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Species delineation based on bacterial genomes is an essential part of the research of prokaryotes. In silico
genome-to-genome comparison methods are computationally demanding, but much less tedious and error
prone than the wet-lab methods. In this paper, we present a novel method for the delineation of bacterial
genomes based on genomic signal processing. The proposed method uses numerical representations of whole
bacterial genomes, phase signal and cumulated phase signal, from which four parameters are derived for each
genome. The parameters characterize a genome and their calculation is independent of the other genomes com-
prising a delineation dataset. The delineation itself is processed as a calculation of the parameters' average sim-
ilarity. The method was statistically verified on 1826 bacterial genomes. A similarity threshold of 96% was set
based on the receiver operating characteristic curve that featured sensitivity of 99.78% and specificity of
97.25%. Additionally, comparative analysis on another 33 bacterial genomeswas conducted using standard delin-
eation tools as these tools were not able to process the dataset of 1826 genomes using desktop computer. The
proposed method achieved comparable or better delineation results in comparison with the standard tools.
Besides the excellent delineation results, another great advantage of the method is its small computational
demands, which enables the delineation of thousands of genomes on a desktop computer. The calculation of
the parameters takes tens of minutes for thousands of genomes. Moreover, they can be calculated in advance
by creating a database, meaning the delineation itself is then completed in a matter of seconds.

© 2019 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

One of the first tasks in the research of any newly studied organism
lies in its correct taxonomic placement. While the taxonomy of higher
eukaryotes is less complicated for relatively easily distinguishable spe-
cies formed by a group of organisms that can interbreed [1], the major-
ity of the Tree of Life is formed bymicrobial species. This domination lies
in their abundance, with the estimation of the total number ofmicrobial
cells on Earth thought to be 1030, and in their richness as this amount is
formed mainly by 106–108 separate prokaryotic genospecies [2].

Unfortunately, compiling the taxonomy of asexual microbial organ-
isms is not easy and requires a combination of genotypic, phenotypic,
and chemotaxonomic information [3]. Due to the advances in biological
molecular techniques, the genotypic traits play the main role in micro-
bial species delineation. While some of the genotypic techniques utilize
selected barcoding of parts of genomes, the others compare whole ge-
nomes. The first group mainly uses techniques for massive genotyping
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of pathogenic bacteria in epidemiologic studies and includes the utiliza-
tion of electrophoresis, PCR, and amplicon sequencing [4–7]. The second
group serves as a tool for the correct taxonomic placement of a new
organism.

In the past, only a few techniques could offer genome-wide compar-
isons between organisms and DNA–DNA hybridization was considered
the recommended standard for delineating species for a long time [8]. A
massive reduction in sequencing costs brought a new, wide range of
bioinformatics strategies for species delineation in silico by comparing
their genome sequences. These included a wide range of techniques
for calculating average nucleotide identity (ANI) [9,10]. The ANI of
two genomes was first calculated using all shared orthologous protein
coding genes [9] and the method was later improved by cutting one
genome into 1020 bp fragments that are searched for in the second
genome using the BLAST algorithm [11].

Another approach to calculating ANI searches for maximal unique
matches (MUM) based on alignment via suffix trees [12,13]. These com-
putationally derived similarities are closely related to former lab-
derived hybridization values [14] and can be easily obtained from
genome sequences. The taxonomic placement of every new genome
should be verified using these approaches as many of the genomes in
the databases are mislabeled [15]. For this purpose, there is a wide
omputational and Structural Biotechnology. This is an open access article under the CC BY
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range of online and standalone tools, e.g. JSpeciesWS [16], Orthologous
Average Nucleotide Identity Tool (OAT) [17], Genome-to-Genome Dis-
tance Calculator (GGDC) [18], ANI tool by Kostas lab [14], ANItools
web [19], dRep [20], Microbial Species Identifier (MiSI) [21], etc.

For the purpose of species delineation using ANI-based methods, a
query genome is compared with many other genomes in a database.
This task is computationally very demanding as the query genome has
a very low similarity to most of the compared genomes that belong to
different taxonomic groups. Most of the comparisons are unnecessary
and massively increase the computational time.

