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GPR40 Modulators: New Kid

on the Block

action are the pathophysiological hall-

marks of type 2 diabetes (1,2). Phar-
macological approaches to restore B-cell
function have led to the use of insulin
secretagogues that include sulphonylur-
eas, glinides, and glucagon-like peptide-
1-based therapies. Of these, the latter
hold particular clinical advantage because
glucagon-like peptide-1-modulated insulin
secretion is glucose dependent (3,4), thereby
minimizing the risk for hypoglycemia—
the bane of clinicians managing diabetes
across the world.

Fatty acids have long been known (5)
to modulate human B-cell function.
While acutely fatty acids amplify glucose-
stimulated insulin secretion, chronic eleva-
tion of free fatty acid (FFA) levels has been
thought to inhibit insulin secretion
through the phenomenon of “lipotoxicity”
(6,7). The cellular/molecular intermediates
that are involved in this complex modula-
tion, elegantly summarized in ref. 5, in-
clude malonyl CoA/long-chain acyl-CoA,
triglyceride/FFA cycling through diacyl-
glycerol, G-protein—coupled receptor 40
(GPR40) and phospholipase A2.

Impairments in insulin secretion and

G-protein—coupled receptors have
recently emerged as novel therapeutic tar-
gets because they appear to be closely
involved in the pathology of various met-
abolic disorders including obesity, dysli-
pidemia, and type 2 diabetes (8). Since
the seminal article (9) in 2003 about the
role of GPR40 (also known as FFA1R: free
fatty acid 1 receptor) in long-chain fatty
acid—mediated glucose-stimulated insu-
lin secretion from rodent and human
B-cells, there have been over 60 publica-
tions investigating the properties and
modulators of this receptor as yet an-
other potential therapeutic approach
for the management of type 2 diabetes.
GPR40 is expressed most abundantly in
humans in pancreatic B-cells and has
also been found in the ileum and brain
(9,10). 1t is a specific receptor for long-
chain fatty acids unbound to albumin
that induces glucose-stimulated insulin
secretion through a calcium-dependent
mechanism. Furthermore, there are tan-
talizing suggestions (8,11,12) that GPR
agonists could regulate incretin secre-
tion and thus further influence glucose-
stimulated insulin secretion (Fig. 1).
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This, however, remains to be proven in
future investigations.

There have been uncertainties in pre-
clinical studies as to whether a GPR40
antagonist/agonist should be developed
for therapy of type 2 diabetes. An early
study (13) demonstrated that while
GPR40 ™™ mice on high-fat diet were pro-
tected from hyperinsulinemia, glucose
intolerance, and hepatic steatosis, trans-
genic overexpression of GPR40 in 3-cells
in mice resulted in impaired B-cell func-
tion and diabetes. In contrast, Kebede
et al. (14) showed that GPR40 knockout
mice on a C57/BL6 background devel-
oped fasting hyperglycemia and became
as obese and glucose intolerant as their
wild-type littermates when exposed to a
high-fat diet. The field became even
more confusing when Nagasumi et al.
(15) demonstrated resistance to high-fat
diet—-induced glucose intolerance in trans-
genic mice on a C57/BL6 background
overexpressing GPR40 in the pancreatic
B-cells. Although it remains speculative,
the apparent discrepancy could be ex-
plained, at least in part, by differences
in the techniques used to generate the

Figure 1—A simplistic rendition of G-protein—coupled receptor (GPCR) modulation of glucose-stimulated insulin secretion in the B-cell. DAG,
diacylglycerol; GIPR, glucose-dependent insulinotropic polypeptide receptor; GLPIR, glucagon-like peptide-1 receptor. (A high-quality color
representation of this figure is available in the online issue.)
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animals, genetic background of the mice
used by each group, tissue expression
based on the mouse line within each ge-
netic manipulation experiment, etc.

