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ABSTRACT: The abiotic reaction products of polycyclic aromatic
hydrocarbons (PAHs) with hydroxyl radicals (•OH) and nitrate
radicals (•NO3) are nitro-, oxygen-, and hydroxyl-containing PAHs
(NPAHs, OPAHs, and OHPAHs). Four methods of the highest
occupied molecular orbital (HOMO), Fukui function (FF), dual
descriptor (DD), and population of π electrons (PP-π) are selected
to predict the chemical reactivity of PAHs attacked by •OH and
•NO3 in this study. The predicted •OH-initiated and •NO3-
initiated transformation products are compared with the main PAH
transformation products (PAH-TPs) observed in the laboratory.
The results indicate that PP-π and DD approaches fail to predict
the transformation products of fused PAHs containing five-membered rings. By predicting the PAH-TPs of 13−14 out of the 15
parent PAHs accurately, HOMO and FF methods were shown to be suitable for predicting the transformation products formed from
the abiotic reactions of fused PAHs with •OH and •NO3.

1. INTRODUCTION
Polycyclic aromatic hydrocarbons (PAHs) with high potential
mutagenicity and carcinogenicity are the main byproducts in
several incomplete combustion processes.1−3 The persistent
PAHs are spread into the atmosphere and deposited into soil
and water,4−9 which causes irreparable damage to human
health and ecosystems.7,10,11 Most scientific literature studies
focus on the 16 priority PAHs defined by the United States
Environmental Protection Agency (USEPA).12 A significant
amount of work13−17 has reported on the abiotic reactions of
PAHs with atmospheric oxidants of hydroxyl radicals (•OH)
and nitro radicals (•NO3) in the presence of O2 and NOx. The
dominant mechanism involves electrophilic addition of •OH
and •NO3 to the aromatic ring, which results in the formation
of nitro-PAHs (NPAHs), hydroxyl-PAHs (OHPAHs), and
oxy-PAHs (OPAHs).18,19 However, the presence of numerous
isomers and the absence of some standards prevented the
laboratory to identify some new PAH transformation products
(PAH-TPs).20 It is very necessary to find a robust method to
predict the addition sites and potential PAH-TPs.

Three kinds of approaches, including ab initio theory,21

transition-state (TS) theory,22 and electronic structure of
reactants23 can be used to predict the reactive sites. The ab
initio dynamics simulation fully considering various effects in
the calculation is accurate and reliable but costs high
computational resource and time. The TS theory can predict
a specific reactive site and has previously been applied to
predict potential PAH-TPs for a few PAHs.24−31 It accurately

predicted the potential PAH-TPs and explains the mechanism,
but it is rather cumbersome to search the TS. A class of
methods based on the electronic structure of reactants,
including orbital composition,32,33 Fukui function (FF),34,35

dual descriptor (DD),36−38 atomic charge,39,40 electrostatic
potential,41 average local ionization energy (ALIE), and so
forth,42 have been extensively applied to different reaction
systems and are very convenient for calculation and analysis.
The regioselectivity, electrophilicity, and nucleophilicity of
various reactants have been successfully predicted by DD and
FF methods.43−51 ALIE has been adapted for the study of
quantitative structure−property.52−54 Ivan A. Titaley et al.52

pointed out that ALIE performed well in predicting the
reactivity of 12 out of 15 PAHs. Lu tian et al.32 suggested that
FF, ALIE, and DD methods were suited for mono- and
disubstituted benzenes with ortho- and para-directing groups.
Highest occupied molecular orbital (HOMO) compositions
have been applied to surface analysis and quantum mechanical
studies.54−60 In this framework, the convenient methods based
on the electronic structure of PAHs can be used as
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complementary approaches to predict the formation of PAH-
TPs in laboratory studies and to guide further analysis in
combination with experiments.

In this study, 15 parent PAHs shown in Figure 1 are selected
as the test sets. Four prediction approaches based on the
electronic structure are used to predict the reactivity of PAHs
attacked by •OH and •NO3, which are the HOMO,32,33 FF,
DD, and population of π electrons (PP-π).61 Although these
methods have been extensively applied to different reaction
systems, the plausibility and reliability of predictions in the
parent PAHs system attacked by •OH and •NO3 remain to be
explored and compared. In particular, the DD and PP-π

methods have never been applied to predict the reactivity of
atmospheric parent PAHs. The purpose of the study is to
evaluate the performance of the four methods in predicting the
reactivity of PAHs attacked by •OH and •NO3 in the presence
of O2 and NOx and seek a robust and general prediction
approach to help discover new PAH-TPs that have not yet
been studied in the laboratory, enhancing the understanding of
the formations of atmospheric PAH-TPs.