In this paper, we present an alternative approach for species delinea-
tion utilizing four statistical parameters derived from the original ge-
nome using genomic signal processing. We used phase signals and
cumulated phase signals [22], which are suitable for pairwise and mul-
tiple comparisons [23,24]. From these signals, we were able to derive
four unique values characterizing individual genomes, which led to a
massive reduction of data without affecting the results of the compari-
son for delineation purposes [25]. A calculation of the similarity of
these parameters expresses the similarity between the genomes. More-
over, ourmethod for species delineation significantly reduces the neces-
sary computational time and the delineation accuracy is better or at
least comparable with the accuracy of the other tools.

2. Methods

2.1. Statistical Parameters Representing Whole Genome

There are many types of numerical representations of nucleotide se-
quences [26–28]. Each numerical representation highlights the different
characteristics of an original nucleotide sequence and is suitable for a dif-
ferent type of subsequent analysis. We chose to use the phase signal and
the cumulated phase signal, which are very easy to calculate and repre-
sent the DNA sequence with a vector of numerals instead of symbols.
The phase signal is a sequence of values corresponding to the phases of
complex numbers assigned to each nucleotide. The assignment is not ar-
bitrary and it is a projection of the nucleotide tetrahedron to the complex
plane, where all nucleotide IUPAC symbols can be represented [22]. The
numerical map is: A=+1+ j, C=−1 – j, G=−1+ j, T=+1 – j, R=
+j, Y =−j, S =−1, W=+1, M= K= N= 0. The respective phases'
values in radians are: A= π/4, C=−3π/4, G=3π/4, T=−π/4, R= π/2,
Y = −π/2, S = π, W = 0 or 2π, M = K = N = 0.

The cumulated phase is a cumulative sum of all previous phase
values, but it can also be calculated directly from the DNA sequence ac-
cording to Eq. 1 [22]:

ck ¼
π
4

3 nG;k−nC;k
� �þ nA;k−nT;k

� �� �
; ð1Þ

where nA,k, nC,k, nG,k, and nT,k refer to several corresponding nucleotides
from the beginning of the sequence to the position k. The phase signal
and the cumulated phase signal have the same length L as the original
sequence and a reverse transformation is possible. An advantage of
the cumulated phase signal is its suitability for the visualization of the
whole genome sequence. The visualization can reveal the global trend
of the genome, which is not noticeable in the original symbolic
sequence or phase signal [28]. For example, themajority of bacterial ge-
nomes have a characteristic arrow shape when the cumulated phase
signal begins in the region of replication origin (oriC). This helps to pre-
dict the position of the oriC region in newly assembled genomes [29].

For a whole genome comparison, it is preferable that sequence re-
cords start in the same position and the oriC region is an obvious choice.
Unfortunately, genomes starting in another position may still occur in
the GenBank database. To eliminate the possible influence of different
starts, a simple signal-based rearrangement of sequences was made in
a similar manner as was used for the purpose of oriC localization [29].
We used a very simple and computationally undemanding three-
step method that only required the identification of the global maxi-
mum and minimum. Firstly, a cumulated phase signal of the sequence
was calculated. The genome record may begin in an arbitrary region
and thus, the first value of the cumulated phase signal may be a false
minimum. Secondly, the maximal value of the cumulated phase signal
was found, and the signal was rearranged to begin at the position of
the maximal value. This rearrangement means that a part of the signal
from the beginning to the maximum was simply moved behind the
last signal's value and the last signal's value was added to each value
of themoved part to make an offset (see Fig. 1). The symbolic sequence
was rearranged accordingly. The last step was a localization of the true
minimal value,whichwas the global minimumof the rearranged signal.
The symbolic sequence and the cumulated phase signal were again
rearranged to begin at the position of the true minimum. The value of
the true minimum was then subtracted from all the signals' values so
the cumulated phase signal's first value was 0. Subsequently, the
phase signal was calculated from the rearranged sequence.

Many diverse parameters representing global features of individual
genomes can be calculated from these two signals. We tested common
statistical andmathematical parameters, such as the standard deviation,
the sum of differences of adjacent signal values, the length of signal, the
area under the cumulated phase signal, different types of angles in the
cumulated phase signal, distribution of phase signal values, etc. Based
on cross-correlation analysis and analysis of the parameter's value dis-
tribution for genomes of the same species and different species, the
number of final parameters was reduced. Four parameters were chosen
as suitable representatives of genome variability. Together, they exhib-
ited excellent discriminative power.

