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Abstract: Using a patient’s genetic information to inform medication prescriptions can be clinically
effective; however, the practice has not been widely implemented. Health systems need guidance on
how to engage with providers to improve pharmacogenetic test utilization. Approaches from the
field of implementation science may shed light on the complex factors affecting pharmacogenetic test
use in real-world settings and areas to target to improve utilization. This paper presents an approach
to studying the application of precision medicine that utilizes mixed qualitative and quantitative
methods and implementation science frameworks to understand which factors or combinations
consistently account for high versus low utilization of pharmocogenetic testing. This approach
involves two phases: (1) collection of qualitative and quantitative data from providers—the cases—at
four clinical institutions about their experiences with, and utilization of, pharmacogenetic testing to
identify salient factors; and (2) analysis using a Configurational Comparative Method (CCM), using a
mathematical algorithm to identify the minimally necessary and sufficient factors that distinguish
providers who have higher utilization from those with low utilization. Advantages of this approach
are that it can be used for small to moderate sample sizes, and it accounts for conditions found in
real-world settings by demonstrating how they coincide to affect utilization.

Keywords: pharmacogenomics; coincidence analysis; configurational comparative methods; health
services research; implementation science; mixed methods

1. Introduction

Use of genetic information to inform prescribing decisions (genotype-guided pre-
scribing) is clinically effective and beneficial for many medications, yet not routinely
implemented [1–5]. To promote appropriate utilization and greater adoption, the interna-
tional evidence-based guideline organization, Clinical Pharmacogenetics Implementation
Consortium (CPIC), has developed clinical recommendations for 46 gene-drug pairs that
have high or moderate evidence [6]. Many of the medications commonly prescribed in the
US have a CPIC guideline and have a high risk of either an adverse drug reaction or poor
clinical response in the setting of certain genetic variants [1,2]. It is estimated that medica-
tions with CPIC guidance comprise about 18% of the 4 billion outpatient prescriptions in
the US [5]. In addition, in the few settings where genotype-guided prescribing is part of
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routine clinical care, 99% of those tested have actionable variants that affect prescribing of at
least one medication [3,4,7–11]. For these medications, pharmacogenetic test results could
guide medication choice or dose, thus optimizing outcomes [12]. For example, enzymes
encoded by the CYP2C19 and CYP2D6 genes impact how individuals metabolize certain
antidepressants. According to CPIC guidelines, due to genetic variation, CYP2C19 poor
metabolizers should initiate citalopram or escitalopram at 50% of the starting dose due to
increased risk of side effects and CYP2D6 ultrarapid metabolizers should avoid paroxetine
therapy due to increased probability of therapeutic failure [13]. Thus, testing for these
genes could reduce trial and error that would occur without this additional information.

In addition to the CPIC guidelines, evidence-based guidance about how to imple-
ment genotype-guided prescribing into routine care in real-world settings is needed. To
date, genotype-guided prescribing still largely occurs in research settings. Several papers
have listed barriers and facilitators from providers’ perspectives, identified via surveys
or qualitative methods, for the use of genetic testing for prescribing. Barriers to imple-
mentation have included uncertainty about: advantages of pharmacogenetics over their
current practice, their ability to interpret the information and thus explain to patients and
make clinical decisions, how to incorporate testing into current workflows, and cost and
reimbursement implications [4,8,14]. Facilitators include provider training and education
conducted by a pharmacist, including opportunity to learn by testing themselves, and
point of care clinical decision support, which have boosted providers’ self-reported accep-
tance of and comfort with using genetic information when prescribing medication [4,8].
Additionally, progress has been made with respect to the key barrier of reimbursement and
coverage in that United Healthcare and the Centers for Medicare and Medicaid Services
(CMS) recently started covering genotype-guided prescribing for antidepressants according
to CPIC guideline-based gene-drug pairs, underscoring greater acceptance by payors of
genotype-guided therapy [15,16]. However, while greater coverage constitutes one step
toward facilitating widespread use, it does not necessarily equate with uptake by providers
during routine care [17]. To improve uptake, pharmacogenetic program leaders need
evidence-based guidance that accounts for the complexity of everyday practice, namely
how different aspects of individual behavior and organizational context intersect to affect
utilization [18]. While prior work has described providers’ reports of factors important
for their use of pharmacogenetics, these studies lack any evaluation of interdependence
between these factors and their causal relationship to test utilization [4,8,14,17,18].

