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CD90 serves as differential modulator of ")
subcutaneous and visceral adipose-derived
stem cells by regulating AKT activation that
influences adipose tissue and metabolic
homeostasis
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Abstract

Background: White adipose tissue includes subcutaneous and visceral adipose tissue (SAT and VAT) with different
metabolic features. SAT protects from metabolic disorders, while VAT promotes them. The proliferative and
adipogenic potentials of adipose-derived stem cells (ADSCs) are critical for maintaining adipose tissue homeostasis
through driving adipocyte hyperplasia and inhibiting pathological hypertrophy. However, it remains to be
elucidated the critical molecules that regulate different potentials of subcutaneous and visceral ADSCs (S-ADSCs, V-
ADSCs) and mediate distinct metabolic properties of SAT and VAT. CD90 is a glycosylphosphatidylinositol-anchored
protein on various cells, which is also expressed on ADSCs. However, its expression patterns and differential
regulation on S-ADSCs and V-ADSCs remain unclear.

Methods: S-ADSCs and V-ADSCs were detected for CD90 expression. Proliferation, colony formation, cell cycle, mitotic

clonal expansion, and adipogenic differentiation were assayed in S-ADSCs, V-ADSCs, or CD90-silenced S-ADSCs. Glucose
tolerance test and adipocyte hypertrophy were examined in mice after silencing of CD90 in SAT. CD90 expression and
its association with CyclinDT and Leptin were analyzed in adipose tissue from mice and humans. Regulation of AKT by
CD90 was detected using a co-transfection system.

Results: Compared with V-ADSCs, S-ADSCs expressed high level of CD90 and showed increases in proliferation, mitotic
clonal expansion, and adipogenic differentiation, together with AKT activation and G1-S phase transition. CD90
silencing inhibited AKT activation and S phase entry, thereby curbing proliferation and mitotic clonal expansion of S-
ADSCs. In vivo CD90 silencing in SAT inhibited S-ADSC proliferation, which caused adipocyte hypertrophy and glucose
intolerance in mice. Furthermore, CD90 was highly expressed in SAT rather than in VAT in human and mouse, which
had positive correlation with CyclinD1 but negative correlation with Leptin. CD90 promoted AKT activation through
recruiting its pleckstrin homology domain to plasma membrane.
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disorders.

homeostasis

Conclusions: CD90 is differentially expressed on S-ADSCs and V-ADSCs, and plays critical roles in ADSC proliferation,

mitotic clonal expansion, and hemostasis of adipose tissue and metabolism. These findings identify CD90 as a crucial
modulator of S-ADSCs and V-ADSCs to mediate distinct metabolic features of SAT and VAT, thus proposing CD90 as a
valuable biomarker or target for evaluating ADSC potentials, monitoring or treating obesity-associated metabolic
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Background

Excess fat accumulation in adipose tissue causes obesity,
which increases the risks of diabetes, steatohepatitis,
stroke, cardiovascular disease, or even cancer [1, 2].
White adipose tissue (WAT) including subcutaneous
and visceral adipose tissue (SAT and VAT) stores sur-
plus energy to regulate metabolic balance. Both SAT
and VAT expand during adiposity but with distinct
metabolic functions. The accumulation of VAT is associ-
ated with metabolic disorders including insulin resist-
ance, diabetes mellitus, hypertension, dyslipidemia, and
atherosclerosis, while SAT improves insulin action and
metabolism [3-5]. Studies from humans and animal
models provided evidences for the protective effects of
SAT but adverse effects of VAT on metabolism. Re-
moval of visceral fat in aging rats or omentectomy in
obese subjects improved their metabolic profiles, while
transplantation of subcutaneous fat into intra-abdominal
site decreased body weight and fat mass, and improved
insulin sensitivity in recipient mice [6—8].

WAT expands via adipocyte hyperplasia and hyper-
trophy, characterized by increases in number of new
adipocytes or size of existing adipocytes, respectively
[9-12]. Adipocyte hyperplasia indicates de novo adipo-
genesis from progenitors in response to metabolic de-
mands. It has been demonstrated that hyperplasic
expansion of SAT protected the mice against obesity-
induced insulin resistance, whereas loss of hyperplasic
potential caused pathological hypertrophic expansion of
SAT that led to adipose tissue dysfunction, inflamma-
tion, and systemic insulin resistance in animals and
humans [10, 13-15]. A recent study also substantiated
that de novo adipocyte differentiation protected against
pathologic visceral adipose expansion in obesity and re-
sulted in improvements in glucose homeostasis [16],
suggesting the beneficial roles of adipocyte hyperplasia
in WAT and metabolic homeostasis. Currently, there
are still some controversy over de novo adipogenesis in
SAT and VAT [17]. Joe and colleagues concluded that
SAT expanded mostly by hyperplasia, whereas VAT by
hypertrophy, as SAT had more proliferating adipogenic
progenitors than VAT in mice fed on high-fat diet [18].
Conversely, another study showed that VAT had higher

capacity of adipogenesis by hyperplasia than SAT in re-
sponse to high-fat diet feeding using an in vivo adipo-
genesis tracking mouse model, though the stromal
vascular fraction (SVF) from SAT was easier to differ-
entiate into adipocytes in vitro than that from VAT
[19]. In addition, Macotela et al. reported that CD34-
and SCA1-positive adipocyte precursor cells from SAT
had higher capacity for adipogenic differentiation
in vitro than those from VAT in mice [20]. So, the bal-
ance between adipocyte hyperplasia and hypertrophy in
SAT and VAT especially related regulatory mechanisms
remains to be clarified.