The first parameter was a sum of the differences of the adjacent
phase signal values divided by the length of the signal according to:

Diff p ¼ 1
L

XL−1

k¼1

pk−pkþ1

�� ��; ð2Þ

where L is the length of the signal/sequence and pk is the phase value at
position k. The difference depends on an order of nucleotides, e.g. its
value for the sequence AAAGGG is 0.26 and for the sequence AGAGAG,
which has the same nucleotide content but in a different order, it is 1.31.

The second parameter Tr0 was the number of transitions between
the positive and negative values of the phase signal and vice versa.
The count Tr0 corresponds to the sum of dinucleotides AC, AT, CA, CG,
GC, GT, TA, and TG that occurred in the symbolic sequence. The third pa-
rameter TrCG was the number of all possible transitions between the
phase signal's values corresponding to the nucleotides C and G. TrCG is
an equivalent of the sum of dinucleotides CC, CG, GC, and GG. Both
parameters were normalized by the signal's length L–1, which repre-
sented the total number of transitions between the two values in the
signal. Although these parameters could be calculated directly from
the original symbolic sequence, this would require separate calculations
for each dinucleotide. The processing of the phase signal required only a
few numerical operations (subtractions and sums) applied on the
whole signal to obtain counts for all dinucleotides, e.g. sequence CAGG
CAG has Tr0 = 3/6 and TrCG = 2/6.

The fourth parameterwas the average growth angleAcpof the cumu-
lated phase signal. The angle was calculated as an average value of the
angles for N positions from the beginning of the signal to the maximal
value of the signal:

Acp ¼ 1
N

XN

k¼1

Ak
cp; Ak

cp ¼ tan−1 cki
i

� �
; i ¼ k

imax

N
; ð3Þ

where cki is the cumulated phase value at position ki and imax is the
position of the maximal value of the cumulated phase signal. The num-
ber of positions was set to N= 10 as a trade-off between precision and



Fig. 1. Three-step rearrangement of the cumulated phase signal of the whole bacterial genome of Bordetella parapertussis: a) the genome does not begin in the oriC region and the
cumulated phase has a false minimum; b) rearrangement according to the global maximum; c) rearrangement according to the true minimum.
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computational demands. The cumulated phase signal can have an
uneven rise with several local maxima and the angle can vary depend-
ing on the position. The average value smooths the local differences of
the signal's growth.

We propose a rapid delineation method based on these parameters.
The Whole Genome Parameter (WGP) method is based on comparing
the parameters (Diffp, Tr0, TrCG, and Acp) of individual genomes. This
method does not require any alignment of the genomes or their annota-
tion. Moreover, the parameters can be calculated in advance and saved
for further analysis using different compositions of the dataset. Fig. 2
shows the diagram of the WGP method. When processing the delinea-
tion analysis of the given dataset, the parameters of all pairs of genomes
were compared and the absolute values of the differences between the
parameters were calculated. The differences of each parameter were
then normalized according to their range in the whole dataset to obtain
values from 0 to 1. The normalizationwas needed to obtain comparable

ranges of differences of all parameters. The distance (difference) dA;B of
each pair of genomes A and B was an average value of the normalized
Fig. 2. Diagram of the WGP method. Left: independent parameter cal
distances calculated for the parameters. A percentage similarity of the
genomes was then sA;B ¼ 100 � ð1−dA;BÞ.

2.2. Standard Delineation Tools

Four freely available web-based and standalone tools that are stan-
dardly used for delineation were chosen for testing: JSpeciesWS
[16,30], OAT [17], GGDC [18,31], and ANI/AAI-Matrix from Kostas lab
[14]. These tools were chosen as they enable delineation analysis
using standard desktop computer with Windows operating system
which is the most common equipment.

The JSpeciesWS is an online service that provides pairwise compar-
ison of complete or draft genomes by calculating the ANI values or the
tetranucleotide signature frequency correlation coefficients (TETRA)
[32]. The ANI values are calculated using the BLAST algorithm (ANIb)
or the MUMmer alignment tool (ANIm). For both methods, a similarity
threshold of 95–96% is suggested to sufficiently differentiate species.
The TETRA is an alignment-free method based on characteristic
culation for genomes; right: subsequent delineation of a dataset.
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frequency occurrences of all 256 possible combinations of tetran-
ucleotides. Closely related genomes have a similar distribution of the
frequencies with a high correlation coefficient of N0.99, which corre-
sponds to the ANI value of N96% [30].