Configurational Comparative Methods (CCMs) can contribute toward the study of
pharmacogenetics implementation by accounting for both complexity of and interdepen-
dencies between factors in small to moderate sample sizes [19]. CCMs employ mathematical
algorithms to identify necessary and sufficient conditions for a desired outcome across a
set of cases (e.g., providers). A recent addition to the CCM family, Coincidence Analysis
(CNA), uses an algorithm that can reveal causal pathways (if substantiated by the data).
Causal pathways occur when one or more conditions lead to another intermediate outcome,
which then leads to the final outcome. Often utilized in sociological and public policy
research in the past, health services researchers have increasingly added this methodology
to their toolbox. Since 2005, approximately 28 health services-related publications indexed
in PubMed have used CCMs, though only two have dealt with genomic/precision medicine
and implementation science. Cragun et al. (2014) studied implementation processes that
distinguished institutions with higher rates of universal tumor screening for Lynch syn-
drome and found that high performing institutions had a common set of implementation
conditions, specifically targeted reflexive testing processes, and genetic counselor disclo-
sure of positive test results with no barriers to contacting patients or obtaining a genetic
counseling referral [20]. Rahm et al. (2018) described a protocol to use CCM to understand
the variability of genomic/precision screening in colorectal cancer patients in multiple
healthcare systems [21]. In this paper, we introduce this methodological approach to the
study of pharmacogenetics testing uptake.
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2. Materials and Methods

To understand which factors or combinations thereof consistently make a difference for
high versus low utilization of pharmocogenetic testing, we designed a case-based approach
that utilizes mixed qualitative and quantitative methods grounded in implementation sci-
ence frameworks. The overall approach involves collection of qualitative and quantitative
data from providers—the cases—at four clinical institutions about their experiences with
pharmacogenetic testing and then application of CNA to demonstrate through mathemati-
cal modeling the minimally necessary and sufficient factors that distinguish cases based on
their level of pharmacogenetics utilization. We draw from taxonomies developed in the
field of implementation science, the study of methods to advance uptake of evidence-based
practices, to define individual and organizational level factors. CCMs offer a way to observe
how these factors manifest in conjunction with each other and contribute to the outcome of
interest, high pharmacogenetic test utilization, using data from real-world experiences.

2.1. Cases

Cases consist of providers who prescribe antidepressant medications within the context of
four clinical institutions that vary in use of pharmacogenetic testing. We aim to purposefully
sample eight providers from each of the four institutions, with a goal of recruiting four
high users and four low users and, among those, a mix of primary care and psychiatric
providers, for a total of 32 cases; recruitment will occur until the sampling quotas from
each site are met. We define “user” as a provider who either orders a test for CYP2C19
and CYP2D6 or uses/discloses results of a test automatically generated by their clinical
institution [6]. Contributors from each clinical institution will provide a sampling frame
of healthcare providers who fit the case criteria. Each of the four clinical institutions
has demonstrated interest in genomic medicine by virtue of participating in National
Human Genome Research Institute (NHGRI) consortiums, Implementing Genomics in
Practice (IGNITE) coordinated at Duke University and the Electronic Medical Records and
Genomics Network (eMERGE) coordinated at Vanderbilt University; however, they vary
in the degree to which they have prioritized implementation of pharmacogenetics. For
example, two institutions have policies to test preemptively patients for pharmacogenes
and well- developed implementation processes, albeit at different stages, while others are
at preparation or exploration stages of implementation (Table 1).

Table 1. Description of clinical institutions.