Adipose-derived stem cells (ADSCs) expressing mes-
enchymal stem cell (MSC) markers like CD44, CD105,
CD90, and CD73 are the main progenitors in WAT,
which can differentiate into multiple cell types in vitro
including adipocytes, osteoblasts, and chondrocytes. Due
to their capacities for self-renewal and multipotent dif-
ferentiation, ADSCs play pivotal roles in supporting
WAT homeostasis under pathophysiological conditions
and have broad prospects in tissue repair and regener-
ation [21-25]. ADSCs are essential progenitors for adi-
pocyte hyperplasia, which links cell proliferation with
differentiation during adipogenic differentiation [12]. In
the initial phase of adipogenesis, growth-arrested preadi-
pocytes (ADSCs committed to adipocyte lineage) reenter
cell cycle to undergo several rounds of cell division,
known as mitotic clonal expansion, which is a prerequis-
ite for adipogenic differentiation [12, 26-28]. Reagents
blocking cell cycle reentry or proliferation significantly
impaired adipocyte differentiation through inhibiting
clonal expansion [12, 29, 30], confirming the prolifera-
tive potential of ADSCs in determining adipogenic dif-
ferentiation. Considering the differences between SAT
and VAT, key molecules and mechanisms for regulating
the proliferative potentials and differences between sub-
cutaneous and visceral ADSCs (S-ADSCs, V-ADSCs) re-
quire to be clarified.

CD90, also known as Thy-1, is a typical glycosylpho-
sphatidylinositol (GPI)-anchored protein, which func-
tions differently in various cells including regulating cell
proliferation, apoptosis, survival, adhesion, and migra-
tion [31-34]. The effects of CD90 on cell proliferation



Pan et al. Stem Cell Research & Therapy (2019) 10:355

have been studied in several types of tumor cells, fibro-
blasts, and hematopoietic stem cells, which either pro-
motes or inhibits proliferation depending on different
cell types in various contexts [32, 33, 35-37]. Several
studies also showed the differential impacts of CD90 on
differentiation of MSCs based on their different species
or tissue sources [38—40]. As one of the MSC markers,
CD90 is also expressed on ADSCs, but its expression
patterns and differential impacts on S-ADSCs and V-
ADSCs remain unclear. A recent study showed an im-
portant role of CD90 in AKT activation in human
cytomegalovirus-infected cells [41]. AKT activation is
involved in the survival or proliferation of various cells
and can promote the proliferation of human and mice
ADSCs by upregulating cell cycle protein CyclinD1
[42-46]. However, it remains largely unknown whether
CD90 regulates ADSC potentials via AKT and whether
CD90 produces different impacts on S-ADSCs and V-
ADSC:s to influence adipose tissue and metabolic homeo-
stasis. In the present study, we demonstrated that CD90
had different expression profiles on S-ADSCs and V-
ADSCs, which differentially regulated proliferation and
mitotic clonal expansion of S-ADSCs and V-ADSCs
through modulating AKT activation, thereby producing
distinct impacts on WAT homeostasis and metabolism.
This study proposes CD90 as a critical target for regulat-
ing ADSCs, which has potential prospects in therapy for
obesity-associated metabolic disorders.

Methods

Animals

C57BL/6 male mice were provided by Vital River La-
boratory Animal Technology Co. Ltd. (Beijing, China).
All animal studies were approved by the Ethical Com-
mittee of Qilu Hospital of Shandong University, and all
experimental procedures were performed in accordance
with the institutional guidelines for animal care and
utilization.

Isolation and culture of ADSCs

S-ADSCs and V-ADSCs were isolated from inguinal
and epididymal WAT of C57BL/6 male mice at the age
of 10-12 weeks. Briefly, fat pads were digested with 2
mg/mL collagenase (Worthington, Lakewood, NJ) in
Krebs-Ringer Bicarbonate buffer at 37 °C for about 50
min. The SVF passed through a 100-pm filter was incu-
bated overnight in complete Dulbecco’s modified Ea-
gle’s medium (DMEM) containing 10% fetal bovine
serum (Invitrogen, Carlsbad, CA) and 5ng/mL basic
fibroblast growth factor (Peprotech, Rocky Hill, NJ).
After removal of non-adherent cells, the adherent cells
were cultured as ADSCs. The third to fifth passages
were used for the experiments.
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Assay for proliferation, mitotic clonal expansion, colony
formation, and cell cycle