2. RESULTS AND DISCUSSION
2.1. Prediction of PAH Reactivity-Based Population of

π Electrons. The population analysis of π electrons was

Figure 1. Structures and relevant numberings of the 15 parent PAHs.

Table 1. Substitution Sites of the 15 Parent PAHs Based on the Predictive Approaches and Laboratory Dataa

PAHs PP-π FF DD HOMO laboratory NPAHs laboratory OPAHs and OHPAHs

NAP C1, C2 C1, C2 C1, C2 C1, C2 C1m,g, C2 C1m,g, C2
ANT C9, C1 C9, C1 C9, C1 C9, C1 C9m,g,p, C1 C9m,g,p
ACE C3, C5 C5, C3 C5, C3 C5, C3 C4m,g, C3, C5, C5m,g,p, C4, C3, C1
PHE C9, C1 C9, C1 C9, C1 C9, C3 C9m,g, C3 C9m,g,p,C1,C3
ACY Ci1, C1 C1, Ci1 Ci1, C4 C1, Ci1 C4m,g,C1 C1m,g,p
PYR C1, C4 C1, C4 C1, C4 C1, C4 C1m,p, C4m,g, C2 C1m,g,p
FLT Cb1, C3 C3, Cb4 Cb4, C8 C3, Cb4 C2m,p, C3m,g, C8, C7
BaA C7, C12 C7, C12 C7, C6 C7, C12 C7m,p C7m,p, C12
CHR C5, C4 C6, Cb2 C6, C1 C6/C12, Cb2 C6m,p
Cor C1/C7 C1/C7 C1/C7 C1/C7 C1m,p
Bghip C7/C1, C5 C7, C5 C5/C4, C1 C5, C4 C5m,p, C7, C4
BKF C7/C8, C2 C7, C3 C6, Ci1 C7, C3 C7m,p, C3, C8, C1, C9
BaP C6, C1/C3 C6, C1/C3 C6, C1/C3 C6, C1/C3 C6m,p, C1, C3 C6m,p, C1, C3
DBalP C10, C7 C10, Cb2 C10/C7 C10, Cb2 C10m,p
BIP C2, C6 C4, C2 C4, C2 C4, C1 C3m,g

aThe carbons before “,” in the four theoretical method columns are the most reactive sites. The reactivity of the two carbons before and after “/” is
equal, “m” indicates the major product, and “g” and “p” are the abbreviations of the gas and particle phase. “-” indicates that no product has been
previously detected in the laboratory.
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performed to predict the reactivity of 15 PAHs attacked by
•OH and •NO3, and the results are shown in Table S1. The
combined results of the reactivity predictions and laboratory
data (Table 1) indicate that the predicted reactive carbon
atoms match with the transformation products in the
laboratory62−64 for nine parent PAHs, including NAP, ANT,
PHE, PYR, BaA, Cor, BaP, Bghip, and DBalP. A previous
study63 reported that the gas-phase OHPAH and NPAH
products of PHE were formed at the C9 atom, demonstrating
the accuracy of the predicted result. The C7 atom of BaA is
predicted to be the most reactive atom, which is consistent
with experimental product 7-nitrobenzo[a]anthracene.65 The

only other reactive atom of BaA is predicted to be on the C12
atom, which matches with the reported di-OBaA and di-
OHBaA products, 7,12-benzo[a]anthracenedione and 7,12-
hydroxybenz[a]anthrone, respectively.13,65 The major product
1,7-dihydroxycoronene observed in the laboratory also
matches with the predicted reactivity of Cor.66 The population
analysis ofπ electrons cannot correctly predict the reactivity of
CHR.67

The PP-π method performs poorly in predicting the reactive
sites of fused PAHs with five-membered rings, such as ACE,
ACY, FLT, and BKF. The most reactive site of ACY is
predicted to be on the bridge carbon atom Ci1, which is not
corresponding with the major NACY product 4-nitroacenaph-

Figure 2. HOMO composition of the 15 parent PAHs. For clarity, only the top two contribution values are illustrated.