Clinical Institution Patient Mix Health Care Setting NIH Clinical
Genomics Network Program Stage 1,2

Duke Health
(Durham, NC, USA)

55% White; 20% Black; 5%
Hispanic14% Medicaid

Urban academic
medical center IGNITE Exploration

Geisinger Clinic
(Danville, PA, USA)

90% White; 32% Geisinger
Health Plan membership

covered by Medicaid

Regional system
reaching rural areas eMERGE Preparation

Cincinnati Children’s
Hospital (OH, USA)

75% White; 15% Black; 8%
Hispanic43% Medicaid

Urban academic
medical center

IGNITE affiliate;
eMERGE

Implementation
(preemptive)

Sanford Health
(Sioux Falls, SD, USA)

85% White; 4% Black; 9%
Native American (wide

variations among regional
facilities). 12% Medicaid

Regional system
reaching rural areas IGNITE affiliate

Expansion
(3 preemptive and

reactive)

Note: 1 Smith, B., Hurth, J., Pletcher, L., Shaw, E., Whaley, K., Peters, M., & Dunlap, G. A guide to the imple-
mentation process: stages, steps and activities. Chapel Hill: The University of North Carolina, Frank Porter
Graham Child Development Institute, The Early Childhood Technical Assistance Center 2014; 2 Aarons, G. A.,
Hurlburt, M., & Horwitz, S. M. Advancing a conceptual model of evidence-based practice implementation in
public service sectors Administration and Policy in Mental Health and Mental Health Services Research, 2011, 38(1),
4–23; 3 preemptive = tests conducted prior to drug prescribing and readily available in patient medical record,
and reactive = test conducted at time of prescribing, Weitzel, K. W., Cavallari L.H. and Lesko L.J. Preemptive
Panel-Based Pharmacogenetic Testing: The Time is Now. Pharmaceutical Research, 2017, 34(8), 1551–1555.
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2.2. Data Collection

Data are collected via a structured questionnaire and semi-structured interview guide
(see the appendix for questionnaire and interview questions). Taxonomies, which provide
heuristics for describing empirical evidence by defining and categorizing constructs and
common language for linking findings across different studies, guide data collection and
analysis [22]. The web-based questionnaire, developed using Qualtrics, includes informa-
tion about providers’ demographic and practice characteristics; intermediate outcomes of
acceptability, appropriateness, and feasibility; and the outcome measure of pharmacogene
test utilization. Semi-structured individual interviews with the same providers, conducted
over Zoom, includes questions about factors hypothesized to impact the intermediate or
final outcomes based on the Consolidated Framework for Implementation Research (CFIR),
Theoretical Domains Framework (TDF), and Expert Recommendations for Implementing
Change (ERIC) taxonomies (described in more detail below). Additional interviews will
be conducted with one to two selected administrators at each health system to triangulate
information on organizational-level factors.

2.3. Outcome Measures

The level of pharmacogenetic test utilization by providers who order antidepressant
medications constitutes the primary outcome for the CNA, because the extent to which
providers use this testing is the key factor in determining whether patients will ultimately
reap the benefits. As an indicator of pharmacogene test utilization for prescribing antide-
pressants, we focus on tests that include the CYP2D6 or CYP2C19 genes for two reasons:
(1) the CPIC provides evidence-based therapy recommendations for these genes depending
on genetic test results and (2) providers across all institutions in our sample prescribe
drugs that interact with these genes. We operationalize the level of utilization according
to providers’ reports of the number of tests that they used in the past 6 months out of the
number of patients they follow. We obtain this information by asking them during the
pre-interview, Qualtrics questionnaire to report the number of tests that they ordered for
CYP2D6 or CYP2C19 and then following up via the qualitative interview to ask about
the number of tests that they used (e.g., discussed results with patients or used results to
change medication). The way in which providers order CYP2D6 or CYP2C19 tests may
vary- e.g., as a stand-alone test, within a panel of multiple PGx tests, or as part of an order
set for a condition or diagnosis, and, while we collect this kind of process data during
interviews, this detail does not affect the outcome definition. During the interview, we
also ask about the number of patients they follow and what proportion of their patients
are on tricyclic antidepressants or selective serotonin reuptake inhibitors that interact with
CYPD26 or CYP2C19 (amitriptyline, citalopram, escitalopram, fluvoxamine, nortriptyline,
paroxetine, or sertraline) to provide context for their pharmacogenetics test utilization
numbers. We rely on self-reported data from providers to determine the extent to which
they use pharmacogene tests for CYP2D6 or CYP2C19 within their own context, because
systems to document orders of these specific gene tests for antidepressants vary across
the clinical institutions. Using this self-reported information, we create outcome values
by categorizing providers according to our final sample distribution (e.g., a trichotomous
outcome of high, some, or no utilization categories or a dichotomous outcome of any or no
utilization of tests).