The growth curve of ADSCs was examined using Cell
Counting Kit (CCK)-8 (Dojindo, Tokyo, Japan), and
optical density (OD) value was measured at 450 nm to
evaluate viability of the cells. For EdU incorporation
assay, ADSCs were cultured in 96-well plates at 37 °C,
5%CO, overnight, and then were incubated with EAU
(10 uM) for additional 6 h before harvest. EQU incorp-
oration was detected by Cell-Light EAU Apollo567
Cell Tracking Kit (RiboBio, Guangzhou, China) ac-
cording to the manufacturer’s instruction. Mitotic
clonal expansion was examined in ADSCs subjected to
16 h of adipogenic induction by EdU incorporation
assay. For colony formation assay, ADSCs were cul-
tured in 6-well plates at 37 °C, 5% CO, for 7 days, and
then were stained with crystal violet for colony count-
ing after fixed with 100% methanol. For cell cycle
assay, ADSCs were fixed with ice-cold 70% ethanol at
4°C overnight and then incubated with propidium
iodide (PI) at 4 °C for 30 min. The cells were acquired
and analyzed with Cytomics FC500 (Beckman Coulter,
Pasadena, CA). In some experiments, S-ADSCs were
transfected with CD90 siRNA (siCD90, Sigma-Aldrich,
San Francisco, CA) using Jet-PRIME (Polyplus,
Berkeley, CA) and then used for the above assays. The
sequences of siCD90 were listed (Additional file 1:
Table S1).

Adipogenic differentiation

ADSCs were cultured to over confluence and further in-
duced using adipogenic differentiation medium (Cyagen
Biosciences, Guangzhou, China) according to the manu-
facturer’s instruction. The adipogenic differentiation was
evaluated by Oil Red O staining (Sigma-Aldrich) after
18 days of induction, and OD value was measured at
500 nm after eluting Oil Red O with 100% isopropanol.
In some experiments, S-ADSCs infected with shRNA
CD90 (shCD90) or control shRNA (shControl) recom-
binant lentivirus (GenePharma, shanghai, China) were
subjected to adipogenic induction. The sequences of
shCD90 were listed (Additional file 1: Table S1).

Flow cytometry

ADSCs were incubated with Fc block and then stained
with fluorescein isothiocyanate (FITC)-labeled antibody
(Ab) against mouse CD90 (clone: 30-H12), phycoeryth-
rin (PE)-labeled Ab against mouse CD105 (clone: MU7/
18), and PE-cyanine5 (PE-cy5)-labeled Ab against mouse
CD44 (clone: IM7) (eBioscience, San Diego, CA). The
cells were acquired using CytoFLEX S, and data were
analyzed by CytExpert (Beckman Coulter).
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In vivo lentiviral infection

Male mice at the age of 8 weeks were anesthetized, and
the bilateral inguinal fat pads were exposed and injected
with shCD90 or shControl lentivirus (Genechem, Shang-
hai, China) (Additional file 1: Table S1). The mice were
maintained under standard conditions after surgery, and
glucose tolerance test (GTT) was conducted 3 weeks
later. Briefly, mice were fasted overnight and blood glu-
cose levels were determined at different time points after
intraperitoneal injection of glucose (2 g/kg body weight,
Sigma-Aldrich). Four weeks later, inguinal adipose tissue
was collected from the mice. The average sizes of adipo-
cytes were measured in adipose tissue section after
hematoxylin and eosin (H&E) staining using Image-Pro
Plus 6.0. ADSCs isolated from inguinal adipose tissue
were examined for CD90 expression and proliferative
potential.

Database analysis

CD90 expression and its correlation with CyclinDI1 and
Leptin were analyzed in mice and human adipose tissue
using GEO databases. The following databases were
included in the study: (1) gene expression profiles of
inguinal and axillary SAT, and epididymal and mesen-
teric VAT from age-matched C57BL/6 male mice fed on
normal diet (GSE53307); (2) gene expression profiles of
epididymal and mesenteric VAT from C57BL/6 mice fed
on normal or high-fat diet for 2, 4, 8, 20, and 24 weeks
(GSE39549); (3) gene expression of epididymal VAT
including adipocyte and stromal vascular cell (SVC)
fractions from male C57BL/6 mice fed on normal or
high-fat diet for 0, 3, and 7 days (GSE65557); (4) gene
expression of abdominal SAT from subjects (body mass
index, BMI, 16.7-50.2) with normal or impaired glucose
tolerance, or type 2 diabetes (GSE27951); (5) gene
expression of SAT and omental VAT from BMI-
matched, morbidly obese patients who were insulin sen-
sitive or resistant (GSE15773); and (6) gene expression
of SAT and omental VAT from BMI-matched, obese
patients who were insulin sensitive or resistant

(GSE20950).

Plasmid transfection and immunofluorescence

Plasmids carrying genes encoding human active pleck-
strin homology (PH) domain of AKT (pcDNA3-AKT-
PH-GFP) or mutant AKT-PH domain (pcDNA3-AKT-
PH"**“_GFP) were kindly provided by Dr. Craig Montell
from Johns Hopkins University via addgene (Cambridge,
MA) [47]. Plasmids pENTER (Mock) and pENTER-
THY1(CD90)-Flag were purchased from ViGene BioS-
cieneces (Jinan, China). HEK-293T cells planted in 24-
well chamber slides were co-transfected with pcDNA3-
AKT-PH-GFP (or pcDNA3-AKT-PH***“-GFP) and
pENTER-CD90-Flag (or Mock) for 24 h. After fixed in
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4% paraformaldehyde for 30 min and blocked with 5%
bovine serum albumin (BSA) for 1 h, the cells were incu-
bated with anti-Flag (DDDDK) Ab (MBL, Woburn, MA)
at 4°C overnight, followed by incubation with Alexa
Fluor 594-conjucted secondary Ab (Proteintech Group,
Chicago, IL) at 37°C for 1h. The nuclei were stained
with 4,6-diamidino-2-phenylindole (Beyotime Biotech-
nology, Shanghai, China). Fluorescent signals were ana-
lyzed with laser scanning confocal microscope (Zeiss,
Jena, Germany).