Figure 3. FF isosurfaces of the 15 parent PAHs. The darkest blue locations are favorable reactive sites for the radical attack.
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thylene.68 The predicted reactivity of Cb1 in FLT does not
match with the transformation products 3-NFLT and 2-
NFLT.69,70 Therefore, the π electron population method that
excludes the σ electrons is not suitable to predict the reactivity
of fused PAHs containing five-membered rings. The PP-π
method is also not a good choice for unfused biphenyl.
2.2. Prediction of PAH Reactivity-Based HOMO. The

HOMO composition of the 15 parent PAHs is calculated. The
contribution of each carbon atom to HOMO is listed in Table
S2, and the top two contribution values are illustrated in Figure
2. With few exceptions, the predictions are consistent with the
products identified in the laboratory.

The reactive carbon atoms of the fused PAHs with six-
membered rings are predicted based on HOMO compositions.
For ANT, the highest contribution to HOMO is at C9 (C10)
with 13.58%, followed by C1 with 7.70%. The prediction is
consistent with 9-nitroanthracene (9-NANT) and 9,10-
anthraquinone, meanwhile, and the experimental transforma-
tion products occurred at C1 correspond to the reactivity order
of ANT.71 The reactive sites of BaA are predicted to be at C7
(13.15%) and C12 (11.57%), and the product benz[a]-
anthracene-7,12-dione62,65 obtained in the experiment con-
firms the accuracy of the prediction. The successive reaction
sites predicted for BghiP are at C5 (7.98%), C4 (7.06%), and
C7 (6.80%), which are consistent with the products observed
in the laboratory, such as 5-, 7-, and 4-nitrobenzo[ghi]-
perylene.62 The respective identified products of DBalP, CHR,
and Cor are 1,10-dihydroxycoronene, 6-nitrodibenzo[a,l]-
pyrene, and 6-nitrochrysene,62,66 which is corresponding to
the predictions.

The ACY-containing unsaturated cyclopenta-fused ring
presents a unique reactivity pattern.52 The experimentally
observed OHACY adduct15 supports the prediction that OH
addition to ACY occurs at C1(C2), which accords with the
higher reactivity of the double bond between C1 and C2.
However, the prediction of C1(C2) is not in accord with 4-
nitroacenaphthylene (4-NACY) identified in the laboratory,
which was produced from indirect nitrate radical addition to
ACY.15 Nitrate radical addition to the C1−C2 bond is
considered to be the dominant reaction pathway for ACY with
the substituent groups.72

For PAHs with different transformation products in the
particle and gas phase, the HOMO method is effective to one
of the two phases. For FLT, the highest contribution of C3 to
HOMO matches with 3-nitrofluoranthene as the gas-phase
product.73 The most reactive site of PYR is predicted to be at
C1 (10.25%), which is consistent with the major gas-phase
NPYR and OHPYR; however, the other reactive atom C4
(7.22%) of PYR is in accord with the major particle-phase
NPYR product16.16,74

2.3. Prediction of PAH Reactivity-Based FF. The FF
isosurfaces of the 15 PAHs in the test sets and the CFF value
of each carbon atom are shown in Figure 3 and Table S3,
respectively. The CFF values and the darkest blue location on
the isosurfaces suggest the reactivity of 15 parent PAHs
attacked by •OH and •NO3, and the predictions are in good
agreement with the published laboratory products.

The results predicted by the FF method are almost
consistent with those predicted by the HOMO method.
Except for BghiP, the FF method predicts the reactivity of all
the fused PAHs with six-membered rings as successfully as the
HOMO method. A few previous studies62 reported that 5-
NBghiP was the dominant nitro product formed from the

reaction of BghiP with NO2/NO3; however, the FF method
predicts C7 to be the most reactive atom. The FF method
generally performs well in predicting the reactivity of fused
PAHs with five-membered rings. C5 is predicted to be the
most reactive site of ACE, which is consistent with the
observed 5-nitroacenaphthene as the major product resulting
from the •OH-initiated reaction of ACE.75,76 4-Nitroacenaph-
thene identified as the major product formed from the
N2O5+ACE reaction was not expected to the significant
ambient product since •NO3 totally dominates over N2O5
under ambient atmospheric conditions. The major mono-
NPAH products of BKF and FLT (7-nitrobenzo[k]-
fluoranthene62 and 2-nitrofluoranthene73) also support the
prediction results that the C7 atom of BKF and the C3 atom of
FLT are the most reactive, respectively.

