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BRCA2 suppresses replication stress-induced
mitotic and G1 abnormalities through homologous
recombination
Weiran Feng 1,2 & Maria Jasin1,2

Mutations in the tumor suppressor BRCA2 predominantly predispose to breast cancer.

Paradoxically, while loss of BRCA2 promotes tumor formation, it also causes cell lethality,

although how lethality is triggered is unclear. Here, we generate BRCA2 conditional non-

transformed human mammary epithelial cell lines using CRISPR-Cas9. Cells are inviable upon

BRCA2 loss, which leads to replication stress associated with under replication, causing

mitotic abnormalities, 53BP1 nuclear body formation in the ensuing G1 phase, and G1 arrest.

Unexpected from other systems, the role of BRCA2 in homologous recombination, but not in

stalled replication fork protection, is primarily associated with supporting human mammary

epithelial cell viability, and, moreover, preventing replication stress, a hallmark of pre-

cancerous lesions. Thus, we uncover a DNA under replication-53BP1 nuclear body formation-

G1 arrest axis as an unanticipated outcome of homologous recombination deficiency, which

triggers cell lethality and, we propose, serves as a barrier that must be overcome for tumor

formation.
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Monoallelic inheritance of a deleterious mutation in
the BRCA1 or BRCA2 tumor suppressor confers
susceptibility to breast and ovarian cancer1. Biallelic

mutations of BRCA2 are also linked to Fanconi anemia,
a syndrome characterized by developmental issues and tumor
predisposition2. BRCA2 suppresses genome instability, a hall-
mark of cancer, by playing a central role in two processes:
homologous recombination (HR) for the repair of DNA lesions
and protection of nascent strands at stalled replication forks from
degradation3.

HR is the best-characterized function of BRCA2, where it loads
the RAD51 recombinase onto single-stranded DNA (ssDNA),
which form a nucleoprotein filament to mediate homologous
strand exchange3. This process is responsible for repairing
DNA double-strand breaks (DSBs), which may include those
generated by replication fork breakdown4. Due to impaired HR,
BRCA2-deficient cells are hypersensitive to agents that cause
DSBs, such as cross-linking agents and poly (ADP-ribose)
polymerase (PARP) inhibitors. These sensitivities are being
exploited in therapeutic approaches. Replication fork protection
prevents degradation of nascent DNA strands at stalled
replication forks by the MRE11 nuclease and requires BRCA1
and other Fanconi anemia proteins, as well as BRCA25–7.
Recently, MRE11 recruitment to stalled replication forks has been
shown to be mediated by a number of proteins, including
PARP18, 9. HR and replication fork protection are functionally
separable processes, despite sharing a requirement of key
proteins5, 6, 8, 9.

Loss of the wild-type BRCA2 allele, indicative of functional
inactivation of BRCA2, is common in breast and ovarian cancers
arising in BRCA2 mutation carriers. Conditional knockout of
BRCA2 in mouse models also results in tumorigenesis10, 11.
However, rather than providing a growth advantage as in cancers,
BRCA2 deficiency causes inviability of mouse embryos and
normal mouse cells12–15, although it is not fully understood how
lethality is induced in the absence of BRCA2 in otherwise normal
cells and how tumor cells emerge and survive the crisis when
BRCA2 is lost, which may potentially impact therapeutic
approaches.

Recently, the role of BRCA2 in the protection of stalled
replication forks was reported to be sufficient to sustain viability
of mouse embryonic stem (ES) cells and to confer resistance of
tumor cells to crosslinking agents and PARP inhibitors even in
the absence of functional HR8, 9. However, although viable, these
ES cells grow poorly, and fork protection alone is not capable of
supporting embryo development8, suggesting that HR is essential
in some contexts. How the two pathways functionally interact to
ensure genome integrity and cell viability in adult tissues, such as
normal mammary cells to prevent breast cancer initiation
remains elusive.

To dissect the mechanisms by which relatively normal, non-
cancerous mammary cells respond to BRCA2 deficiency, we
developed conditional cell lines to examine the acute response to
BRCA2 loss. We demonstrate that BRCA2 deficiency triggers
replication stress that is transmitted to the next cell cycle through
DNA under replication, which causes chromosome missegrega-
tion, forming 53BP1 nuclear bodies at G1. p53-dependent G1
arrest and senescence are activated, ultimately leading to cell
inviability. Moreover, using multiple separation-of-function
approaches, we show that HR, but not protection of stalled
replication forks, is primarily responsible for suppressing repli-
cation stress and supporting cell viability. Thus, our work reveals
G1 abnormalities as an unanticipated mechanism to trigger cell
lethality upon BRCA2 deficiency. We propose HR as the major
pathway to guard against replication stress, a hallmark of pre-
cancerous lesions.

Results
BRCA2 is essential for human mammary MCF10A cell viability.
To better understand BRCA2’s role in a tumor-relevant cell type,
we generated a BRCA2 conditional system in MCF10A cells, a
non-transformed human mammary epithelial cell line with a
relatively stable genome16. Through CRISPR-Cas9-mediated gene
targeting, we knocked in loxP sites to flank exons 3 and 4 of one
BRCA2 allele, and knocked out the other allele by targeting a
selectable marker immediately downstream of the start codon
(Fig. 1a, Supplementary Fig. 1a–d). Deletion of exons 3 and 4 is
expected to cause a frameshift mutation that generates a pre-
mature stop codon to prevent further protein translation.
Moreover, exons 3 and 4 encode residues that are essential for
PALB2 binding17, which is required for mouse embryonic stem
cell viability18. An exon 3 skipping mutation is associated with
familial breast cancer19, further supporting the notion that loss of
PALB2 binding disrupts BRCA2 function.

BRCA2 inactivation in these conditional cells was achieved by
infecting BRCA2fl/− cells with either adeno-Cre or a lentivirus
that expresses a self-deleting Cre20. We detected the expression of
a peptide smaller than full-length BRCA2 in the resulting
BRCA2ΔEx3-4/− cells as well as in control BRCA2ΔEx3-4/+ cells
(Fig. 1b). Transcript analysis indicated aberrant splicing that
presumably promotes translation from a downstream, in-frame
start codon (Supplementary Fig. 1e). PALB2 binding mediates
BRCA2 chromatin localization; indeed, the truncated ΔEx3-4
peptide was found to be deficient in chromatin binding
(Supplementary Fig. 1f, g). To test whether exon 3-4 deletion
affected viability of MCF10A cells, we performed clonogenic
survival assays after Cre expression. Unlike BRCA2ΔEx3-4/+ cells,
BRCA2ΔEx3-4/− cells did not form colonies (Fig. 1c), indicating
that intact BRCA2 is essential for the viability of these non-
transformed human mammary epithelial cells.

We also generated a second BRCA2 conditional system in
which BRCA2 is completely lost upon Cre expression by targeting
a floxed BRCA2 transgene (TrBRC5-Cter)21 transgene into the
safe-harbor AAVS1 locus. The endogenous BRCA2 alleles were
then knocked out by targeting selectable markers downstream of
the start codon to generate BRCA2−/−AAVS1fl cells (Fig. 1d,
Supplementary Fig. 2). The TrBRC5-Cter peptide restores some
BRCA2 function21, although it is expressed at low levels in the
BRCA2−/−AAVS1fl cells (Supplementary Fig. 2c) and so the cells
grow slowly. The requirement for BRCA2 was studied by
introducing a vector that expresses full-length, FLAG-tagged
BRCA2 (WT) or an empty vector (EV). Unlike the WT-
complemented cells, the EV-transfected BRCA2−/−AAVS1fl cells
were devoid of full-length BRCA2 (Fig. 1e). Only the WT-
complemented cells formed viable clones upon Cre expression
(Fig. 1f). Thus, the AAVS1 system recapitulated our observations
from the ΔEx3-4 system.