Quantitative PCR

Total RNA was extracted from cells or tissues using
RNAfast200 (Fastagen, Shanghai, China) or Trizol
(TIANGEN BIOTECH, Beijing, China), and reversely
transcripted into cDNA with ReverTra Ace qPCR RT
Kit (TOYOBO Life Science, Shanghai, China). gPCR was
carried out using SYBR Green Master Mix (CWhbiotech,
Beijing, China). The relative mRNA levels of interested
genes were evaluated using 27°°“" method, using 18s
rRNA or GAPDH as internal control. The primers were
listed (Additional file 1: Table S2).

Western blot

Equal amounts of proteins from cell or tissue lysates
were loaded on SDS-PAGE gels. After electrophoresis,
proteins were transferred to PVDF membranes. After
blocked with 5% BSA for 3 h, the membranes were blot-
ted with Abs against mouse AKT, phosphor (p)-AKT,
CyclinD1 (Cell Signaling Technology, Beverly, MA),
CD90 (Biolegend, San Diego, CA), GAPDH, or Tubulin
(Proteintech Group) at 4 °C overnight, followed by incu-
bation with HRP-conjugated secondary Ab (ZSGB-BIO,
Beijing, China) for 1h. The signals were detected by
SuperSignal West Pico Chemiluminescent Substrate
(Pierce Biotechnology, Rockford, IL).

Statistical analysis

Data were expressed as mean + SEM. Statistical differ-
ences were evaluated using Student’s t test, one- or
two-way ANOVA, or non-parametric test, respect-
ively. P<0.05 was considered significant.

Results

S-ADSCs show higher potential in proliferation than V-
ADSCs through promoting AKT activation

The proliferation of S-ADSCs and V-ADSCs was ex-
amined by EdU incorporation assay. Compared with
V-ADSCs, S-ADSCs showed significant increase in
EdU-positive cells (red in nuclear indicates cells in S
phase), suggesting that S-ADSCs proliferate more rap-
idly than V-ADSCs (Fig. 1a, b). Accordingly, S-ADSCs
formed more clones than V-ADSCs in colony forma-
tion assay (Fig. 1c, d). Cell cycle profiles showed that
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Fig. 1 S-ADSCs show higher potential in proliferation than V-ADSCs through promoting AKT activation. S-ADSCs and V-ADSCs from inguinal and
epididymal adipose tissue of the mice (n = 10) were used in the following experiments. a, b Cell proliferation was determined by EdU
incorporation assay. Fluorescence signals were examined by fluorescence microscope, and growth index (number of EdU-positive nuclei/number
of all nuclei) was calculated. Representative (a) and statistic (b) data are shown. Scale bar 100 um. ¢, d Colony formation was measured by crystal
violet staining. Representative (c) and statistic (d) data are shown. Scale bar 8.5 mm. e, f Cell cycle profiles were analyzed by flow cytometry after
PI staining. Representative (e) and statistic (f) data are shown. g The expression of stemness genes was measured by gPCR. h, i Protein levels of
p-AKT, AKT, and CyclinD1 were detected on S-ADSCs and V-ADSCs in the absence (h) or presence (i) of MK2206 (2 uM) for 20 h by western blot.
Data are presented as mean + SEM. n = 3-5 per group. *P < 0.05, **P < 0.01, ***P < 0.001
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S-ADSCs had a marked decrease in G1 phase but in- phosphorylation compared with V-ADSCs, together
crease in S phase compared to V-ADSCs (Fig. le, f). with CyclinD1 upregulation that drives G1-S phase
The expression levels of stemness genes Nanog, Oct4, transition (Fig. 1h). While in the presence of AKT in-
and Sox2 were markedly upregulated in S-ADSCs hibitor MK2206, the upregulation of CyclinD1 in S-
compared with those in V-ADSCs (Fig. 1g). Import- ADSCs was obviously impaired after blockade of AKT
antly, S-ADSCs showed significant increase in AKT  phosphorylation (Fig. 1i). These data suggest that
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AKT activation may contribute to effective prolifera-
tion of S-ADSCs through driving GI1-S phase
transition.

S-ADSCs show higher potential in adipogenic
differentiation than V-ADSCs through promoting mitotic
clonal expansion

Considering the differences in proliferation and stem-
ness between S-ADSCs and V-ADSCs, the adipogenic
differentiation between S-ADSCs and V-ADSCs was fur-
ther compared. After 18 days of adipogenic induction, S-
ADSCs were fully differentiated into adipocytes with
numerous lipid droplets, while V-ADSCs showed poor
ability to differentiate into adipocytes, with only a few
lipid droplets in them. These observations were further
confirmed by quantification of lipid contents (Fig. 2a, b).
Correspondingly, the mRNA levels of white adipocyte
markers PPAR-y, C/EBPa, aP2, and Adiponectin were
dramatically increased in S-ADSCs after 4, 8, or 12 days
of adipogenic induction, which were significantly higher
than those in differentiating V-ADSCs (Fig. 2c). These
data indicate that S-ADSCs have higher adipogenic po-
tential than V-ADSCs.