The selectivity order of the predicted BKF using FF and
HOMO methods is C7 > C3 > C8, which agrees with the
reported yields of mono-nitro and di-nitro BKF products.62 7-
Nitrobenzo[k]fluoranthene (7-NBKF) rather than 3-
nitrobenzo[k]fluoranthene (3-NBKF) was identified as the
major mono-NBKF product in a previous study; meanwhile,
further nitration was proved to occur on C3, leading to the
formation of 3,7-diNBKF.62 Moreover, the predicted selectivity
order of BaP is C6>C1/C3>C12, which is consistent with
BaP-1,6-dione, BaP-3,6-dione, and BaP-6,12-dione being the
major OPAH adducts of BaP.77 The predicted reactivity orders
of NAP, ANT, PHE, BaA, ACE, and PYR are also reasonable
and reliable. Therefore, FF and HOMO methods are available
to predict the selectivity order.
2.4. Prediction of PAH Reactivity Based on DD. The

DD approach predicts the reaction selectivity of 15 parent
PAHs attacked by •OH and •NO3, and the results indicate that
the predicted reactivity for 10 fused PAHs with six-membered
rings match well with the collected experimental results. For
NAP, the NAP-OH adduct added by •OH at the C1 or C2 site
has been confirmed in multiple laboratorial and theoretical
studies.78,79 The energy-rich intermediate NAP-OH reacts with
NO2 in the atmosphere, and 1- and 2-nitronaphthalene, 2-
hydroxy-1-nitronaphthalene, and 1-hydroxy-2-nitronaphtha-
lene can be formed by the N atom attacking •OH at the
trans- or cis-position. 6-Nitrobenzo[a]pyrene obtained in
laboratory studies64 confirms that the C6 atom predicted by
the DD method is the most reactive. The high CDD value of
the C1 (C7) atom of Cor is consistent with the major Cor-
TPs. The predicted PAH-TPs of PHE, BaA, and Bghip agree
with the products80 identified in the laboratory, respectively.

The DD method fails in predicting the reaction selectivity of
ACY, FLT, and BKF. In the case of FLT, the most reactive site
is predicted to be at the bridge carbon atom; however, the
laboratory data indicated that particle-phase 3-NFLT and gas-
phase 2-NFLT were the major FLT-TPs.68,73,80 The major
observed BKF-TPs (7-NBKF and 3,7-DiNBkF) in a previous
experimental study62 also suggested that the selectivity of BKF
is not on the predicted C6 atom. Therefore, DD is an
inappropriate method for fused PAHs with five-membered
rings.
2.5. Evaluations of the Different Prediction Ap-

proaches. The numbers of correctly predicted primary
substitution sites out of 15 parent PAHs attacked by •OH
and •NO3 are shown in Figure 4. The PP-π approach is
suitable to predict fused PAHs with six-membered rings but
performs poorly for fused PAHs with five-membered rings and
unfused polycyclic arene. Although the DD method accurately
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predicted 11 PAH-TPs out of 15 parent PAHs, it is
inappropriate for a vast majority of fused PAHs with five-
membered rings. Based on the above prediction results, it is
gratifying that the HOMO approach successfully predicts the
transformation products of 14 parent PAHs, and the selectivity
of PAHs can even be preliminarily estimated by the shape of
HOMO. The FF method performs stably and accurately in
predicting the reactivity of fused PAHs. The predicted
selectivity order using HOMO and FF is also satisfied. The
essence of •OH and •NO3 attacking parent PAHs is
electrophilic addition, and the frontier orbital theory suggests
that the electrophilic reactions relate to HOMO; thus, the
HOMO and FF [f−≈ρHOMO(r)] methods performed well,
while the PP-π and DD methods failed to predict the reactive
sites of PAHs containing five-membered rings. Therefore,
HOMO and FF approaches are attractive and recommended
to predict the abiotic transformation products of fused PAHs
attacked by •OH and •NO3.

2.6. Predicting the Reactivity of Other PAHs Using
HOMO and FF. In this study, 10 PAHs which have not yet
been studied in the laboratory are selected as a prediction set,
shown in Figure 5. In view of the outperformance in predicting
the reactivity of parent PAHs, HOMO and FF approaches are
used to predict the transformation products of the 10 PAHs
attacked by •OH and •NO3. The predicted results are listed in
Table 2.

