenergic receptor kinase 1 29 9

SH2D1A SH2 domain-containing protein 1A 12 0

TCF3 transcription factor E2-alpha 19 25

APBA2 amyloid beta A4 precursor protein-binding family A 8 1

NCK1 cytoplasmic protein NCK1 61 3

PRKCH protein kinase C 8 0

YWHAE 14-3-3 protein epsilon 46 21

TOPBP1 topoisomerase (DNA) II binding protein 1 11 3

BCAR1 breast cancer anti-estrogen resistance protein 1 45 3

RIMS1 regulating synaptic membrane exocytosis protein 1 11 3

doi:10.1371/journal.pone.0012890.t002

Figure 2. Statistically enriched Gene Ontology (GO) molecular function level 5 (MF) categories (2A) and KEGG cellular pathways
(2B) for DD .0.10 at p value ,0.01.
doi:10.1371/journal.pone.0012890.g002
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We used statistically enriched signature pairs in the estimates of

links broken due to a protein expressing a domain-altering SNP. A

link (transient or stable) between two proteins is assumed broken

due to a domain altering SNP if the opposing protein pair contains

at least one signature enriched with the SNP containing domain in

the PPIs in HPRD. Shown in Figure 4 is the histogram for proteins

with DA-SNPs, thus indicating the number of edges such proteins

have in the absence of an SNP and the number of edges estimated

to be broken due to the presence of the SNP. The figure indicates

potentially extensive loss of connectivity of proteins with DA-SNPs

to neighboring proteins in protein networks.

The protein links we estimate to be broken between a protein

containing a DA-SNP and its immediate neighbors are shown in

Figure 3A and 3B for focal adhesion and natural killer cell

mediated immunity. The links deemed to be broken using the

statistical enrichment method described above are shown as

marked with a circle containing either a red or green ‘‘x’’ or a red

‘‘+’’ sign. The links with red ‘‘x’’ correspond to the domain

signature pairs present in the DOMINE database described as

predicting PPIs with high accuracy [27]. The links with a green

‘‘x’’ correspond to domain-motif associations deemed highly

predictive of PPIs [25]. The links marked (+) are links estimated

to be broken by statistical enrichment of the domain pairs only.

Note that, even when we exclude these latter links, the pathway

connectivity (number of edges per node) is strongly influenced

when an SNP drastically alters the 3D shape of a domain

responsible for connections to upstream and downstream partners.

This assertion is further enhanced by the list of highly connected

proteins with domain altering SNPs given in Table 2. For

example, the transcription factor TCF3 has 44 known binding

partners, and links to 19 of these partners could be broken due to

the presence of the domain-altering SNP. Taken together, our

study exposes the importance of domain SNPs in the progression

of some of the most prominent complex and/or hereditary

diseases.

Discussion

The genome wide association studies seeking a correlation

between genetic makeup and complex diseases, such as cardio-

vascular diseases [33], autism [34], and diabetes [35]. Results

implicate a handful of SNPs correlated with these complex disease

states. Correlation is based on purely statistical methods, and in

many cases, SNPs found to be significantly associated with a

disease fell into the non-coding regions of DNA distant from a

protein coding gene [12]. As the population subsets for genome-

wide studies grow in size with increasing research efforts and time,

and as these sets are better controlled for demographic and

environmental variables, one would expect the discovery of sets of

additional SNPs strongly correlated with hereditary disorders and

disease subtypes. Nevertheless, a system bioinformatics approach is

needed to explore how a disease-correlated SNP alters cell

signaling and metabolic pathways, thus contributing to the

initiation of a disorder or a disease.

This study explores the mechanisms by which SNPs that fall

into protein domains in the human genome potentially contribute

to disease. Protein domains are functional units closely aligned

with post-transcriptional modification (as in phosphorylation) and

play important roles in establishing the connectivity of cell

signaling networks via binding to upstream and downstream

proteins [4,36]. Our computations indicate that the p value for

disease association of SNPs that fall into protein domains and

occur by random chance is practically zero. Within this group of

SNPs, those with domain-altering properties are even more likely

to be associated with a disease state. We have defined a domain-

altering SNP as one that either alters the sequence such that it no

longer satisfies the regular expression of the domain or that the

domain is extensively deformed as quantified by the domain

distortion index. Proteins with domain-altering SNPs crowd

cellular pathways involved in neurological, and immunological

diseases, as well as in cancers such as the pancreatic cancer.

How does an SNP with domain altering properties affect the

connectivity of pathways? The key to answering this question lies

in the discovery of the set of proteins that bind to proteins under

consideration via the domain containing the SNP. The grammar

of protein-protein interactions in terms of primary sequence and/

or 3D structure is yet to be fully understood. We used a statistical

enrichment approach to identify protein domains (motifs) on the

opposing protein most frequently associated with the SNP-

containing domain under consideration. We then assumed a

bond (transient or steady) was broken whenever we came across

such a signature pair among the immediate partners of the protein

with a domain altering SNP. Results shown in the present study

for focal adhesion and the natural killer cell mediated cytotoxicity

pathways indicate extensive loss of connectivity in these cellular

pathways, caused by the presence of domain altering SNPs among

the proteins in these pathways. Even when we reduced the

estimates of bonds broken with the use of signature pairs already

known to predict protein-protein interactions, the loss of

connectivity persisted at multiple cell compartments. We obtained

qualitatively similar results for axon guidance and neutrophin

signaling pathways altered by the presence of a domain altering

SNP (not shown).

In conclusion, proteins with domain-altering SNPs are statisti-

cally enriched in the list of proteins known to be associated with

Figure 4. Figure 4 shows a histogram for proteins containing a
domain-altering SNP indicating the number of edges each has
in the absence of SNP, and the estimate of broken edges in the
presence of the SNP.
doi:10.1371/journal.pone.0012890.g004

Figure 3. Proteins with domain altering SNPs on KEGG pathways for focal adhesion (3A) and natural killer cell mediated
cytotoxicity (3B). Also shown these diagrams are the broken edges (links) estimated by statistical enrichment of domain pairs in protein-protein
interactions (circles containing + or x signs.
doi:10.1371/journal.pone.0012890.g003
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disease. These proteins crowd pathways associated with immuno-

logical, neurological and cardiomyopathy disorders. Protein

functional groups statistically enriched with proteins with domain

altering SNPs include calcium ion binding, adenyl ribonucleotide

binding, protein kinase activity, endopeptidase activity, serine-type

peptidase activity, DNA binding, and GTPase binding proteins.

Supporting Information

Table S1 List of proteins with domain altering SNPs (DD .0.1)

for which both the SNP and the protein were previously associated

in the literature with a hereditary disorder or complex disease. The

columns in the table present the gene symbol, the SNP ID, the

name of the domain with the SNP, whether is DD violation (yes)

or violation of regular expression (no), and the associated disorder/

disease.

Found at: doi:10.1371/journal.pone.0012890.s001 (0.02 MB

XLS)
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