Consistent with cell inviability, BRCA2 deficiency led to an
acute proliferation defect within the first few passages after Cre
infection (Fig. 1g) associated with cellular senescence and
apoptosis (Fig. 1h, i). Because no viable BRCA2-deficient clones
were obtained from either system, unless otherwise noted, we
performed our analysis of BRCA2-deficient cells shortly after Cre
expression.

Fork protection is a minor survival and repair pathway. BRCA2
protects genome integrity through a well-established role in HR
and a more recently described HR-independent role in the pro-
tection of stalled replication forks5. To examine HR levels in the
BRCA2-deficient human mammary cells, we used the stably
integrated DR-GFP reporter that produces functional GFP only
when a DSB introduced into the reporter is repaired through
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HR22. As expected, the BRCA2-deficient cells showed a dramatic
reduction in HR repair of the DSB (~10-fold, Supplementary
Fig. 3a). One hallmark of HR deficiency is hypersensitivity
to cross-linking agents (e.g., cisplatin) and PARP inhibitors
(e.g., olaparib) and mild sensitivity to irradiation (IR). In line
with this view, treatment with either cisplatin or olaparib led to
substantially higher levels of unrepaired DNA damage in
BRCA2ΔEx3-4/− cells compared with BRCA2ΔEx3-4/+ cells, as
measured by the nuclear intensity of γH2AX (Supplementary
Fig. 3b, c). In addition, while both BRCA2 genotypes displayed
similar initial levels of IR-induced γH2AX, BRCA2ΔEx3-4/− cells
showed slower repair kinetics (Supplementary Fig. 3d). The
delayed repair was more pronounced in the S/G2 phases com-
pared with G1, which is consistent with the cell-cycle phase
preference for HR repair. Altogether, these results confirm that
these human mammary cells have a severe HR deficiency upon
BRCA2 deficiency.

We next performed DNA fiber assays to confirm that the
BRCA2-deficient cells show degradation of nascent DNA strands
at stalled replication forks that is dependent on MRE11 nuclease5.
We sequentially labeled the cells with a pulse of IdU (red),
followed by CldU (green), which is preferentially lost in the
absence of fork protection upon replication stress, in this case
from the fork stalling agent hydroxyurea (HU) (Fig. 2a). HU
treatment triggered a substantially lower relative CldU tract
length in BRCA2-deficient cells compared to control cells

expressing wild-type BRCA2, indicating nascent strand degrada-
tion (Fig. 2a). As expected, replication fork degradation was
dependent upon MRE11 nuclease (Fig. 2b, Supplementary
Fig. 4a). As a complementary approach, cells were treated with
a single IdU pulse (red) before HU treatment. Again, BRCA2-
deficient cells showed considerably shortened nascent strands
(IdU-labeled) after HU treatment (Supplementary Fig. 4b),
confirming that BRCA2 protects stalled forks. In addition to
depletion of MRE11 itself, PARP1 deficiency was recently shown
to rescue fork protection, as PARP1 mediates MRE11 chromatin
recruitment during replication stress, but not HR8, 9, which we
also observed (Fig. 2b, c, Supplementary Fig. 4c, d).

Restoration of nascent DNA strand stability at stalled forks was
shown recently to be sufficient to confer viability to Brca2 null
mouse ES cells and cisplatin resistance to BRCA2-deficient mouse
B cells and a human tumor cell line8, 9, 23. Surprisingly, PARP1
depletion failed to restore viability to the BRCA2-deficient
MCF10A cells (Fig. 2d). Moreover, PARP1 depletion failed to
suppress cisplatin-induced γH2AX formation (Fig. 2e).

As these results are contrary to those seen in other systems,
we also generated PARP1 knockouts in MCF10A cells using
CRISPR-Cas9. Although both PARP1 heterozygosity and com-
plete knockout restored fork protection, but not HR, to the
BRCA2-deficient cells, neither restored cell viability (Supplemen-
tary Fig. 5a–d). We also examined the effects of PARP inhibition
and MRE11 depletion, which were also previously shown5, 8, and
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Fig. 1 BRCA2 is essential for non-transformed human mammary MCF10A cell viability. a Schematic of the BRCA2 exon3-4-floxed conditional system in
MCF10A cells (filled triangle, loxP site; open circle, FRT site; Hyg, hygromycin-resistance gene). bWestern blot of BRCA2 exon3-4-floxed cell extracts with or
without Cre expression (asterisk, full-length BRCA2; arrowhead, ΔEx3-4 peptide). The BRCA2 antibody Ab-1 detects BRCA2 amino acids 1651–1821.
c BRCA2ΔEx3-4/− cells were plated for clonogenic survival. Representative plates are shown. d Schematic of the BRCA2−/−AAVS1fl conditional system
in MCF10A cells. Blast, Blasticidin-resistance gene. e Western blot showing BRCA2 expression in stably complemented BRCA2−/−AAVS1fl cells (WT, wild-
type BRCA2; EV, empty vector). f BRCA2−/−AAVS1Δ cells were plated for clonogenic survival. g BRCA2ΔEx3-4/− cells were serially passaged every 3 days.
Cell number was determined at the end of each passage and normalized to the number of BRCA2ΔEx3-4/+ cells at passage 0. h Cells were stained for
senescence-associated β-galactosidase (SA β-gal). Left: representative images; Right: comparison of the percent SA β-gal+ cells. i Cells were quantified for
apoptosis using Annexin V staining. Error bars in this figure represent one standard deviation from the mean (s.d.). n> 3. **p< 0.01; ****p< 0.0001
(unpaired two-tailed t-test)
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confirmed in our system, to prevent nascent strand degradation
(Fig. 2b, Supplementary Fig. 5e). Again, neither treatment
conferred a growth advantage to BRCA2-deficient cells (Supple-
mentary Fig. 5f, g). Thus, in contrast to previous observations in
mouse and tumor cells, our results suggest that fork protection is
not sufficient to support cell viability or repair crosslink-induced
DNA damage in these non-transformed human mammary
epithelial cells.

We next asked whether protection of nascent DNA strand at
stalled forks is necessary for cell survival and DNA repair. In
hamster cells, mutating BRCA2 S3291 (S3291A) specifically
abrogates replication fork protection without affecting HR5, thus
providing a separation of function mutation to distinguish the
two functions. In this study, we investigated the S3291E mutation,

which, like S3291A, also disrupts RAD51 binding to the
BRCA2 C terminus24. To this end, we expressed the BRCA2
S3291E (BRCA2 SE) mutant at physiological levels in both
BRCA2 conditional systems (BRCA2−/−AAVS1Δ, Fig. 2f;
BRCA2ΔEx3-4/−, Supplementary Fig. 6a).

As expected, BRCA2 SE-complemented cells in both systems
showed nascent strand degradation during HU treatment but
only a mild or moderate HR defect (Fig. 2g, h, Supplementary
Fig. 6b–d). Notably, BRCA2 SE-expressing cells were capable of
forming colonies (Fig. 2i, Supplementary Fig. 6e, f), demonstrat-
ing the ability of cells to proliferate in the absence of fork
protection. In the BRCA2−/−AAVS1Δ system, colony number was
fully restored by BRCA2 SE expression. In BRCA2ΔEx3-4/− cells,
colony number was also significantly restored with BRCA2 SE
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expression and colonies were as large as those with BRCA2 WT.
Nonetheless, plating efficiency of these cells was still reduced
relative to WT-complemented cells, which may be related to the
lack of full restoration of HR (see below), possibly due to slightly
lower expression of BRCA2 SE, when compared either to BRCA2
WT in BRCA2ΔEx3-4/− cells or to BRCA2 SE in BRCA2
−/−AAVS1Δ cells (Supplementary Fig. 6a, g), although inter-
ference from the BRCA2ΔEx3-4 peptide cannot be ruled out.
Furthermore, BRCA2 SE substantially suppressed cisplatin-
induced DNA damage formation in both systems, with only a
marginal defect compared to BRCA2 WT (Fig. 2j, Supplementary
Fig. 6h). Thus, protection of stalled replication forks is
dispensable for cell survival and only plays a minor role in
repairing cisplatin-induced DNA damage.