The HOMO and FF methods predict that the reactivity
order of AHR with six aromatic rings is C3 > C4 (C6); thus,
3-, 4-, and 6-nitroantanthrene and 3,4- and 3,6-antanthrene-
quinone may be the major NAHR and OAHR products. In
view of that AHR partition almost entirely into the particulate
phase, the NAHR and OAHR products are in the particle
phase. For DBahA, multiple reactive sites are predicted to be
on C7 and C5 (C6) atoms, with C7 being the most reactive
carbon. It can be inferred that the transformation products of
DBahA are likely to be 5-, 6-, and 7-nitrodibenz[a,h]-
anthracene, 5,6-, 6,7-, and 5,7-dibenz[a,h]anthracene-quinone,
which agrees with the prediction by the ALIE approach.35 The

Figure 4. Number of correctly predicted primary substitution sites out
of 15 parent PAHs attacked by •OH and •NO3.

Figure 5. Structures and relevant numberings of 10 parent PAHs that have not been studied in the laboratory.

Table 2. Predicted Results by HOMO and FF Methods for
the 10 PAHs That Were Not Studied in the Laboratory

PAHs HOMO FF PAHs HOMO FF

AHR C3, C4/C6 C3, C4/C6 HEP C3, C1 C3, C1
DBahA C7, C5/C6 C7, C5/C6 AZU C6, C2 C6, C7
PAC C6, C5 C6, C5 PLE C5, C6 C5, C6
PER C1, C3 C1, C3 APT C4, C6 C5, C4
PPH C6, C5 C5, C6 BbF C5, Cb2 C5, Ci1
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C6 and C5 atoms of PAC, the C1 and C3 atoms of PER, the
C1 and C3 atoms of BeP, and the C5 and C6 atoms of PPH
are the reactive sites, respectively. The predictions for the
above fused PAHs with six-membered rings are supposed to be
reliable. The reactive sites of the aromatic septet (HEP, AZU,
and PLE) predicted by HOMO and FF agree with each other.
To verify the accuracy of the predictions, the relative free
energies of precursors, TSs, and adducts of •OH addition to
AZU, PLE, and HEP were, respectively, calculated, and the
results shown in Table S5 match well with the predictions by
HOMO and FF. The most reactive site of HEP is predicted to
be at the C3 atom; therefore, 3-nitroheptalene and 3-
hydroxyheptalene are likely to be the major gas-phase
products. 6-Nitroazulene and 5-nitropleiadene are the major
predicted transformation products of AZU and PLE,
respectively.

In summary, HOMO and FF approaches are effective to
predict the selectivity and transformation products of fused
PAHs attacked by •OH and NO3 in the presence of O2 and
NOx. The further discussions we suggest are (1) the validity of
HOMO and FF in predicting the reactivity of methylated-,
halogenated-, and heterocyclic PAHs and (2) the investigation
of HOMO and F̀F on predicting the selectivity of PAHs with
other atmospheric species such as the sulfate particle and
chlorine.

3. COMPUTATIONAL METHODS
All geometry optimizations are performed with the Gaussian
09 software81a at the level of M06-2X82/6-311G(d,p) without
any restriction on the symmetry. The M06-2X functional, a
high-nonlocality functional with double the amount of
nonlocal exchange, has demonstrated a good performance for
the thermochemistry, kinetics, and weak interactions for the
main group elements.83,84 In view of that Minnesota
functionals are especially prone to grid density issues, the
M06-2X calculations reported here were done with the
keywords “int = ultrafine” to improve the accuracy of the
calculations. Given the high symmetry of many PAHs, the
symmetrical carbon atoms are not discussed. All isosurface
maps are rendered by the VMD 1.9.1 program85 based on the
cube files generated by MultiWFN.86

The population analysis of π electrons was performed for
each of the PAHs. The population of πelectrons excludes the
influence of σ electrons that have little influence on the
electrophilic reaction of the conjugated system. More abundant
π electrons indicate the larger population, the more likely to
result in the electrophilic reaction. For PAHs with moreπelec-
trons, the PP-π approach may be helpful to improve the
accuracy in predicting the electrophilic sites.61

The frontier orbital theory proposed by Kenichi Fukui
suggests that the electrophilic reaction relates to HOMO, and
the electrophilic site can be predicted by the HOMO
composition of the substrate. The HOMO composition of
parent PAHs is analyzed by the Hirshfeld51,87,88 method. The
atom with the highest contribution to HOMO is the most
reactive site.

FF and DD are applied to predict the reactivity of parent
PAHs. FF proposed by Parr and Yang89 can be calculated
unambiguously for three situations of nucleophilic attack f+,
electrophilic attack f−, and neutral (radical) attack f 0.