Since the initial events determining adipogenic effi-
ciency are cell cycle reentry and mitotic clonal expan-
sion, we further compared the mitotic clonal expansion
between S-ADSCs and V-ADSCs in the early stage of
adipogenic differentiation. Both S-ADSCs and V-ADSCs
showed obvious growth arrest before adipogenic induc-
tion. After 16 h of adipogenic induction, EdU-positive
cells were observed in both S-ADSCs and V-ADSCs.
Differently, S-ADSCs had a significant increase in EdU-
positive cells compared with V-ADSCs upon adipogenic
induction, suggesting that S-ADSCs had higher capacity
for S phase entry and mitotic clonal expansion than V-
ADSCs in response to adipogenic induction (Fig. 2d, e).

CD90 is highly expressed on S-ADSCs rather than V-
ADSCs

To clarify the possible reasons for differences in prolifer-
ation and mitotic clonal expansion between S-ADSCs
and V-ADSCs, we examined the expression profiles of
stem cell-related markers on ADSCs. As expected, both
S-ADSCs and V-ADSCs positively expressed CD90,
CD105, and CD44. Differently, S-ADSCs expressed
higher level (both percentage and intensity) of CD90
than V-ADSCs (Fig. 3a, b), while no obvious differences
were observed in CD105 expression between S-ADSCs
and V-ADSCs (Fig. 3¢, d); though there is a slight in-
crease in CD44 percentage on S-ADSCs compared with
V-ADSCs, both of them express high levels of CD44
(Fig. 3e, f). Consistently, high levels of CD90 mRNA and
protein in S-ADSCs rather than in V-ADSCs were con-
firmed by qPCR and western blot (Fig. 3g, h). These
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findings demonstrate that S-ADSCs and V-ADSCs have
different expression profiles of CD90, which may serve
as an important modulator of their distinct biological
behaviors.

CD90 silencing inhibits proliferation of S-ADSCs by
attenuating AKT activation

To explore the roles of CD90 in proliferation of S-
ADSCs, we knocked down the expression of CD90 in
S-ADSCs and found marked reductions in AKT phos-
phorylation and CyclinD1 expression (Fig. 4a, b).
Different from the rapid response on AKT phosphoryl-
ation in the control group, insulin failed to induce the
increase of AKT phosphorylation in CD90-silenced S-
ADSCs, confirming that CD90 exerts an indispensable
role in AKT activation in S-ADSCs (Additional file 1:
Figure S1). Accordingly, CD90 silencing caused signifi-
cant G1 phase arrest together with S phase inhibition
in S-ADSCs (Fig. 4c, d). Consequently, CD90-silenced
S-ADSCs showed obviously reduced proliferation as
suggested by decreases in growth curve and EdU-
positive cells (Fig. 4e—g). Consistently, significant de-
creases in the mRNA levels of Nanog, Oct4, and Sox2
were observed in CD90-silenced S-ADSCs (Fig. 4h).
These findings indicate that CD90 promotes ADSC
proliferation and stemness through activating AKT
pathway and driving CyclinD1-mediated G1-S phase
transition.

CD90 silencing inhibits mitotic clonal expansion of S-
ADSCs that influences adipocyte differentiation

Next, S-ADSCs were efficiently infected with GFP-
tagged shCD90 or shControl lentivirus (Additional file 1:
Figure S2). Compared with shControl, shCD90 led to a
marked reduction in CD90 expression in S-ADSCs
(Fig. 5a). Although adipogenic induction caused increase
of EdU-positive cells in both shControl- and shCD90-
treated S-ADSCs, there were much less EdU-positive
cells in shCD90-treated S-ADSCs than those in
shControl-treated S-ADSCs, indicating that CD90 silen-
cing obviously inhibits mitotic clonal expansion and cell
division of S-ADSCs during the early phase of adipo-
genic differentiation (Fig. 5b, c). Accordingly, after 18
days of adipogenic induction, shCD90-treated S-ADSCs
showed obvious reduction in lipid droplets compared
with shControl-treated S-ADSCs, which was verified by
quantification of lipid contents (Fig. 5d, e). Meanwhile,
shCD90 markedly inhibited the mRNA levels of white
adipocyte markers PPAR-y, C/EBPa, aP2, and Adiponec-
tin in differentiating S-ADSCs (Fig. 5f). These findings
suggest that CD90 promotes the mitotic clonal expan-
sion of S-ADSCs, thereby facilitating their adipogenic
differentiation.
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J

CD90 silencing causes glucose intolerance and adipocyte
hypertrophy in mice

To evaluate the influence of CD90 on WAT and systemic
metabolism, we knocked down CD90 in inguinal SAT of
the mice using recombinant lentivirus. After determining
the efficiencies of lentiviral infection and CD90 silencing
by shCD90 in S-ADSCs in vitro (Fig. 6a, b), the efficiency

of lentiviral infection was examined in vivo. The results
showed that GFP signals were clearly observed in inguinal
S-ADSCs from the mice 2 weeks after injection with lenti-
virus, which lasted until 4 weeks (Fig. 6¢). Compared with
control mice, shCD90-treated mice showed no significant
alterations in body weight and WAT weight till the end of
the experiment (Fig. 6d and Additional file 1: Figure S3).
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However, shCD90 treatment led to a significant glucose
intolerance in mice, as evidenced by difficulty in decreas-
ing glucose levels at 30, 45, and 60 min after glucose injec-
tion and elevation in area under the curve during GTT
(Fig. 6e, f). Importantly, shCD90-treated mice showed a
marked increase in adipocyte size in SAT compared with

shControl-treated mice (Fig. 6g, h). The mRNA level of
Leptin, which has been proved to be positively correlated
with adipocyte size [48], was also elevated in this fat depot
from shCD90-treated mice (Fig. 6i). As expected, S-
ADSCs from shCD90-treated mice, which had reduced
expression of CD90, showed significant decrease in
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proliferation compared with those from shControl-treated
mice (Fig. 6j—1). These data suggest that CD90 silencing in
SAT results in adipocyte hypertrophy and glucose
intolerance in mice through suppressing ADSC proliferation.