The OAT (Orthologous Average Nucleotide Identity Tool) is
standalone tool based on OrthoANI method [17] which is a reciprocal
version of ANI calculation using BLAST. The reciprocal means that com-
parison of two genomes is the same for both pair combinations. There-
fore, only half of the comparisons is needed to analyze whole dataset.
The similarity threshold is 95–96%.

The Genome-to-Genome Distance Calculator (GGDC) is a web
tool that uses statistical models of digital DNA-DNA hybridization
and is based on the Genome Blast Distance Phylogeny program
(GBDP). First, the BLAST algorithm is applied to find the high-
scoring segment pairs (HSPs) between two compared genomes. Sec-
ond, the GBDP uses three different formulas to calculate the distance
between the genomes: sum of all HSPs' lengths/sum of genomes'
lengths (ANI-f1), identities in HSPs/sum of all HSPs' lengths (ANI-
f2), and identities in HSPs/sum of both genomes' lengths (ANI-f3).
Then, the distance is converted to an analogous DNA-DNA hybridiza-
tion (dDDH) value using a generalized linear model. The formula
ANI-f2 is recommended and the threshold for the species delineation
is set to 70%.

The ANI/AAI-Matrix is a web tool by Kostas lab. Beside the ANI
values, the tool also calculates average amino acid identity (AAI),
which is better for less related organisms with ANI b75% [33]. The
ANI values are calculated using BLAST and the delineation threshold
is 95%.
Fig. 3. Distribution of the parameters for 350 genomes: a) the average growth angle Acp of the
nucleotides C and G; c) Tr0 – the number of transitions between the positive and the negative
3. Results and Discussion

3.1. Statistical Validation of WGP Method

TheWGPmethod was statistically validated on an extensive dataset
of whole bacterial genomes that were downloaded from the GenBank
database. The dataset comprises 1826 genomes in total. The composi-
tion of the dataset was designed to contain enough sequences of the
same species and also different species. Within the dataset, the first
350 genomes belong to seven species: Acinetobacter baumannii, Bacillus
cereus, Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae, Salmonella
enterica, and Staphylococcus aureus, where each species is equally repre-
sented by 50 genomes.

The remaining 1476 genomes were downloaded from the NCBI Ref-
erence Sequence Database. Only one representative genome of each
species was included in the dataset, except for the seven species listed
above. Within the 1476 genomes, the genomes with synonym species
names were not eliminated. This means the dataset may contain more
sequences of the same species, except for the first 350 genomes, how-
ever, the number is considered low enough that their influence on the
analysis was negligible.

The parameters Diffp, Tr0, TrCG, and Acp were calculated for all 1826
genomes. Fig. 3 shows the distribution of the parameters for the seven
species represented by 50 genomes each. Any one parameter was not
able to sufficiently discriminate all species alone, but each parameter
was able to discriminate between different groups of species. For exam-
ple, the strongest parameter TrCG discriminated all species quite well,
but there were four genomes of Bacillus subtilis that overlapped with
E. coli. Although the parameter Acp seemed to be the worst at species
cumulated phase signal; b) TrCG – the number of transitions between the phase values of
values of the phase signal; d) Diffp – the sum of differences of the adjacent phase values.
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discrimination in comparison with the other parameters, a subsequent
analysis showed its significance.

The normalized distances of the parameters were calculated for all
pairs of genomes, which meant 1.66 million genome-to-genome com-
parisons. The WGP method is reciprocal which means a comparison of
genomes A and B is the same as B and A. Therefore, only half of all pos-

sible genomes' pairs was calculated. The overall distance d4 of each ge-
nome pair was calculated as an average value of the normalized
distances of the four parameters. To assess the contribution of each

parameter to the overall distance, d2 was calculated as the average dis-

tance of parameters TrCG and Diffp and d3 was calculated as the average
distance of parameters TrCG,Diffp, and Tr0. Genome similarities s2, s3, and
s4 and similarities for each parameter (sDiffp, sTr0, sTrCG, and sAcp) were
derived from the distances.