BRCA2 ablation causes spontaneous DNA damage and G1
arrest. To gain more insight into how cell lethality is triggered in
these non-transformed, human mammary epithelial cells, we
analyzed the consequences of BRCA2 deficiency at the cellular
level. As expected, γH2AX staining under unchallenged

conditions revealed a higher level of spontaneous DNA damage
in BRCA2ΔEx3-4/− cells (Fig. 3a, Supplementary Fig. 3b, c). DNA
damage activates checkpoints to pause cell cycle progression until
DNA repair is complete25. Given its roles in replication fork
protection and DNA repair during the S and G2 phases, BRCA2-
deficient cells would be expected to be arrested in these cell cycle
phases13. Surprisingly, however, cell cycle analysis demonstrated
that BRCA2ΔEx3-4/− cells were enriched in G1 instead (Fig. 3b,
Supplementary Fig. 7).

To test whether p53 is responsible for G1 arrest and inviability
of BRCA2-deficient cells, we generated p53 knock out cells
in the BRCA2fl/− background using CRISPR-Cas9 (Fig. 3c).
BRCA2ΔEx3-4/− cells exhibited an increase in p53 levels and
p53-dependent p21 induction compared to BRCA2ΔEx3-4/+ cells
(Fig. 3d), indicating p53 pathway activation. Importantly, the
BRCA2ΔEx3-4/− G1 cell population was diminished upon p53 loss
(Fig. 3e, Supplementary Fig. 7). p53 loss also abrogated cellular
senescence induced by BRCA2 deficiency (Fig. 3f), in agreement
with a previous study using mouse cells26. Remarkably,
PCR-validated BRCA2ΔEx3-4/− colonies were formed only in the
absence of p53 (Fig. 3g, Supplementary Fig. 8). These colonies
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were smaller and fewer compared to the BRCA2ΔEx3-4/+ control
and grew very slowly upon expansion, indicating only a partial
rescue of cell viability by p53 loss. Interestingly, the high
apoptotic fraction of BRCA2ΔEx3-4/− cells was not affected by
p53 loss (Fig. 3h), thus explaining the partial rescue. Collectively,
our results suggest that p53 pathway activation, likely in response
to spontaneous DNA damage, leads to G1 arrest and cellular
senescence and contributes to cell lethality upon BRCA2 deficiency.

BRCA2 suppresses G1 53BP1 nuclear body formation. To
investigate why BRCA2 deficiency caused G1 cell cycle arrest, we
first sought to determine the cell cycle stage at which spontaneous
DNA damage arose. γH2AX induction was associated with S and
G2 entry of the BRCA2-deficient cells after release from arrest and
was also enriched within the S/G2 population specifically marked
by cyclin A (Fig. 4a, Supplementary Fig. 9), indicating that spon-
taneous DNA damage primarily originates in these cell cycle phases.

53BP1 nuclear bodies mark DNA lesions in G1 as a
consequence of replication stress in the previous cell cycle27, 28.
We hypothesized that the G1 arrest arising from BRCA2
deficiency may be associated with 53BP1 nuclear body formation
arising from lesions generated in the previous S/G2 phases.
Indeed, spontaneously arising 53BP1 nuclear bodies were
dramatically induced in number in G1 phase BRCA2ΔEx3-4/− cells
(i.e., cyclin A–cells, Fig. 4b). The majority of G1 BRCA2ΔEx3-4/−

cells had 53BP1 nuclear bodies, with ~20% showing three or
more, whereas 53BP1 nuclear bodies were rare in control G1 cells.

We next determined the impact of replication stress on
BRCA2-deficient cells. While HU treatment greatly increased the
amount of damage, it did not have a specific impact on overall
DNA damage induction or recovery in BRCA2-deficient cells

during S phase (Fig. 4c). By contrast, however, HU treatment led
to a remarkable induction of 53BP1 nuclear body formation in
the next G1 phase, as revealed by high-content image cytometry
(Fig. 4d). Thus, in BRCA2-deficient cells, HU-generated replica-
tion stress does not induce a more profound DNA damage
response in S phase, but rather in the subsequent G1 phase.
Because 53BP1 interacts with p53 and 53BP1 nuclear bodies mark
DNA lesions and contain classical DNA damage signaling
proteins28–30, 53BP1 nuclear bodies can conceivably trigger the
aforementioned p53-dependent G1 arrest.

BRCA2 prevents under replication and mitotic abnormalities.
One possible reason for 53BP1 nuclear body formation is that it
serves as a response to replication stress that interferes with the
timely completion of replication: The resulting under-replicated
DNA forms unresolved structures, which cause aberrations dur-
ing mitosis and ultimately generate 53BP1 nuclear bodies in the
daughter cells31. To delineate the impact of BRCA2 inactivation
on these processes, we first analyzed DNA under replication using
mitotic DNA synthesis as a surrogate, a pathway activated during
early stages of mitosis as a compensatory attempt to finish
replication of unduplicated DNA32. Foci of DNA synthesis were
evident in a majority of M-phase BRCA2-deficient cells (> 70%)
and were substantially elevated in number, while they were rarely
present in control cells (Fig. 5a, b, Supplementary Fig. 10a).
Notably, mitotic DNA synthesis occurred almost exclusively at
sites marked by FANCD2 foci pairs (Fig. 5a), an indicator of
incompletely replicated DNA in the preceding S phase33, 34.
Overall, the total number of FANCD2 foci pairs was greatly
elevated with BRCA2 deficiency, and a substantial fraction of
these were sites of DNA synthesis (Fig. 5c, d). These results imply
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that BRCA2 suppresses DNA under replication. Moreover, that
BRCA2-deficient cells also exhibited a concomitant elevation in
the number of FANCD2 foci pairs in which DNA synthesis did
not occur (Fig. 5a, c) suggests that incompletely replicated DNA
may not be fully duplicated during early mitosis and is, therefore,
likely carried over to later mitotic stages.

Unresolved DNA structures such as persistent under-replicated
DNA can cause chromosome non-disjunction manifested as ultra-
fine bridges (UFBs), a DNA linkage that stains negative for
conventional DNA dyes (e.g., DAPI) but can be visualized by
staining with bound proteins such as PICH35, 36. These DNA
linkages can in turn cause chromosome missegregation, forming
DAPI+ anaphase bridges and lagging chromosomes, ultimately
generating micronuclei33, 34, 37, 38. Consistent with this, UFBs,
anaphase bridges, and lagging chromosomes were all significantly
more common in the BRCA2-deficient cells (Fig. 5e, f, Supplemen-
tary Fig. 10b). Importantly, these anaphase structures were
associated with FANCD2 foci in most cases (Fig. 5e, f,
Supplementary Fig. 10b), suggesting that they form as a consequence
of DNA under replication. To test this hypothesis, cells were allowed

more time to finish replication before entering mitosis by treatment
with the CDK1 inhibitor RO-3306, which arrests cells at G2/M
phase39. As expected, FANCD2 foci pairs in early mitotic BRCA2-
deficient cells were diminished to control levels upon release from
RO-3306 treatment (Fig. 5d). Moreover, formation of both anaphase
DAPI bridges and lagging chromosomes in these cells were also
abrogated (Fig. 5g, h). BRCA2 deficiency also led to a concomitant
increase of micronuclei (Supplementary Fig. 10c). These results
strongly suggest that DNA under replication leads to mitotic
abnormalities upon BRCA2 deficiency.

Next, we examined if DNA under replication is also the cause
of the observed 53BP1 nuclear bodies, using a pulse of EdU to
mark S-phase cells before RO-3306 treatment (Fig. 5i). 53BP1
nuclear body formation in EdU+ BRCA2ΔEx3-4/− cells was
diminished to control levels upon release into the next G1 phase.
Similarly, nocodazole, which leads to a prolonged prometaphase
during which the compensatory mitotic DNA synthesis occurs32,
also abolished the subsequent 53BP1 nuclear body formation
(Fig. 5j). Taken together, our data strongly suggest that
BRCA2 suppresses DNA under replication, which, if
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unrestrained, causes mitotic abnormalities that lead to 53BP1
nuclear body formation in the subsequent G1 phase.