2.4. Intermediate Outcomes

To identify the extent to which intermediate outcomes (antecedent outcomes that
precede utilization) make a difference for the final outcome (level of utilization), we mea-
sure providers’ views on acceptability, appropriateness, and feasibility of pharmacogenetic
testing as defined by the Implementation Outcomes Framework (IOF) [23] and using the
validated Acceptability of Intervention Measure (AIM), Intervention Appropriateness Mea-
sure (IAM), and Feasibility of Intervention Measure (FIM) [24]. Acceptability generally
refers to perceived satisfaction with a specific evidence-based practice, personal fit. Appro-
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priateness refers to perceived fit of an evidence-based practice for a specific issue, relevant
actors, and implementation settings. Feasibility refers to anticipated success of a new
practice in a given setting. Each measure includes four items and evaluates the notion of
fit. By measuring both acceptability and appropriateness, we tease out whether providers
perceive pharmacogenetics as fitting for their overall practice setting (appropriate) though
not desired by them in particular (acceptable), or vice versa.

2.5. Factors Hypothesized to Impact the Intermediate or Final Outcomes

(1) To identify multi-level determinants, defined as barriers and facilitators to implemen-
tation and practice improvement, we use the Consolidated Framework for Implemen-
tation Research (CFIR) and the Theoretical Domains Framework (TDF). The CFIR lists
potential determinants selected from published literature based on strength of evi-
dence or relevance for implementation and organized by five over-arching domains,
or levels (intervention characteristics, individual characteristics, process, inner setting,
outer setting) [25]. The TDF, developed from behavior change theory to identify how
individual behavior influences implementation of evidence-based recommendations,
is used to enhance the understanding of individual provider-level determinants for
genomic medicine [26]. The TDF and CFIR together elucidate more organizational and
individual-level determinants than either would alone. To our knowledge, this is the
first pharmacogenetics implementation study to apply both CFIR and TDF to evaluate
factors that make a difference for the level of provider utilization across different
real-world institutional settings [27]. To narrow down the number of constructs to
a manageable set for our qualitative and quantitative analyses, we use qualitative
data to determine a set of constructs hypothesized to be most influential to level
of utilization based on a series of discussions among the current study team about
qualitative data analysis and then test the hypotheses using CNA.

(2) To identify whether and which implementation strategies make a difference in facilitat-
ing high versus low or no provider utilization, we use the Expert Recommendations
for Implementing Change (ERIC) taxonomy, a compilation of 73 implementation
strategies with definitions [28]. This taxonomy derives from both a systematic review
of literature and examination by experts in health services research. To facilitate
locating strategies, ERIC authors used concept mapping to divide the 73 strategies
into nine clusters (engaging consumers, using evaluative and iterative strategies,
changing infrastructure, adapting and tailoring to the context, developing stakeholder
interrelationships, utilizing financial strategies, supporting clinicians, providing in-
teractive assistance, and training and educating stakeholders). In our project, we use
the ERIC taxonomy to deductively identify implementation strategies described in
qualitative interviews, in response to questions about processes used to implement
pharmacogenetic testing (e.g., What are steps to use pharmacogenetic tests in your
health care system?).