Sensitivity and specificity were calculated for a similarity
threshold within the range 90% to 98% (see Additional file 1). The
similarity threshold was used to divide the genome similarity
values into four groups: true positives (TP) were similarity values
above the threshold of a genome pair belonging to the same spe-
cies, true negatives (TN) were similarity values below the thresh-
old of a genome pair of two different species, false positives (FP)
were similarity values above the threshold of a genome pair of
two different species, and false negatives (FN) were similarity
values below the threshold of a genome pair belonging to the
same species. Receiver operating characteristic (ROC) curves were
constructed where sensitivity was a function of 100 – specificity
(see Fig. 4).

FN could occur only in the case of the 350 sequences of the seven
species as the dataset did not contain two or more sequences for any
other species. The validation showed a low level of FN. Thus, the sensi-
tivity of the WGP method is very high for delineation based even on
only one parameter. The sensitivity decreased with an increase in the
similarity threshold level. For a threshold of 98%, the lowest sensitivity
of 84.35% belonged to the parameter Acp. The parameter with the best
sensitivity of 99.94% for the same threshold was Tr0. The delineation
based on the average of all parameters had sensitivity within the
range of 97.39% to 100%.
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The specificity of each parameter was lower than the sensitivity and
in contrast to the sensitivity; it rose with higher values of the similarity
threshold. For a threshold of 90%, the specificity ranged from 43.77 to
77.86% and it rose to 85.42–99.69% for a threshold of 98%. The biggest
benefit of the combination of parameters was the significant improve-
ment in the specificity. Fig. 4 shows the ROC curves for the delineation
based on the similarity of parameter TrCG, the average of TrCG and Diffp,
the average of TrCG, Diffp, and Tr0, and finally the average of all parame-
ters that gave the best results for both sensitivity and specificity. Based
on the ROC diagram, the delineation threshold was set to 96%.

When the described genome rearrangement according to the mini-
mal value of the cumulated phase signal was omitted, the delineation
results were negatively affected. The sensitivity of the delineation
based on s4 decreased by approximately 3% and the specificity by 1%
for the suggested threshold of 96% and the results were not better for
the other thresholds (see Additional file 1).

3.2. Comparison of the WGP Method with the Standardly Used Tools

The extensive dataset used for the statistical validation of the WGP
method could not be analyzed by the standardly used tools based on
ANI calculation on a standard desktop computer as these methods are
extremely computationally demanding and require computing clusters
or grid. For comparison purposes, a small dataset containing only 33
bacterial genomes of nine different species was assembled. Each species
was represented by at least two strains. Five species were Gram-
positive: Bacillus cereus, Bacillus licheniformis, Bacillus subtilis, Clostrid-
ium acetobutylicum, and Clostridium beijerinckii. Four species were
Gram-negative: Escherichia coli, Klebsiella pneumoniae, Shigella flexneri,
and Shigella sonnei. It has been suggested that the genus Shigella should
be considered as a subgenus of E. coli [34,35], however, we decided to
count Shigella as a different species and test whether the whole
genome-based delineation was able to distinguish these genomes
from E. coli. Additional file 2 provides the names and GenBank accession
numbers of all genomes in the dataset.

Fig. 5 shows the cumulated phase signals of the 33 bacterial
genomes. The Gram-positive bacteria showed significant differences
15 20 25 30
ecificity [%]

  s1

  s2

  s3

  s4

ers TrCG and Diffp), s3(the average similarity of parameters TrCG, Diffp, and Tr0), and s4 (the
alue is the similarity threshold for which the best sensitivity and specificity results were



Fig. 5. The cumulated phase signals of 33 bacterial genomes of nine different species. Signals of different strains of one species have the same color.
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between their signals, whereas the Gram-negative bacteria were not
clearly visually separated according to the species. As can be seen, the
strains of Bacillus cereus differ in length by 187.5 kbp and the other
two Bacillus species have much shorter genomes. The signal of
B. licheniformis ATCC 9789 is visually more similar to B. subtilis than to
the other two B. licheniformis strains. Similarly, B. subtilis CW14 is closer
to the B. licheniformis strains. The signals of the three Clostridium
acetobutylicum strains are visually almost identical and the genomes'
lengths are much shorter than the closely related genomes of Clostrid-
ium beijerinckii, which are the longest genomes in the dataset. One of
them, C. beijerinckiiNCIMB 14988, is from 298.5 kbp to 486.3 kbp longer
than the others.

All ANI-based tools were used with their default or recommended
settings. The delineation results of all the tested methods are visualized
as heatmaps (see Additional file 3 and Fig. 6).