Replication stress suppression primarily associates with HR.
We asked whether fork protection or HR has a more critical
role in suppressing replication stress. BRCA2−/−AAVS1Δ cells
expressing the BRCA2 SE protein, which is specifically impaired
in fork protection, had similarly low levels of mitotic DNA
synthesis as cells expressing BRCA2 WT (Fig. 6a). BRCA2 SE
complemented cell lines also showed few spontaneous and
HU-induced G1 53BP1 nuclear bodies, similar to BRCA2
WT cells (Fig. 6b–e). By contrast, BRCA2ΔEx3-4/− cells in which
replication fork protection, but not HR, is restored through
MRE11- or PARP1-deficiency showed high levels of HU-induced
G1 53BP1 nuclear bodies (Fig. 6f, g). Altogether, these results
imply that protection of stalled replication forks does not play a
major role in suppressing DNA under replication and replication
stress, as marked by G1 53BP1 nuclear bodies.

Thus far, our results show a correlation between HR
proficiency, suppression of DNA under replication/53BP1
nuclear body formation, and cell viability: BRCA2 SE-
expressing cells are at least partially competent in all aspects,
whereas cells with combined BRCA2 and PARP1 deficiency are
impaired in all aspects. Furthermore, a cross comparison of the
effects of BRCA2 SE expression in the two conditional systems
also reveals a correlation between HR activity and cell viability,
as BRCA2 SE expression in BRCA2−/−AAVS1Δ cells more
completely restored both compared to in BRCA2ΔEx3-4/− cells

(compare Supplementary Fig. 6d with Fig. 2h and Supplementary
Fig. 6e, f with Fig. 2i).

To further investigate the importance of HR, we transiently
depleted RAD51 (Fig. 7a, Supplementary Fig. 11a), the key strand
exchange protein, which acts immediately downstream of BRCA2
in HR3. Cells showed a dramatic reduction in HR when RAD51
was depleted (Fig. 7b, Supplementary Fig. 11b), as expected.
RAD51 depletion also causes a profound defect in repairing
cisplatin-induced DNA damage, another hallmark of HR
deficiency, to a similar extent as BRCA2-deficient cells (Supple-
mentary Fig. 12a). However, protection of stalled replication forks
was not adversely affected by RAD51 depletion (Fig. 7c,
Supplementary Fig. 11c), consistent with recent observations40

(further examined below).
Based on these results, RAD51 depletion allowed us to

investigate the consequences of disrupted HR independently of
fork protection defects. Remarkably, RAD51 depletion in WT-
complemented BRCA2ΔEx3-4/− cells substantially induced mitotic
DNA synthesis (Fig. 7d, Supplementary Fig. 12b). After HU
treatment, these cells also displayed markedly elevated levels of
G1 53BP1 nuclear bodies (Fig. 7e). Concomitantly, cell survival
was severely compromised in RAD51-depleted cells (Fig. 7f,
Supplementary Fig. 11d). Thus, RAD51 depletion, with the
consequent HR deficiency but adequate fork protection, is
sufficient to cause replication stress associated with cell lethality.
BRCA2 SE-complemented cells showed a small further decrease
in colony formation upon RAD51 depletion compared to BRCA2
WT-complemented cells, although no further reduction in HR
(Fig. 7e, f, Supplementary Fig. 11d), suggesting a compensatory
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role for fork protection in the absence of HR, although this
warrants further investigation.

While consistent with recent observations40, the above result
that RAD51 depletion does not cause nascent strand degradation
is surprising given our previous findings using other approaches
that have implicated RAD51 in fork protection5, 6. Interestingly,
RAD51 depletion in BRCA2ΔEx3-4/− cells led to a partial
restoration of fork protection (Supplementary Fig. 12c, d). Thus,
while being critical for fork protection, RAD51 is also involved in
a BRCA2-independent process that is upstream of nascent strand
degradation, such that the overall outcome of RAD51 depletion

does not affect replication fork stability. Importantly, RAD51 and
BRCA2 co-deficiency did not further elevate 53BP1 nuclear
bodies (Fig. 7g), indicating that RAD51 and BRCA2 function in
the same pathway, which rules out that this putative RAD51-
specific process plays a role in suppressing replication stress.

We also tested the possible involvement of fork restart. No
detectible defects in resuming replication at stalled forks were
observed in cells lacking RAD51, BRCA2, or both (Supplemen-
tary Fig. 12e), unlike a previous report using a tumor cell line with
different treatment protocols41. Overall, our results suggest that
HR is the primary pathway associated with the ability to suppress
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replication stress and support cell viability, while replication fork
protection plays a minor, possibly compensatory role when HR
activity is compromised.

BRCA2 suppresses single-stranded DNA lesions in G2.
To further explore the mechanisms by which BRCA2 prevents
DNA under replication, we tested the hypothesis that unrepaired
DNA damage in HR-deficient cells impedes timely replication
completion. Early mitotic BRCA2ΔEx3-4/− cells displayed a
dramatically increased level of γH2AX, with ~80% of cells con-
taining ≥8 γH2AX foci (Fig. 8a). Sites of under-replicated DNA,
marked by FANCD2 foci pairs, typically co-occurred with
these γH2AX foci, although not all γH2AX foci were marked
by FANCD2. Importantly, these early mitotic DNA damage
sites were diminished by delaying mitotic entry, implying that
pre-mitotic DNA damage impedes replication completion.

We, therefore, assayed for possible lesions prior to mitosis
in G2 phase. γH2AX foci were substantially induced in
BRCA2-deficient cells in G2 and, remarkably, ssDNA, as

indicated by RPA foci, was particularly enriched in these lesions
(Fig. 8b, c). The ssDNA lesions were prevalent, although not all
γH2AX-marked sites contained RPA foci (Fig. 8b). We
considered the possibility that replication fork degradation is
the cause of the observed ssDNA damage. However, BRCA2 SE
expression in BRCA2-deficent cells effectively suppressed these
G2 DNA lesions, despite impaired fork protection (Fig. 8d,
Supplementary Fig. 13a). Conversely, RAD51 depletion, with HR
but not fork protection deficiency, phenocopied BRCA2 defi-
ciency in inducing ssDNA damage in G2, which was not further
exacerbated by combined RAD51 and BRCA2 inactivation
(Fig. 8d). These results are consistent with the notion that
BRCA2 functions through RAD51-mediated HR to prevent DNA
damage accumulation in G2.

Next, we investigated the mechanisms by which G2 DNA
damage is generated. Replication fork reversal is considered to be
a general response to different types of replication stress42 and
reversed forks are susceptible to breakage43, 44. Indeed, depleting
the fork remodeling protein SMARCAL143, 45, 46 markedly
reduced both overall and RPA+ G2 γH2AX foci produced in
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BRCA2ΔEx3-4/− cells (Fig. 8e, Supplementary Fig. 13b). Thus,
although it remains to be directly tested whether BRCA2 loss
itself affects fork reversal, our observations raise the possibility
that fork reversal contributes to the formation of G2 lesions that
arise in BRCA2-deficient cells. Reversed forks are subject to direct
processing, a DNA2-specific function that is not shared by
MRE11 or EXO140. These four-way structures can also be cleaved
by structure-specific endonucleases to produce DSBs43, 44, which
can then undergo classical DNA end resection by nucleases,
including MRE11, EXO1, and DNA2. Given the residual RPA+
γH2AX foci from SMARCAL1-depleted cells, it is also possible
that lesions can arise independently of fork remodeling. To test
the involvement of the resection enzymes in ssDNA formation,
we transiently depleted DNA2 or EXO1 (Supplementary Fig. 13c, d)
or inhibited MRE11 by mirin. Disruption of each individual
resection enzyme in BRCA2-deficient cells led to a considerable
reduction of RPA foci without markedly affecting the overall
γH2AX level in G2 phase (Fig. 8f, g). Thus, although direct
processing of reversed forks may play some role, the contribution

of MRE11 and EXO1, in addition to DNA2, in producing ssDNA
is consistent with end resection of DNA breaks. Indeed,
we detected ATM pathway activation, manifested by foci of
phosphorylated ATM and CHK2 at the damage sites (Fig. 8h, i),
indicating break formation. Altogether, our results suggest that
fork reversal, DNA breakage, and hyper-resection contribute
substantially to the lesions that accumulate in G2 phase upon HR
deficiency and that these persistent intermediates compromise the
timely completion of replication.