CD90 is positively correlated with CyclinD1 but negatively
with Leptin in mouse and human WAT

To further verify the effects of CD90 on WAT homeostasis,
we analyzed the mRNA level of CD90 in mouse and human
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Fig. 6 CD90 silencing causes glucose intolerance and adipocyte hypertrophy in mice. a, b S-ADSCs were infected with GFP-tagged shControl or
shCD90 lentivirus (Genechem). The infection efficiency was determined by GFP signals under fluorescence microscope (a). BF, bright field. Scale
bar =100 um. The mRNA level of CD90 was detected by gPCR (b). ¢ GFP-tagged shControl lentivirus was injected into bilateral inguinal fat pads
(7.0 10° TU per point, 3 points per fat pad) of male mice at the age of 8 weeks. After 2 or 4 weeks, ADSCs were isolated from inguinal SAT to
examine GFP signals under fluorescence microscope. Scale bar =50 um. NS, normal saline. d-1 Mice (n= 10 per group) at the age of 8 weeks
were injected with shCD90 (or shControl) lentivirus as mentioned above. The body weight (d) was recorded during 4 weeks of treatment. After 3
weeks of treatment, GTT was performed in mice with overnight fast; glucose levels (e) were determined at different time points after glucose
injection. Areas under the curve (f) for GTT are shown. The inguinal SAT section was stained with H&E (g), and the areas of adipocytes were
measured as pixies using Image-Pro Plus 6.0 (h). Scale bar =50 um. The mRNA level of Leptin in inguinal SAT was detected by gPCR (i). S-ADSCs
from inguinal SAT were examined for the mRNA level of CD90 by gPCR (j) and proliferation by EDU incorporation assay. Fluorescence signals (k)

*P<0.05, **P <0.01, **P <0.001

detected by fluorescence microscope and growth indices (1) as specified in Fig. 1 are shown. Scale bar =100 um. Bars represent mean + SEM.

WAT using GEO database. In mice fed on normal diet,
CD90 was highly expressed in inguinal SAT compared with
that in epididymal VAT, which was consistent with the ex-
pression profiles on S-ADSCs and V-ADSCs. CD90 expres-
sion was positively correlated to proliferation-related
CyclinD1 expression, but negatively correlated to adipocyte
hypertrophy-related Leptin expression in WAT (inguinal,
axillary SAT and epididymal, mesenteric VAT) from these
mice (Fig. 7a—c and Additional file 1: Figure S4A-C). A
highly positive correlation of CD90 with CyclinD1 but a
negative correlation with Leptin were also observed in epi-
didymal and mesenteric VAT from mice fed on normal or
high-fat diet for different time periods (Fig. 7d, e). Similarly,
the correlations of CD90 with CyclinD1 or Leptin were
found in epididymal VAT (adipocytes and SVCs) from
mice fed on short term of normal or high-fat diet (Fig. 7f, g
and Additional file 1: Figure S4D, E). It should be noted
that CD90 is highly expressed on SVCs that contained
amounts of ADSCs, rather than on adipocytes (Fig. 7h).
CD90 on SVCs but not on adipocytes had a positive correl-
ation with CyclinD1 (Fig. 7i, j), indicating the predominant
expression of CD90 on ADSCs is the primary contributor
to CyclinD1 regulation and WAT homeostasis.

In human subjects with normal or impaired glucose
tolerance, or type 2 diabetes, CD90 expression in ab-
dominal SAT was positively correlated with CyclinDI
expression, as well as the BMI of the subjects (Fig. 7Kk, 1).
The positive correlation of CD90 with CyclinDI was also
found in WAT (SAT and omental VAT) from obese pa-
tients with insulin sensitivity or resistance (Fig. 7m). In
particular, results from obese patients who were insulin
sensitive or resistant showed that CD90 was highly
expressed in SAT compared with that in omental VAT,
which was positively correlated to CyclinD1 expression
(Fig. 7n, o and Additional file 1: Figure S4F). Especially
in insulin-resistant obese patients, CD90 expression had
a tightly negative correlation with Leptin expression in
VAT (Fig. 7p). These observations from human WAT
further confirmed the positive regulation of CD90 on
CyclinD1 and WAT homeostasis.