The online tool JSpeciesWS can only analyze 15 genomes in one run,
therefore, the dataset of 33 genomes needed to be divided into several
sub-datasets to achieve all the pairwise comparisons. The tool displays
the estimated duration of the computation and for a pair of genomes,
the estimated duration was 80 s using BLAST (ANIb), 20 s using MUM-
mer (ANIm), and 6 s using TETRA. The dataset of 33 genomes required
1056 genome-to-genome comparisons, which had an estimated dura-
tion of 23.47 h for ANIb, 5.87 h for ANIm, and 1.76 h for TETRA. For com-
parison, the computational time for the WGPmethod was 106 s for the
parameter calculations of the 33 genomes and 0.02 s for the delineation
itself using a standard desktop computer without parallelization.

The delineation based on the ANIb was unsuccessful for two strains
of Bacillus cereus with an average similarity 91.05%, which was below
the 96% threshold (see Fig. 5c). Likewise, the method had a problem
with the Bacillus subtilis CW14, which had an average similarity of
92.68%with the other B. subtilis strains. An average interspecies similar-
ity of the Bacillus species was 69.52%. All strains of the two Shigella spe-
cies had a similarity with E. coli above the threshold and the average
similarity of this group was 97.26%. All other genomes were correctly
delineated. The results based on the ANIm algorithm resembled the
ANIb-based results (the similarities differed in tenths of a percent, see
Fig. 6d).

The TETRA method of the JSpeciesWS tool correctly delineated the
problematic Bacillus cereus and Bacillus subtilis strains and the Shigella
strains were again delineated together with the E. coli strains (see
Fig. 6b).

The OAT in its graphical user interface version accepts up to 10 ge-
nomes. It enables to use different BLAST versions and use multiple pro-
cessing cores on your computer. The 33 genomes dataset was divided
into several sub-datasets. The average processing time of one genome
pair was 122 s using default BLAST version and running on a desktop
computer (Intel ® Core™ i5–3330 CPU @ 3.00GHz 3.20 GHz, 32 GB
RAM, 64-bit operational system Windows 7 Professional). Similarly to
JSpeciesWS, the delineationwas unsuccessful for the two Bacillus cereus
strains with similarity 91.61% and for Bacillus subtilis CW14 strain with
average similarity 93.02% in comparison with other B. subtilis strains.
The similarity values produced byOAT and JSpeciesWS varied by amax-
imum of several tenths of a percent.

The GGDCweb tool analyzed thewhole dataset in one run (the limit
is 50 genomes). The estimated time for one genome pair was about
1min,whichwas approximately 17.6 h for all comparisons of the 33 ge-
nomes. The results for the three formulas differed, but the variance was
not significant formost of the genomes (see Fig. 6e, f, and g). The results
differed significantly only for the two strains of Bacillus cereus. In this
case, the ANI values of the three formulas were 69.4%, 44.9%, and
65.1%. The lowest ANI value was obtained for the recommended for-
mula ANI-f2 and the value was far below the 70% threshold, whereas
the other two values were only slightly under the threshold.

The ANI-f1 values were under the threshold for some E. coli strains
and for most of the comparisons between the E. coli and Shigella strains.
The comparisons between Shigella flexneri and Shigella sonnei were
above the threshold. Beside Bacillus cereus, the ANI-f2 values were also
significantly under the threshold for the Bacillus subtilis CW14 strain.
All E. coli strains were above the threshold and the comparisons of
E. coli with the Shigella strains were also above the threshold. The ANI-
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Fig. 6.Visualization of the delineation results: a) our proposedWGPmethod; b) online tool JSpeciesWS usingmethod TETRA; c) online tool JSpeciesWSusing BLAST and Ani tool by Kostas
lab; d) online tool JSpeciesWS usingMUMmer and OAT; e) tool GGDC using formula ANI-f1; f) GGDC tool using the recommended formula ANI-f2; and g)GGDC tool using formula ANI-f3.
The methods that have the same heatmap for the given threshold share one subplot. On the diagonal, there is a self-comparison of each genome where self-similarity is 100%. Similarity
values above the threshold (bold value in the color key) are highlighted in red and similarity values 2% below the threshold are blue.
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f3 values were slightly under the 70% threshold for some comparisons
between the E. coli strains and for the comparisons between E. coli and
the Shigella strains.