Discussion
BRCA2 germline mutation predisposes to breast and ovarian can-
cer. Seemingly paradoxically, however, BRCA2 deficiency results in
inviability both during mouse embryo development and in mouse
cells themselves12–15. How the cell lethality is triggered in normal
cells and bypassed during tumor formation remains unclear. Here,
using a BRCA2 conditional system in a non-transformed human
mammary epithelial cell line, we show that BRCA2 deficiency
induces replication stress, resulting in ssDNA lesions in G2, failure
to complete DNA replication and concomitant 53BP1 nuclear body
formation in the subsequent G1 phase, to ultimately lead to p53-
dependent G1 arrest and cellular senescence. Importantly, sup-
pression of replication stress and support of cell viability mainly
associate with the HR function of BRCA2.

To dissect the mechanism by which BRCA2 functions to pre-
vent replication stress and support cell viability, we generated
multiple, complementary separation-of-function systems to dis-
tinguish the roles of HR and fork protection: HR was specifically
disrupted by RAD51 depletion in wild-type cells, while fork
protection was specifically impaired by BRCA2 SE expression or
restored by MRE11 or PARP1 deficiency in BRCA2-deficient
cells. Taken together, these systems demonstrate that protection
of stalled forks plays a minor role in suppressing replication stress
and promoting cell proliferation; rather, they support the con-
clusion that BRCA2 primarily functions through HR in these
processes (Fig. 9). We cannot formally exclude possible con-
tributions of some as yet unknown BRCA2-RAD51-mediated
process that is separable from strand invasion. However, thus far,
the various genetic systems tested, with the potentially con-
founding pathways excluded (i.e., fork protection and restart), are
consistent with a role of HR in preventing DNA under replication
and its aftermath. This model can explain the viability of mice
and humans whose cells show reasonable levels of HR but are
nonetheless deficient in fork protection, for example, those with
Fanconi anemia or Brca2 hypomorphic mutation5, 6, 47–49.

Our data provide mechanistic insight into how
BRCA2 suppresses replication stress and under replication. First,
BRCA2 serves to repair replication-associated DNA damage such
as DSBs through HR (Fig. 9), as it does in other contexts. Sup-
porting this, we observe that BRCA2 deficiency leads to sponta-
neous DNA damage originating in S/G2 phases that persists into
mitosis. In particular, at least a fraction of the G2 damage is
characterized as hyper-resected DNA arising from activities of
resection enzymes that are known to generate intermediates for
strand invasion during HR, although other resection-independent
mechanisms could also be involved, for example, ssDNA gap
formed behind the fork that has been seen upon RAD51
impairment42, 50. These lesions, if left unrepaired or inefficiently
repaired, can in turn impede completion of DNA replication. For
example, BRCA2 or RAD51 deficiency biases stalled fork-induced
recombination towards long-tract gene conversion51; more repair
synthesis than during canonical HR may delay the completion of
replication. Second, BRCA2 may facilitate DNA replication
completion in a DSB-independent manner. In particular, RAD51-
mediated fork reversal42, followed by BRCA2-promoted strand
invasion by RAD51, may allow lesion bypass without DNA

Inviability

53BP1 nuclear bodies in the
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Mitotic
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G2 DNA lesions with ssDNA
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Replication stress 
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*
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Fig. 9 Model for replication stress and its aftermath in the absence of
BRCA2. BRCA2 suppresses replication stress and DNA under replication in
non-transformed cells primarily through RAD51-mediated HR repair of
DNA damage. Protection of stalled replication forks from MRE11-mediated
degradation plays a minor role. Upon BRCA2 deficiency, single-stranded
DNA lesions accumulate in G2, generated, in part, by fork reversal (not
shown) and hyper-resection. Unrepaired DNA damage perturbs the timely
completion of DNA replication, leading to under replication. During early
mitosis, the compensatory mitotic DNA synthesis pathway is insufficient,
such that these unresolved DNA structures lead to anaphase abnormalities
and formation of 53BP1 nuclear bodies in the next G1 phase. G1 arrest and
cellular senescence mediated by p53 and p53-independent apoptosis are in
turn triggered to ultimately result in cell inviability
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breakage. Lastly, through its HR function, BRCA2 may addi-
tionally be involved in the following S phase to promote the
resolution of lesions marked by 53BP1 nuclear bodies.

The description of aberrant mitotic structures in BRCA2-
deficient cells is not entirely unprecedented but has often been
explained by mitotic-specific functions of BRCA252–55. While we
do not rule out the possibility of a mitotic-specific function of
BRCA2, the restoration of mitotic integrity in BRCA2-deficient
cells by a pre-mitotic treatment—delayed mitotic entry—strongly
suggests that the underlying lesions occur in the preceding cell
cycle phases (i.e., DNA under replication in S phase). Moreover,
the aberrant mitotic structures are associated with sites of DNA
under replication. Delaying mitotic entry, as well as prolonging
prometaphase, the stage when compensatory mitotic DNA
synthesis occurs, also rescues G1 abnormalities (i.e., 53BP1
nuclear body formation), further supporting the notion that lack
of replication completion causes mitotic and G1 abnormalities
upon BRCA2 deficiency.

At first glance, the finding of a minor role for fork protection,
specifically, protection of nascent strands, is surprising considering
its recently reported critical role in supporting viability of mouse
ES cells and conferring chemoresistance to tumor cells8, 9. We
envision diverse pathway choices to maintain genomic integrity
and/or support viability in different biological contexts. Given our
results that the p53 pathway impedes cell survival, the threshold to
survive BRCA2 loss, and HR loss more generally, may be lower in
mouse ES cells due to their compromised p53-mediated G1/S
checkpoint56; thus, even with HR deficiency, reducing DNA
damage by protecting stalled forks may be sufficient for cell sur-
vival8. However, fork protection is not sufficient to fully support
embryonic development of Brca2-deficent mice8 during which
differentiation and the accompanying restoration of G1/S check-
point function occur. Similarly, having survived the crisis of
BRCA2 loss by p53 mutation and/or other means, tumor cells may
be able to bypass the requirement for HR, such that restoration of
fork protection is then sufficient to deal with replication stress
from agents like olaparib and cisplatin, as recently observed9.
However, it is important to note that HR is restored through
reversion mutations in a substantial fraction of therapy-resistant
human tumors57, 58, such that HR reactivation cannot be under-
estimated as a major mechanism of therapy resistance.

In an effort to model normal mammary tissue, we used a non-
transformed human mammary epithelial cell line, providing
evidence that HR is more critical than fork protection for genome
integrity and cell viability. We cannot rule out that the specific
genetic background of MCF10A cells59 could influence our
findings, such that experiments in other normal mammary con-
texts will be required to formally test the generalizability of our
findings. Nevertheless, a high reliance on HR in mammary cells is
supported by recent in vivo studies, showing particularly robust
HR in mammary tissue compared to other tissues48. Collectively,
these previous and our current studies using various systems lead
us to propose the complexity of the contribution that these
genome integrity maintenance pathways (i.e., HR and fork pro-
tection) make in different biological systems.