CD90 recruits AKT-PH domain to plasma membrane to
promote AKT activation

The initial activation of AKT requires binding lipid mes-
sengers on plasma membrane with its active PH domain
[47, 49, 50]. To clarify how CD90 regulated AKT activa-
tion, HEK-293T cells were co-transfected with pcDNA3-
AKT-PH-GFP (or pcDNA3-AKT-PH***“-GFP) and
pENTER-CD90-Flag (or Mock), and the translocation of
AKT-PH domain was detected. As shown in Fig. 8a,
AKT-PH®**“-GFP was retained inside the cells and had
no translocation to plasma membrane in either the pres-
ence or the absence of exogenous CD90-Flag, indicating
that mutant AKT-PH"**“ domain loses the ability to bind
to plasma membrane. A small amount of AKT-PH-GFP
had a translocation to plasma membrane in the absence of
exogenous CD90-Flag, indicating the basal level of en-
dogenous CD90 may recruit AKT-PH domain in HEK-
293T cells. Importantly, enhanced expression of CD90-
Flag caused an obvious accumulation of AKT-PH-GFP in
a raft-like structure, which had an apparent colocalization
with CD90-Flag on plasma membrane, while AKT-PH-
GFP inside the cells was accordingly reduced. Consistent
with these observations, the overexpression of CD90 in
ADSCs caused significant increases in AKT phosphoryl-
ation and CyclinD1 expression, which were obviously
inhibited by MK2206 (Additional file 1: Figure S5). Thus,
the overexpression of CD90 caused an obvious transloca-
tion of AKT-PH domain to plasma membrane, suggesting
that CD90 promotes AKT activation by recruiting its PH
domain to plasma membrane.

Discussion

ADSCs play important roles in maintaining WAT
homeostasis. The differences between S-ADSCs and V-
ADSCs may influence the balance of hyperplasia and
hypertrophy of adipocytes, which contributes to different
metabolic profiles between SAT and VAT. In this study,
we showed that S-ADSCs had higher proliferative poten-
tial than V-ADSCs, supported by increased expression of
stemness genes Nanog, Oct4, and Sox2. Compared with
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Fig. 7 CD90 is positively correlated with CyclinD1 but negatively with Leptin in mouse and human WAT. a—c The expression of CD90 (a) was
analyzed in inguinal SAT and epididymal VAT from mice fed on normal diet (GSE53307, n = 12); the correlations of CD90 expression with CyclinD1
(b) and Leptin (c) expression were analyzed in WAT (inguinal, axillary SAT and epididymal, mesenteric VAT). d, e The correlations of CD90
expression with CyclinD1 (d) and Leptin (e) expression were analyzed in epididymal and mesenteric VAT from mice fed on normal or high-fat diet
for 2,4, 8, 20, and 24 weeks (GSE39549, n = 40). f-j The correlations of CD90 expression with CyclinD1 (f) and Leptin (g) expression were analyzed

obese patients with insulin resistance. *P < 0.05, **P < 0.01, ***P < 0.001

in epididymal VAT (adipocyte and SVC fractions) from mice fed on short term of normal or high-fat diet (GSE65557, n = 18); the expression of
CD90 (h) and its correlations with CyclinD1 were analyzed on SVCs (i) and adipocytes (j). k, | The correlations of CD90 expression with CyclinD1
expression (k) and BMI (I) were analyzed in abdominal SAT from human subjects with normal or impaired glucose tolerance, or type 2 diabetes
(GSE27951, n=33). m The correlation of CD90 expression with CyclinD1 expression was analyzed in SAT and omental VAT from obese patients
who were insulin sensitive or resistant (GSE15773, n=19). n—p The expression of CD90 (n) and its correlation with CyclinD1 (o) were analyzed in
WAT (SAT and omental VAT) from obese patients (GSE20950, n = 39); the correlation of CD90 with Leptin (p) was analyzed in omental VAT from

V-ADSCs, S-ADSCs showed marked increases in AKT
activation, CyclinD1 expression, and G1-S phase transi-
tion. Consistent with previous studies showing the crit-
ical role of AKT activation in promoting proliferation of
cancer cells and ADSCs [45, 46, 51], we demonstrated
that AKT activation in S-ADSCs may promote their pro-
liferation via S phase entry driven by CyclinD1, thereby
facilitating their self-renewal in SAT. Although there is
still controversy over adipogenesis of SAT and VAT
[18-20], our findings showed that S-ADSCs had higher
efficiency in adipogenesis than V-ADSCs, indicating that
S-ADSCs are more prone to adipocyte hyperplasia than
V-ADSCs. Several recent studies showed that adipocyte
differentiation was influenced by regulating mitotic
clonal expansion, substantiating the indispensability of
mitotic clonal expansion in adipogenesis [12, 26-28, 52,
53]. Our study provided evidences that S-ADSCs pos-
sessed high potential in mitotic clonal expansion, which
may vest them with high capacity for adipogenic differ-
entiation. Thus, S-ADSCs may exert important roles in
maintaining WAT homeostasis due to their high poten-
tial of adipocyte hyperplasia.

Previous studies have reported that CD90 promoted
the proliferation of hepatocellular carcinoma cells and
hematopoietic stem cells, but inhibited the prolifera-
tion of ovarian cancer cells and nasopharyngeal car-
cinoma cells, or even displayed opposite effects on
the proliferation of fibroblasts from different tissues
[31, 33, 35, 36, 54—56]. Our study showed that CD90
was highly expressed on S-ADSCs but moderately on
V-ADSCs. CD90 on S-ADSCs is essential for AKT ac-
tivation and CyclinD1 upregulation, which may pro-
mote the proliferation and stemness of S-ADSCs via
G1-S phase transition, and promote the mitotic clonal
expansion of S-ADSCs and their terminal adipogenic
differentiation. CD90 has been identified as a cancer
stem cell marker involved in tumorigenicity in several
types of cancers such as hepatocellular carcinoma
[57-59]. By contrast, our findings revealed that CD90
on ADSCs served as an AKT activator to promote
ADSC potentials and functions, suggesting CD90 may

play beneficial or undesirable effects depending on its
expression on different tissues or cells.