Similar to JSpeciesWS, the ANI tool by Kostas lab is based on BLAST
and is computationally demanding. The tool limits the analysis to 50 ge-
nomes. The delineation results (see Fig. 6c) were under the 95% thresh-
old for the Bacillus cereus strains and Bacillus subtilis CW14. The Shigella
strains were delineated together with the E. coli strains.

The whole set of 33 genomes was analyzed also by proposed WGP
method. The phase signals and the cumulated phase signals were calcu-
lated. From the signals, the vector of the four WGP method parameters
was calculated for each genome. Each parameter vector was compared
with the parameter vectors of all other genomes and the average simi-
larities s4 were calculated. According to the 96% delineation threshold,
all genomes belonging to the same species had a similarity above the
threshold (see Fig. 6a). The similarities between genomes of different
species were under 94%, apart from the Shigella species. Shigella flexneri
and Shigella sonneiwere delineated to E. coli with an average similarity
of 97.84%, whereas the average intraspecies similarity of the E. coli
strains was 98.51%.

Although another Gram-negative bacteria, Klebsiella pneumoniae
(average intraspecies similarity 98.80%), had a similar cumulated
phase signal to the E. coli and Shigella species, the average interspecies
similarity between K. pneumonia and the other Gram-negative bacteria
was 85.67%. The highest interspecies similarity of 93.27% occurred be-
tween the strains of Clostridium acetobutylicum and Clostridium
beijerinckii. Both species had intraspecies similarities above 99%, even
the strain C. beijerinckii NCIMB 14988, which had the longest genome.
The average similarity between Bacillus species was 79.78%. The two
strains of Bacillus cereus, for which delineation was problematic using



Table 1
The elapsed and estimated processing times of theWGPmethod and the standardly used
delineation tools.

Method/tool Time [sec]

2 genomes 33 genomes 1826 genomes

WGP 4.5/0.006 71.6/0.013 3048/19.9
JSpeciesWS BLAST, ANI tool by Kostas 80 84,480 266.6*106

JSpeciesWS MUMmer 20 21,120 66.6*106

JSpeciesWS TETRA 6 3168 9.9*106

OAT 122 64,416 203.3*106

GGCD ANI-f1, ANI-f2, ANI-f3 60 63,360 199.9*106

Legend: The elapsed and estimated processing times are for one pair of genomes, the
dataset of 33 genomes, and the dataset of 1826 genomes without parallelization of the
task. For theWGPmethod, thefirst value is the parameter calculation time and the second
value is the time taken for the comparison of the parameters. Estimated times are in italics.
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the ANI-based methods, had a similarity of 98.90%. The strain B. subtilis
CW14 had the lowest similarity with other strains of the same species;
however, the average value was 96.76%, which was sufficiently above
the threshold.

3.3. Computational Demands

Table 1 shows the computational time needed for the delineation of
one pair of genomes, for the dataset of 33 genomes thatwas used for the
comparative analysis, and for the dataset of 1826 genomes that was
used for the WGP method's verification. The WGP method was imple-
mented in Matlab 2015a without parallelization of the task and using
a common desktop computer (Intel ® Core™ i5-3330 CPU @ 3.00GHz
3.20 GHz, 32 GB RAM, 64-bit operational system Windows 7 Profes-
sional). In Table 1, the WGP method has two values separated by a
slash. The first value corresponds to the elapsed time for the parameter
calculations and the second value corresponds to the elapsed time for
the delineation itself, which means the comparisons of the parameters.
For the other tools, the values are based on estimations provided by the
tools for one pair of genomes and the dataset of the 33 genomes. The
tested tools, using their stand-alone version on the same desktop com-
puter or web version, were not able to process the dataset of 1826 ge-
nomes and the time estimations show that such analysis is
unrealizable without using large computing clusters or grid. For exam-
ple, the estimated time for the BLAST-based methods is N3000 days
without parallelization of the task. The WGP method calculated the
four parameters for the 1826 genomes in 50.8 min and the delineation
took 19.9 s. With parallelization using four cores, the times for the
WGP method were four times smaller.

The reciprocal methods (WGP, TETRA, and OAT using OrthoANI
method) have advantage as they analyze each genome pair once; the
similarity does not depend which genome serves as a query. Therefore,
the methods compare (NxN–N)/2 genome pairs where N is the number
of genomes. Non-reciprocal methods compare NxN–N genome pairs.
The number of comparisons was reflected in the processing time
estimations.