Our observation that BRCA2 deficiency induces replication
stress adds a new dimension to a growing literature that repli-
cation stress is a key feature of precancerous lesions induced by
oncogenes60. Unanticipated consequences of the replication stress
induced by BRCA2 loss are mitotic abnormalities leading to G1
arrest and 53BP1 nuclear body formation, which may be
exploitable as a diagnostic biomarker for BRCA2 status in car-
riers. Whether the sequelae of replication stress that we observe
with loss of BRCA2, in particular 53BP1 body formation, will be
found more generally such as in oncogene-induced precancerous
lesions will be important to determine.

Our studies also have implications for cancer therapy. Agents
found to enhance 53BP1 nuclear body formation may further
sensitize BRCA2-deficient cancer cells to therapy. DNA under
replication could also potentially be exploited as an Achilles heel
to treat BRCA2-deficient cancers by targeting components in the
mitotic DNA synthesis pathway. While a previous study
demonstrated the activation of mitotic DNA synthesis in the
presence of aphidicolin61, our finding here that mitotic DNA
synthesis is activated upon BRCA2 loss even in the absence of
exogenous replication stress suggests that it is more relied
upon and, therefore, a promising target for intervention in
BRCA2-deficient tumors.

Methods
MCF10A cell culture and drug treatment. MCF10A cells, obtained from ATCC
through B.H. Park (Johns Hopkins University School of Medicine)62 and tested
negative for mycoplasma contamination, were grown in DME-HG/F-12 supple-
mented with 5% horse serum, 20 ng ml−1 epidermal growth factor, 0.5 mg ml−1

hydrocortisone, 100 ng ml−1 cholera toxin, 10 µg ml−1 insulin, and 1%
penicillin–streptomycin. IdU (50 µM; I7125, Sigma), CldU (50 µM; C6891, Sigma),
hydroxyurea (4 mM; H8627, Sigma), cisplatin (5 µM; 479306, Sigma), olaparib
(5 µM, MSKCC Organic Chemistry Core Facility), mirin (50 µM, MSKCC Organic
Chemistry Core Facility), RO-3306 (10 µM; SML0569, Sigma), and nocodazole
(100 ng ml−1; M1404, Sigma) were used at the indicated concentrations.

Plasmid construction. For BRCA2 Ex3-4flox donor plasmid (Ex3-4 fl-Hyg) con-
struction, sequences containing loxP, FRT sites, and the SA-2A module were
synthesized and cloned together with a hygromycin-resistance gene between
SpeI/SalI sites of the pBluescript II SK+ backbone. The BRCA2 left homology arm,
right homology arm, and exon 3 and 4 region were amplified from genomic DNA
from MCF10A cells and sequentially cloned into the above vector with the PAM
sequence of the sgRNA recognition site removed. The BRCA2 “–” allele donor
plasmid was constructed by replacing the left and right homology arms in an
existing hygromycin targeting plasmid63; a blasticidin-resistance cassette replaced
the hygromycin cassette where indicated. The TrBRC5-Cter DNA sequence was
amplified in two parts from a previously described plasmid21 and stepwise cloned
between EcoRI/SalI sites of the AAVS1 donor plasmid (a gift from Dr Dirk
Hockemeyer). Homology arms for all targeting vector are designed to be
700–900 bp in length.

BRCA2 expression vectors were generated by cloning the full-length BRCA2
sequence from pcDNA3-BRCA264 between XhoI/NotI sites of the PiggyBac
transposon plasmid (a gift from Drs. David Allis and Ping Chi) together with a
3XFLAG tag fused to the N terminus. The BRCA2 S3291E mutation was
introduced by replacing the DNA fragment between AgeI/NotI sites in wild-type
BRCA2 with the corresponding region from the FE-BRCA2-TR2 plasmid65.

The lentiviral vector that expresses I-SceI endonuclease for the HR assay was
generated by replacing the fragment between SpeI/SalI sites of the pCDH-CMV-
MCS-EF1-copGFP vector (CD511B-1, System Biosciences) with the CAGGS-I-SceI
fragment from the pCBASce plasmid21. DNA sequences of all constructs were
confirmed by Sanger sequencing. The BRCA2 Ex3-4flox donor plasmid contained a
few polymorphisms in the 6-kb intron 3 that did not affect BRCA2 expression.

sgRNAs were cloned into a non-viral backbone (Addgene plasmid # 41824)66 or
a lentiGuide-puro backbone (Addgene plasmid # 52963)67, as described. Short
hairpin RNA (shRNA) expression vectors were generated by cloning the target
sequences between AgeI/EcoRI sites of the pLKO.1-NeoR backbone, which was
modified from the original pLKO.1 vector (Addgene plasmid # 1864)68 by
swapping the puromycin-resistance gene with the neomycin-resistance gene.

Lentiviral transduction. Lentivirus was produced by standard methods. Briefly,
HEK293T cells at 80% confluence were co-transfected with a lentiviral vector,
VSV-G expression plasmid and psPAX2 by Lipofectamine 2000 (11668027,
Thermo Fisher Scientific) following the manufacturer’s instructions. The envelope
and packaging vectors were gifts from Dr Ping Chi. Supernatants containing virus
were collected and 0.45-µm filtered 48 and 72 h after transfection. Infections of
MCF10A cells were performed in the presence of 8 µg ml−1 polybrene (TR-1003-G,
EMD Millipore).

BRCA2 gene targeting and complementation. To achieve gene targeting,
cells were co-transfected with a donor plasmid and vectors expressing either
AAVS1 TALENs (for AAVS1 targeting)69 or Cas9-sgRNA (for other targeting
purposes). Wild-type Cas9 (Addgene plasmid # 41815)66 or paired nickases
(Cas9 H840A)70, 71 were used. Transfections were performed either by electro-
poration (Gene Pulser II, Bio-Rad; 350 V, 1000 µF) or nucleofection (Amaxa®
Nucleofector® II, Lonza; program X-005). Cells were treated with drugs for
selection 2 or 3 days post transfection depending on the selectable marker:
hygromycin (100 µg ml−1), G418 (0.2 mg ml−1), or blasticidin (5.0 µg ml−1). The
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hygromycin-resistance gene cassette from BRCA2fl-Hyg/+ cells was removed by
transfection of the Flpo plasmid (a gift from Dr Prasad Jallepalli); colonies were
analyzed to identify BRCA2fl/+ clones. BRCA2fl/− cells were subsequently generated
by introducing the BRCA2 “–” allele donor plasmid into BRCA2fl/+ cells.

sgRNA target sequences:
BRCA2-In2 (Ex3-4 fl-Hyg allele targeting): CTATAGATTCGCAAGAGAA
BRCA2-Ex2-9 (BRCA2 “–” allele targeting): AGACTTATTTACCAAGCAT
BRCA2-Ex2-6 (BRCA2 “–” allele targeting, used together with sgBRCA2-Ex2-9

for paired nickase strategy70): GCCTCTCTTTGGATCCAAT
Gene targeting was confirmed by Southern blotting. Genomic DNA was

digested with the indicated restriction enzymes overnight at 37 °C and then
electrophoresed on a 0.8% agarose gel and transferred to a charged nylon
membrane (NEF987001PK, PerkinElmer). Probes were radiolabeled with [α-32P]-
dATP using a random primer labeling kit (Agilent) and hybridized with the
membrane overnight at 67 °C. The membrane was then washed three times with
saline-sodium citrate buffer containing 0.1% SDS and developed.