Provider characteristics include number of years since completed training, provider
type (MD or DO, PharmD or RPh, PA or NP, Other), primary clinical area (primary care, psy-
chiatry, neurology, other), whether prescribing medications is part of job their responsibility,
number of hours of direct patient care during a typical week, age, gender, race/ethnicity,
primary location, and self-efficacy (confidence in ordering pharmacogenetic testing for
CYP2C19 and CYP2D6 genes).

2.6. Analysis
2.6.1. Phase 1: Qualitative Analysis

Analysts code segments of the transcribed interviews using descriptive labels as well
as strength and valence codes (when applicable). Descriptive labels for coding text are
created and defined using a combination of deductive and inductive approaches [29].
Deductive, a priori, codes are derived from CFIR and TDF factors. We establish additional
inductive, or data-derived, codes for text that cannot be represented by a priori codes
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(e.g., apply codes that correspond to ERIC implementation strategies to text related to
the question, “How do you integrate pharmacogenetics into your practice?” or apply
codes for types of training described in response to the TDF skill question, “Have you
been trained in how to use pharmacogenetics in your daily practice with patients? Please
tell me more.”). To identify factors as facilitators or barriers, analysts assign numerical
factor values (valence codes) to coded text to represent strength and valence (from −2 a
strong barrier to +2 a strong facilitator) accompanied by rationale (e.g., provider expected
to use pharmacogenetic testing and rewarded for doing so) in the annotation feature of
NVivo, according to criteria developed during the review of data and based on guidance
from prior studies that applied CFIR [30]. Analysts meet to review all coding with the
principal investigator and resolve discrepancies in coding through discussion that includes
additional team members with expertise in implementation science and pharmacogenetics
implementation when needed. Discussion among all team members occurs to hypothesize
which factors could make a difference for the outcome. A data matrix summarizes the
coded data, with a row for each provider and values that were hypothesized to make
a difference in separate columns. We resolve missing or unclear data by re-contacting
respondents to check our interpretation or fill in their responses. The outcome is added as
a final column and it is assigned a value of 0 for those providers with no test utilization, 1
for some and 2 for high utilization, or 0 for none and 1 for any utilization, depending on
the sample distribution.

2.6.2. Phase 2: Coincidence Analysis

CNA can uncover causal pathways by which factor values and implementation strate-
gies (i.e., conditions) make a difference for level of provider utilization. CNA employs a
mathematical algorithm based on Boolean algebra to compare case configurations and iden-
tify minimally necessary and sufficient conditions for a desired outcome. In this project, the
outcome is denoted by extent of pharmacogenetic use (high or low) and the factors hypoth-
esized to impact the outcome derived from prior qualitative analysis. Factors hypothesized
to be most important to the outcome from team discussions during qualitative analysis are
selected for inclusion in CNA to test the hypothesis. CNA methodology derives causal
inference from empirical data through the modern Regularity Theory of Causation, which
posits that if one event is regularly (consistently) followed by another in multiple instances
(or cases), then causal inference can be made if redundancies are eliminated [31]. To inter-
pret causal relationships identified in resultant solutions, we draw from implementation
theory, qualitative data, and other knowledge (temporality, proximity).

One of the benefits of CNA is that it can uncover multiple paths to the same out-
come [32]. In practice, this approach also allows for the identification of causal complexity,
whereby two conditions if present alone are insufficient for the outcome, but together they
may be minimally sufficient. For example, it may be that providers from academic centers
with a longer-running program and strong positive implementation climate use clinical
reminders to order tests (an implementation strategy), view pharmacogenetics as feasible
(intermediate outcome), and, in turn, have higher rates of pharmacogene orders (final
outcome). However, for providers in other health care settings, the “key ingredients” for
achieving the outcome (high rates of ordering) may be the presence of high self-efficacy and
use of local technical assistance (implementation strategy), which, in turn, results in views
of pharmocogenetics as acceptable (intermediate outcome). In sum, CCMs provide a way
to identify underlying complexity that can affect implementation in real world settings.