4. Conclusions

The proposed WGP method uses four parameters to globally repre-
sent a genome. The parameters are calculated from the phase signal
and the cumulated phase signal, which are numerical representations
of the genome's DNA sequence. The parameters are the sum of the dif-
ferences of adjacent phase signal values, the number of transitions
between the positive and the negative values of the phase signal, the
number of transitions between the phase values corresponding to the
nucleotides C and G, and the average growth angle of the cumulated
phase signal. The parameters' calculation is fast, straightforward, deter-
ministic, and independent of the composition of a dataset. These param-
eters can be calculated in advance and stored in a database to be used
anytime in different delineation analyses. The WGP method enables
delineation of an extensive dataset on a standard desktop computer.

The method was verified on a dataset of 1826 RefSeq bacterial
genomes. Any WGP method parameter alone was not sufficient to de-
lineate the genomes with sufficiently high sensitivity and specificity.
The best resultswere obtained for an average distance of all four param-
eters. Based on the verification and the ROC curve, the similarity thresh-
old was set to 96%. For this threshold, theWGPmethod had a sensitivity
of 99.78% and a specificity of 97.25%.

As the standardly used delineation tools were not able to process the
dataset of 1826 genomes using desktop computer due to the computa-
tional demands and their restrictions on dataset size, the comparison of
methods/tools was conducted using amuch smaller dataset comprising
only 33 bacterial genomes of nine species. The ANI-basedmethods had a
problem with delineating some strains of Bacilus cereus and Bacilus
subtilis. All the compared tools and the WGP method assigned the
strains of E. coli, Shigella flexneri, and Shigella sonnei to one group. The
analysis showed that these species are difficult to distinguish on a
whole-genome level.

Besides the E. coli and Shigella group, the WGP method produced a
perfect delineation faster than the ANI-based methods. Moreover, the
ANI-based methods except OrthoANI tool analyze one pair of genomes
twice because one genome serves as a “query” and the second as a “ref-
erence” and the results of the comparisons slightly differ. This double
analysis increases the computational time. This is not an issue for the
WGP method as the similarity between genomes A and B is the same
as for B and A, therefore, only half the comparisons are needed. Further-
more, the BLAST and MUMmer algorithms are very complex and com-
putationally demanding, making an analysis of hundreds or even
thousands of genomes impossible on a desktop computer and require
large computing clusters or grid.

One of the biggest problems in contemporary bacterial genome re-
search is the huge amounts of data that need to be analyzed. The
methods used to process these data need to be computationally effec-
tive, which is not the case for the available delineation tools. The
proposed signal-based method can tackle this problem reliably in
what has previously been an unattainable time, even without task
parallelization. Additional parameters can be added to the existing
ones if needed (by extending the vector of four parameters). For exam-
ple, to obtain sufficient resolution within species or groups of closely
related species.

TheWGPmethod is based on four parameters that globally repre-
sent genomes and is a powerful tool for the processing of huge
amounts of data. We consider this method to be a newly proven con-
cept that has significant advantages for genomic signal processing. As
the development of nanopore sequencing technology is expected in
the near future, genomic signal processing methods may be of great
importance. The nanopore technology produces a current signal
that has to be converted into a symbolic sequence. This conversion
can be skipped and the genome can be analyzed in its signal repre-
sentation using the genomic signal processing methods. The WGP
method derives the parameters from the phase representations of a
genome and equivalent parameters can be derived directly from
the nanopore produced signal.

We have shown that a delineation based on several parameters
representing a whole genome is not only possible, but highly effective
and precise. The aim of third-generation sequencers is to enable every-
body everywhere to perform DNA sequencing that requires only low
computational demands. Our delineation method reduces a whole ge-
nome from millions of symbols to only four significant values. This en-
ables the comparison of extensive numbers of microorganisms even
without online access to large databases.

The WGP method can be downloaded as Matlab source codes:
https://www.ubmi.feec.vutbr.cz/en/publications/wgp-genome-
delineation/. The present version of the software is not suitable for com-
parison of genomes assembled in multiple scaffolds.

https://www.ubmi.feec.vutbr.cz/en/publications/wgp-genome-delineation
https://www.ubmi.feec.vutbr.cz/en/publications/wgp-genome-delineation
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