For stable BRCA2 complementation, the PiggyBac plasmid was co-transfected
with a transposase expression plasmid (a gift from Drs. David Allis and Ping Chi)
into cells by nucleofection and G418 (0.2 mg ml−1) selection was applied 48 h later
to obtain G418-resistant cell pools. For BRCA2 expression in BRCA2−/−AAVS1Δ

cells, the neomycin-resistance gene at the targeted AAVS1 locus was first
inactivated by CRPSPR-Cas9 followed by screening for G418-sensitive clones.
sgRNA target in Neo: GCTGACAGCCGGAACACGG

For BRCA2 conditional deletion, cells were infected with purified adeno-Cre
(Ad5-CMV-Cre, Baylor College of Medicine Vector Development Laboratory) and
applied at a multiplicity of infection of 1000 in the presence of 1.2% Genejammer
(204130, Agilent). Alternatively, cells were infected with a lentivirus that expresses
a self-deleting Cre20. Both methods generated similar results. Downstream assays
were performed using cell pools at least 72 h after infection, except the S/G2 entry
experiments (Fig. 4a, Supplementary Fig. 9), which were performed 2 days after
infection as indicated in the figures.

Genotyping PCRs to distinguish the Cre-excised (Δ) from the unexcised (fl)
allele were performed using genomic DNA prepared with the PureLink™ Genomic
DNA Kit (K182002, Thermo Fisher Scientific) following the manufacturer’s
instructions. Alternatively, cell pellets were resuspended in PCR grade water and
heated at 100 °C for 5 min. The resulting extract was directly used for PCR. Oligo 1
(forward) and 2 (reverse) were used to detect the excised ΔEx3-4 allele in
BRCA2ΔEx3-4/−. Oligos 1 (forward) and 3 (reverse) were used to detect the wild-
type (+) or unexcised fl allele in BRCA2fl+ and BRCA2fl/− cells. Oligo 4 (forward)
and 5 (reverse) were used to detect the excised Δ allele (yielding a 400 bp product)
in BRCA2−/−AAVS1Δ cells. Unexcised allele would yield a product that is too long
(6.5 kb) to be amplified. Oligo 6 (forward) and 7 (reverse) were used to detect the
unexcised fl allele (yielding a 460 bp product) in BRCA2−/−AAVS1fl cells. This PCR
from excised allele is not productive due to removal of the Oligo 6 binding site by Cre.

Oligo 1: ACTTTTGTGAACTCTTGTTACACC
Oligo 2: GGTGTATGAAACAAACTCCCAC
Oligo 3: CTAAGATTTTAACACAGGTTTGCC
Oligo 4: ATTGTGCTGTCTCATCATTTTGGC
Oligo 5: CAGGAAATGGGGGTGTGTCAC
Oligo 6: TGTGGCACCAAATACGAAACACC
Oligo 7: ACAAATGTGGTATGGCTGATTATG
For RT-PCR, RNA was prepared using RNeasy Plus Mini Kit (74134, Qiagen)

following the manufacturer’s instructions. Complementary DNA was then synthesized
from RNA using SuperScript® III First-Strand Synthesis Kit (18080051, Thermo Fisher
Scientific) following the manufacturer’s instructions. Oligo 8 (forward) and 9 (reverse)
were used to amplify ex1–10 region from BRCA2 transcript.

Oligo 8: GAAGCGTGAGGGGACAGATTTG
Oligo 9: TACTTCATCTTCTAGGACATTTGG

Gene knockout. p53 knockout cells were generated by co-transfection of vectors
expressing Cas9 and an sgRNA for TP53 (a gift from Dr Prasad Jallepalli) by
nucleofection. Single colonies were picked and screened by western blotting. To
knock out PARP1, a BRCA2fl/− clone that stably expresses Cas9 was first generated
from viral infection of lentiCas9-Blast (Addgene plasmid # 52962)67. (Note these
cells also stably express Cre-ERT2 from the pQCXIN backbone, a gift from
Dr Prasad Jallepalli, although Cre remains inactive in all experiments in this study.)
Cells were next nucleofected with a vector for an sgRNA for PARP1 in a
lentiGuide-puro backbone (Addgene plasmid # 52963)67. One day after transfec-
tion, cells were transiently selected with puromycin (1 µg ml−1) for 2 days before
drug removal and being plated for growth as single colonies. Clones were screened
based on restriction site loss at the Cas9 cleavage site and knockouts were con-
firmed by western blotting.

sgRNA target sequences:
p53: GGCAGCTACGGTTTCCGTC
PARP1: AACGTCAGGGTGCCGGA

RNA interference. Stable knockdown cell lines were generated by infecting
cells with viruses expressing the target shRNA, followed by continuous G418
(0.2 mgml−1) selection.

shRNA target sequences:

MRE1172: GATGAGAACTCTTGGTTTAAC
PARP1-1 (TRCN0000356475): GGAGACCCAATAGGCTTAATC
PARP1-2 (TRCN0000338407): CTGATCCTTCAGCTAACATTA
Transient knockdown with Small interfering RNA (siRNAs) by Lipofectamine

RNAiMax (13778075, Thermo Fisher Scientific), according to the manufacturer’s
instructions, was performed 24 or 48 h after Cre infection. siRNAs were purchased
as follows: RAD51 (Qiagen, siRAD51#6, SI02629837; #8, SI03061338), SMARCAL1
(SMARTpool, Dharmacon, M-013058-01-0005), EXO1 (Qiagen, siEXO1#7,
SI02665138; #8, SI02665145), DNA2 (SMARTpool, Dharmacon, M-026431-01-
0005). Cells were analyzed 48 h after transfection. A scrambled shRNA68 and a
non-target siRNA (1027281, Qiagen) were used as negative controls.

Cell proliferation and clonogenic survival assays. For proliferation assays, cells
were counted, diluted and plated 3 days after Cre infection (passage 0). Two further
rounds of cell counting and re-plating were performed (passage 1 and 2) at 3-day
intervals. Cell numbers were normalized to the number of BRCA2ΔEx3-4/+ cells at
passage 0.

For clonogenic survival assays, 1000–2000 cells were seeded in a 10 cm plate
and stained by Giemsa (620G-75, EMD Millipore) after methanol fixation 11 days
later. Plating efficiency was calculated as the ratio of the amount of colonies formed
to the total number of cells plated. All clonogenic assays from this study were
performed in an unchallenged condition (i.e., no exogenous DNA damage applied).

Cell senescence and apoptosis assays. Senescence-associated β-galactosidase
staining was performed following manufacturer’s instructions (9860S, Cell Sig-
naling Technology). The fraction of β-galactosidase+ cells was quantified using
ImageJ software. Apoptotic cells were labeled using a FITC Annexin V kit (640905,
BioLegend) according to the manufacturer’s instructions, followed by flow cyto-
metry (Becton Dickinson FACScan) and quantification by FlowJo software.

Cell cycle analysis. Cells were fixed in ice-cold 70% ethanol overnight, before
being pelleted, resuspended, and then incubated in propidium iodide (PI) staining
buffer (20 μg ml−1 PI, 0.2 mg ml−1 RNase A, 0.1% Triton-X, PBS) for 30 min at
room temperature. Where indicated, cells were incubated with EdU for 30 min
before harvest. In this case, EdU was detected using Click-iT® Plus EdU Alexa
Fluor® 488 Flow Cytometry Assay Kit (C10632, Thermo Fisher Scientific) fol-
lowing the manufacturer’s instructions and 7-AAD (420403, BioLegend) was used
in place of PI for DNA staining. Cell cycle distribution was analyzed by flow
cytometry (Becton Dickinson FACScan) and FlowJo software.

DNA fiber assay. DNA fiber assays were performed as previously described5.
Briefly, cells were pulse labeled with 50 µM IdU and 50 µM CldU, untreated or
treated with 4 mM HU, as indicated. 2000–4000 cells were lysed in lysis buffer
(0.5% SDS, 200 mM Tris-HCl pH 7.4, 50 mM EDTA). DNA fibers were spread on
microscope slides and fixed in methanol/acetic acid (3:1 by volume). DNA was
denatured in 2.5 M HCl for 30 min, followed by 1 h blocking buffer (10% goat
serum and 0.1% Triton-X in PBS). Slides were incubated with primary antibodies,
anti-CldU (1:75; MA1-82088, Thermo Fisher Scientific) and anti-IdU (1:75;
347580, BD Biosciences) followed by secondary antibodies, anti-rat Alexa Fluor®
488 and anti-mouse Alexa Fluor® 594 (1:250, Thermo Fisher Scientific), for 1 h
each in blocking buffer at room temperature. Slides were mounted in Prolong with
DAPI (P36935, Thermo Fisher Scientific) before image acquisition under Axio2
microscope (Zeiss). Images were analyzed with FIJI (ImageJ) software.