The potential link between CD90 engagement and ac-
tivation of PI3K/AKT pathway was reported in human
cytomegalovirus-infected cells, whereas the underlying
mechanisms remain to be clarified [41]. The initiation of
AKT activation requires binding to lipid messengers
PtdIns(4,5)P2/PtdIns(3,4,5)P3 on plasma membrane
through its active PH domain, which enables subsequent
AKT phosphorylation [47, 49, 50, 60]. Our study showed
the direct contribution of CD90 to AKT activation, as
suggested by the translocation of AKT-PH domain from
cytosol to plasma membrane caused by CD90 overex-
pression. Lipid rafts act as dynamic microdomains on
plasma membrane and function in various membrane
signaling pathways [61, 62]. Several studies have re-
ported the critical roles of membrane raft microdomains
in AKT activation [63-66]. As a GPI-anchored protein,
CD90 has been verified to be incorporated into lipid raft
and involved in signal transduction in various cells [62,
67, 68]. We showed that both exogenous AKT-PH do-
main and CD90 were exactly colocalized in a membrane
raft-like structure, indicating that CD90 may act as an
important trigger of membrane raft to promote the re-
cruitment and translocation of AKT via PH domain, fi-
nally driving AKT phosphorylation and activation.

Based on its critical roles in ADSC proliferation and
mitotic clonal expansion, CD90 exerts pivotal function
in vivo in maintaining homeostasis of WAT and sys-
temic metabolism. CD90 silencing in inguinal SAT led
to significant glucose intolerance in mice, though no sig-
nificant alterations were observed in body weight and
WAT weight. The metabolic change could be attributed
to attenuations in ADSC self-renewal and adipocyte
hyperplasia under physiological conditions, which even-
tually resulted in pathological adipocyte hypertrophy and
consequent metabolic disorders. On some degree, this
metabolic change can partially support a previous study
showing increases in body weight and serum resistin
level in CD90-null mice fed on high-fat diet [69]. How-
ever, different from the inhibitory effect of ectopic CD90
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on the adipogenesis of 3T3-L1 cells, which influenced
the whole process of adipogenic differentiation [69], we
revealed an unrecognized role of CD90 in promoting mi-
totic clonal expansion, which influenced the early phase
of adipogenic differentiation of ADSCs. Notably, al-
though CD90 on S-ADSCs contributed to their prolifer-
ation and mitotic clonal expansion, a gradual loss of
CD90 was observed during the process of adipogenic
differentiation, which was consistent with the change of
CD90 expression in differentiating 3T3-L1 cells [69, 70].
These data indicate that CD90 may play essential roles
in maintaining the stemness of ADSCs, which deter-
mines their capacities for self-renewal and initiation of

adipogenic differentiation in response to metabolic de-
mands. After mitotic clonal expansion, the decrease of
CD90 may drive the switch of ADSCs from proliferation
toward terminal differentiation. Depending on the differ-
ent expression levels, CD90 can differentially regulate
the proliferation of S-ADSCs and V-ADSCs via AKT/
CyclinD1 pathway, thus mediating distinct metabolic
profiles of SAT and VAT. These findings were further
supported by data from human and mouse WAT, as evi-
denced by the predominant expression of CD90 in SAT
rather than in VAT, and its positive correlation with
AKT downstream CyclinDI but negative correlation
with adipocyte hypertrophy-related Leptin. However, to
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validate the application potentials of CD90 in clinic, it is
still necessary to expand animal or human samples in fu-
ture investigations. It is also helpful to extend this study
to gender differences, as both male and female have fat
pads with different distributions and metabolic features.
Furthermore, there was an increase of exogenous CD90
after blockade of AKT activation (Additional file 1: Fig-
ure S5), indicating a possible feedback regulation of
CD90 by AKT signaling pathway in ADSCs or some in-
fluence of AKT signaling on the efficiencies of lentiviral
infection or gene expression, which need to be further
explored.

Conclusions

This study provides evidences that CD90 is highly
expressed on S-ADSCs rather than on V-ADSCs, which
promotes AKT activation, CyclinD1 upregulation, and
G1-S phase transition, thus empowering S-ADSCs with
high potentials in proliferation, mitotic clonal expansion,
and adipocyte differentiation. As consequence, high level
of CD90 on S-ADSCs may contribute to metabolic
homeostasis via preventing adipocyte hypertrophy in
SAT, while VAT is prone to mediate metabolic disorder
due to a reduction of CD90 on V-ADSCs (Fig. 8b).
Therefore, CD90 acts not only as a valuable biomarker
for evaluating ADSC potentials or monitoring metabolic
status of WAT, but also as a potential target for treating
obesity-associated metabolic disorders. It should be
noted that more evidences are still required to elaborate
the detailed functions of CD90 in ADSCs, WAT, and
metabolism as well as the underlying mechanisms.
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