CNA is conducted using the “cna” package in R software [33]. We evaluate the fit of
models generated by CNA using the standard parameters of consistency and coverage.
Consistency refers to the proportion of cases with certain configurations of conditions in
the solution that also has the outcome (number of cases with both the model solution and
outcome divided by the number of cases with the model solution). Coverage refers to the
degree to which a specific model solution accounts for the behavior of an outcome and is
measured by the number of cases with both the model solution and outcome divided by
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the total number of cases with the outcome). Consistency and coverage are initially set at
85 to guard against model overfitting. Robustness testing is conducted using the R package
“frscore,” which computes the degree to which a model fits with other models generated
from the same dataset under varying thresholds of consistency and coverage [34]. If CNA
uncovers model ambiguity, that is, no one stand out model is identified, the models are
evaluated based on coverage, consistency, and fit robustness scores to determine the best
fitting and most robust model.

3. Discussion

Context matters for implementation of any evidence-based practice and may have
unique implications for precision medicine. Translating an evidence-based practice, like
pharmacogenetic testing, into different settings opens the door to changing components of
the practice and maximizing beneficial outcomes. Understanding the role of context, or
surrounding conditions and implementation strategies, can help to identify why a practice
that works well in one setting may not in another, how to improve fit without compromis-
ing outcomes, and areas to intervene to improve implementation. While implementation
science frameworks have generally focused on external features like organizational culture
or implementation climate to define context, individual-level factors like end-users’ knowl-
edge or beliefs also can affect how a new practice fits in a specific setting. This multi-level
view of context matters for precision medicine applications that depend on use of clinical
decision support systems that process big data sources to interpret results for just-in-time
guidance in varying clinical contexts: For example, the extent to which providers have
knowledge necessary to use a clinical decision support system may shape implementation
climate or overall receptivity.

Because intervention effectiveness depends on multi-level contextual factors, we need
ways to measure them to evaluate interventions. Rogers and colleagues (2020) conducted
a systematic review to assess how studies of healthcare implementation defined and
measured “context” and found that the majority of studies used only qualitative methods
and those that used quantitative methods relied on cross-sectional surveys; generally,
these studies generated listings of relevant factors from frameworks to define the notion of
context [35]. CCMs add to the toolbox of methods for measuring contextual factors as multi-
level, multi-component conditions for implementation; an advantage of CNA is that it
offers flexibility to uncover contingencies, or combinations of conditions, as pathways [30].
In this way, CCMs in general and CNA in particular fit well with the idea of context
as process, in which dynamic conditions intersect with features of the intervention and
other factors (e.g., individual characteristics), as opposed to a fixed structure to control
for as a potential confounder [36]. There is growing consensus around use of CCMs in
implementation science and their importance in studying the implementation of precision
medicine [37]. Currently few methodologies exist to study how contextual factors affect
implementation and generate causal models: There needs to be greater use of innovative
methods to answer these kinds of questions pertinent for implementation contexts [38].

For precision medicine specifically, the study of implementation into routine care is
needed for continual development of evidence about clinical utility. This represents a virtu-
ous cycle between research and implementation, where basic science can gain from insights
generated by learning health care systems and vice versa [39]. By studying implementation,
we can fully identify barriers and concerns around provider use of pharmacogenetics, which
will help sites that are beginning to implement. For example, knowing what specifically
discourages providers from utilizing and ordering tests will be helpful to more effectively
address these concerns through communication strategies. Providing a systematic way to
generalize across institutional settings with common language and definitions provided by
implementation science frameworks helps to build general knowledge. While this work
extends current approaches to elicit barriers through surveys, interviews, and observations,
it still represents only a piece of the puzzle. Future work to study difference makers for
uptake of pharmacogenetics must include patient experiences. While we do not focus on
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patient-level analyses for the study described in this paper, a separate qualitative study
will collect information from patients using the same implementation science frameworks
to generate hypotheses and test the hypotheses using CCMs. In general, the study of preci-
sion medicine implementation can benefit from using CCMs to understand how complex,
real-world conditions affect uptake and highlight areas to intervene to improve outcomes.
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