HR assay. All cell lines used are derived from an MCF10A cell clone that contains
the DR-GFP reporter22 stably integrated as a single copy in the genome (a gift of
Dr Elizabeth Kass). Cells were infected with I-SceI-expressing lentivirus and HR
was measured by quantifying the fraction of GFP+ cells by flow cytometry (Becton
Dickinson FACScan) 48 h after infection using FlowJo software.

Immunofluorescence and microscopy. Cells were cultured on Nunc™ Lab-Tek™ II
CC2™ Chamber Slides (12-565-1, Thermo Fisher Scientific) and fixed with 2%
paraformaldehyde for 15 min and permeabilized in blocking buffer (0.1% Triton-X
and 1% BSA in PBS) for 30 min at room temperature. To stain chromatin-bound
RPA and MRE11, cells were pre-extracted (0.5% Triton-X, 1 mM EDTA, 30 mM
sucrose in PBS) on ice for 5 min before fixation. Where indicated, EdU was
detected using Click-iT® Plus EdU Alexa Fluor® 647 Imaging Kit (C10640, Thermo
Fisher Scientific) following manufacturer’s instructions, except that CuSO4, Alexa
Fluor® azide and reaction buffer additive were used at half of the instructed final
concentrations. Cells were then incubated with primary antibodies followed by
secondary antibodies diluted in blocking buffer for 1 h each with three PBS washes
in between. Slides were mounted in Prolong with DAPI (P36935, Thermo
Fisher Scientific) before image acquisition under Axio2 microscope (Zeiss). Where
indicated, deconvolution was carried out with z stacks acquired with 0.2 µm
spacing using enhanced ratio method, and projected based on maximum intensity
on a DeltaVision Image Restoration System (GE Healthcare). Quantification of
fluorescence signal intensity per nucleus with was performed with high-content
image-based cytometry methods essentially as described73 using FIJI (ImageJ) and
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analyzed using Excel (Microsoft) softwares. Briefly, nucleus regions were seg-
mented based on total DAPI intensity, and mean fluorescence intensities of other
channels within each nucleus were quantified in FIJI and exported to Excel
where data analysis was performed. Replicate experiments for γH2AX intensity
quantification are shown in Supplementary Fig. 14.

Primary antibodies used were γH2AX (1:1000; 05-636, EMD Millipore; 1:500;
2577 S, Cell Signaling Technology), 53BP1 (1:1000; 612522, BD Biosciences), cyclin
A (1:1000; sc-751, Santa Cruz Biotechnology), FANCD2 (1:500; NB 100-182,
Novus Biologicals), MRE11 (1:1000; a gift from Dr John Petrini), PICH (1:500;
H00054821-M01, Novus Biologicals), pATM-S1981 (1:1000; 200-301-400,
Rockland), pCHK2-T68 (1:1000; 2661S, Cell Signaling Technology), RPA (1:1000;
ab2175, Abcam; 1: 1000, 2208S, Cell Signaling Technology). Secondary antibodies
used were anti-mouse Alexa Fluor® 488, anti-rat Alexa Fluor® 488, anti-mouse
Alexa Fluor® 594, anti-mouse Alexa Fluor® 647, anti-rabbit Alexa Fluor® 568, and
anti-rabbit Alexa Fluor® 594 (1:1000; Thermo Fisher Scientific).

Serum starvation and mitotic cell analysis. For serum starvation, cells were
cultured for 24 h in DME-HG/F-12 with 1% penicillin–streptomycin but no other
additive. Cells were then released into regular culture media at the indicated time
interval. To detect mitotic DNA synthesis, EdU was added to the media for another
1 h incubation before fixation and permeabilization as described in the immuno-
fluorescence section. EdU was detected using Click-iT® Plus EdU Alexa Fluor® 488
Imaging Kit (C10637, Thermo Fisher Scientific) following manufacturer’s
instructions, except that CuSO4, Alexa Fluor® azide and reaction buffer additive
were used at half of the instructed final concentrations. Slides were mounted in
Prolong with DAPI (P36935, Thermo Fisher Scientific). Mitotic cells were detected
by microscopy. More than 80 mitotic cells from at least three independent
experiments were scored.

Subcellular fractionation and immunoprecipitation. Subcellular fractionation
was performed using the Subcellular Protein Fractionation Kit (78840, Thermo
Fisher Scientific) following the manufacturer’s instructions. For protein lysate
preparation, cells were trypsinized and lysed with NETN lysis buffer (150 mM
NaCl, 1 mM EDTA, 20 mM Tris pH 8.0, 0.5% NP40, 10% Glycerol) containing
protease inhibitor (11836153001, Roche). For FLAG-IPs, EZview™ Red ANTI-
FLAG M2 Affinity Gel (F2426, Sigma) was added to 0.5–2.0 mg protein lysate and
incubated overnight at 4 °C. After extensive washes with 0.05% Tween 20 in PBS,
proteins were eluted with SDS-PAGE sample buffer (B7703S, NEB).

Western blotting. Equal amounts of protein samples (whole-cell lysate, subcellular
fractions, or IP samples) were heated at 70 or 100 °C for 10 min, run on a precast
Tris-acetate (for BRCA2 blots; EA03752BOX, Thermo Fisher Scientific) or Mini-
PROTEAN® TGX™ protein gel (Bio-Rad) and then transferred to a nitrocellulose
membrane (162-0145, Bio-Rad). The membrane was blocked in 5% non-fat dry
milk in PBST (PBS with 0.05% Tween-20) and incubated overnight with primary
antibodies at 4 °C, followed by incubation with secondary antibodies for 1 h at
room temperature. Uncropped images of western blots are shown in Supplemen-
tary Fig. 15.

Primary antibodies used were BRCA2 (1:300; OP95, EMD Millipore), clathrin
(1:3000; 610499, BD Biosciences), DNA2 (1:500; ab96488, Abcam), EXO1 (1:1000;
A302-640A-T, Bethyl Laboratories), FLAG (1:1000; A8592, Sigma), MRE11
(1:5000; a gift from Dr John Petrini), PARP1 (1:1000; sc-7150, Santa Cruz
Biotechnology), p53 (1:1000; sc-98, Santa Cruz Biotechnology), p21 (1:1000;
sc-6246, Santa Cruz Biotechnology), HDAC2 (1:2000; 2540S, Cell Signaling
Technology), SMARCAL1 (1:500; sc-376377, Santa Cruz Biotechnology), tubulin
(1:10,000; T9026, Sigma), RAD51 (1:2000; PC130, EMD Millipore), histone H3
(1:2000; 9715, Cell Signaling Technology). Secondary antibodies used were
peroxidase-linked anti-mouse or anti-rabbit IgG (1:10,000; GE Healthcare).

Statistical analysis. Statistical analysis was performed using Prism software.
p-values for fork protection, γH2AX, MRE11 nuclear intensity and FANCD2 foci
pair quantification were determined using a two-tailed Mann–Whitney test. The
remaining data were analyzed by an unpaired two-tailed t-test. Statistical tests were
justified appropriate for every figure (see legends) and the variance between groups
was usually similar. No statistical methods or criteria were used to estimate sample
size or to include or exclude samples. For DNA fiber analysis, investigators were
blinded in most experiments to the group allocation; for other experiments,
investigators were not blinded. p-values of <0.05 are considered statistically
significant and are indicated with asterisks as follows: *p< 0.05; **p< 0.01;
***p < 0.001; ****p< 0.0001.

Data availability. All relevant data are available from the authors on request.
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