The role of GPR40 in human diabetes
was explored in a small study where
variations in the coding region of GPR40
was not linked to type 2 diabetes or
insulin secretion in response to an oral
glucose challenge (16). However, in an-
other study on human islets isolated from
multiorgan donors, expression of GPR40
was found to be lower in islets from type 2
diabetes than control subjects (17), im-
plying the possibility of involvement of
this receptor in human type 2 diabetes.

Recent phase I studies in the U.S. of
TAK-875,a GPR40 agonist, in individuals
without (18) and with type 2 diabetes
(19) demonstrated an elimination half-
life of 28-36 h and substantial reductions
in fasting and postoral glucose tolerance
test glucose concentrations after once-
daily oral dosing for 2 weeks. There was
mild hypoglycemia in 2 out of 14 individ-
uals with type 2 diabetes studied. Another
recent phase II study (11) in the U.S. and
Central America revealed up to 1% low-
ering of HbA,. with 12 weeks of therapy
with TAK-875 with rates of hypoglyce-
mia similar to placebo and lower than
glimepiride.

In an exploratory phase II random-
ized, double-blind, placebo-controlled,
multicenter study (20) in Japanese pa-
tients with type 2 diabetes, 2 weeks of
the same GPR40 agonist TAK-875 low-
ered postoral glucose tolerance test glu-
cose concentrations while increasing
insulin excursions. Fasting plasma glu-
cose also decreased by 35-45 mg/dL with
no episodes of hypoglycemia in 44 sub-
jects who received 100 mg or 400 mg of
the drug. Adverse events in which causal-
ity could not be ruled out included con-
stipation, nausea, hematological changes,
and flank pain.

The above study led to the current
report (21) by the same investigators in
which they studied TAK-875 (6.25-200
mg once daily) in a phase II, multicenter,
randomized, double-blind, placebo-
controlled, parallel-group, 12-week study
with an open-label glimepiride arm. The
study was conducted in lean patients with
inadequately controlled type 2 diabetes
(HbA,. ~8.5%) on lifestyle management
for their diabetes. Ninety-six percent of
those enrolled completed the study, with
adherence to protocol no different among
study groups. There was dose-dependent
lowering of HbA,. with those receiving

>50 mg/day of TAK-875 achieving reduc-
tions in HbA,. similar to the glimepiride
arm. Importantly, episodes of hypoglyce-
mia were sixfold lower in the TAK-875
groups than in the glimepiride group,
with no significant differences in adverse
events among groups. The incidence of
mild hypoglycemia in the TAK-875
groups was not dose dependent and did
not result in drug withdrawal. However,
the authors did not specify the definition
of hypoglycemia in their report. Al-
though multiple parameters of fast-
ing and postoral glucose tolerance test
glucose and hormonal excursions are
reported, these changes need to be inter-
preted with caution, as sophisticated
models and methods were not applied
for precise estimation of insulin secretion
and/or action. Importantly, there were
no serious adverse events related to the
drug. Other adverse events include naso-
pharyngitis, back pain, constipation, and
headache.

It is noteworthy to recognize the fact
that well within a decade of the initial
discovery of the role of GPR40 on insulin
secretion, phase II trials of GPR40 ago-
nist have successfully been conducted
in type 2 diabetes. This is a testament to
the “crying need” for alternative and safe
(especially from the standpoint of hypo-
glycemia) pharmacotherapy targeted to
improve insulin secretion in these indi-
viduals. The significantly reduced epi-
sodes of hypoglycemia (compared with
the sulphonylurea arm) in these trials is
promising to the practicing clinician
if and when these agents are approved
for clinical use. The recent controversy
and debate surrounding the safety of
glucagon-like peptide-1-based ap-
proaches (22,23) underscore the need
for novel agents that would stimulate
insulin secretion without increasing
the risk for hypoglycemia. Maybe
GPR40 modulators will plug that gap if
safety and efficacy profiles continue to
be encouraging in future larger and lon-
ger-term clinical trials. Here’s hoping for
the best!
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