=f r r r( ) ( ) ( )N N 1 HOMO (1)

=+
+f r r r( ) ( ) ( )N 1 N LUMO (2)

= + +
+

f
f f

2
1 2 r r/ ( ( ) ( ))0

HOMO LUMO (3)

where ρN, ρN+1, and ρN−1 represent the electron density of a
system at the N electron state (containing N electrons), N + 1
electron state (gaining an electron), and N − 1 electron state
(losing an electron), respectively. It is argued that the reactive
site should have a larger value of FF than other regions; that is,
regions with larger f−, f+, and f 0 are favorable for electrophilic,
nucleophilic, and neutral (radical) attack, respectively. DD
defined as = +f f f can simultaneously be used to
investigate the electrophilic and nucleophilic reaction sites, so
DD is more convenient than FF. If the distribution of Δf
around site A is more positive than another site B, then one
can say A is a more favorable site for nucleophilic attack than
B, and in the meantime, B is a more preferential site for
electrophilic attack than A.

The reactive regions on the molecular surface can be
visualized via the isosurface graph of FF and DD; however,
visual analysis is somewhat ambiguous and subjective. To
quantify the discussions of FF and DD, namely, assigning a
value for each atom to exhibit the extent that it can be acted as
a reactive site, the ″condensed″ version of FF and DD based
on population analysis techniques is calculated. The condensed
Fukui function (CFF) can be calculated based on the atom
charge for three situations of nucleophilic attack fA+, electro-
philic attack fA−, and neutral (radical) attack fA0 .

=f q qN 1 NA
A A

(4)

=+
+f q qN N 1A

A A
(5)

= +f 1 2 q q/ ( )0
N 1 N 1A
A A

(6)

The condensed DD (CDD) based on atom charge can be
calculated as follows

= =+
+f f f 2q q q2

N N 1 N 1A
( )

A A
A A A

(7)

The CFF and CDD based on Hirshfeld charge are used to
predict the reactive sites in the study.

The compositionsof HOMO, CFF, and CDD and the
population of π electrons are all calculated using the
MultiWFN program.
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(49) Pilepic,́ V.; Ursǐc,́ S. Nucleophilic reactivity of the nitroso

group. Fukui function DFT calculations for nitrosobenzene and 2-
methyl-2-nitrosopropane. J. Mol. Struct.: THEOCHEM 2001, 538,
41−49.
(50) Mu, L.; Fan, W.; Yuan, X. A.; Huang, C.; Li, D.; Bi, S.

Mechanistic insights into the C (sp3)-H heteroarylation of amides and
Fukui function analysis of regioselectivity. Mol. Catal. 2021, 502,
111394.
(51) Wang, B.; Rong, C.; Chattaraj, P. K.; Liu, S. A comparative

study to predict regioselectivity, electrophilicity and nucleophilicity

with Fukui function and Hirshfeld charge. Theor. Chem. Acc. 2019,
138, 124.
(52) Titaley, I. A.; Walden, D. M.; Dorn, S. E.; Ogba, O. M.; Massey

Simonich, S.; Cheong, H. Y. Evaluating Computational and Structural
Approaches to Predict Transformation Products of Polycyclic
Aromatic Hydrocarbons. Environ. Sci. Technol. 2018, 53, 1595−1607.
(53) Murray, J.; Abu-Awwad, F.; Politzer, P. Characterization of

aromatic hydrocarbons by means of average local ionization energies
on their molecular surfaces. J. Mol. Struct.: THEOCHEM 2000, 501−
502, 241−250.
(54) Martin, J. W.; Hou, D.; Menon, A.; Pascazio, L.; Akroyd, J.;

You, X.; Kraft, M. Reactivity of polycyclic aromatic hydrocarbon soot
precursors: implications of localized π-radicals on rim-based
pentagonal rings. J. Phys. Chem. C 2019, 123, 26673−26682.
(55) Arunagiri, C.; Anitha, A.; Subashini, A.; Selvakumar, S. S. X-ray

crystal structure, vibrational spectroscopy, DFT calculations, elec-
tronic properties and Hirshfeld analysis of (E)-4-Bromo-N’-(2, 4-
dihydroxy-benzylidene) benzohydrazide. J. Mol. Struct. 2018, 1163,
368−378.
(56) Luo, M.; Huang, B.; Xu, Z. J.; Liu, S. N.; Zhu, Z. X.; Zhang, J.

X.; Meng, X. G. Structural investigation, Hirshfeld surface analysis and
quantum mechanical study of two dicyanopyridine derivatives. J. Mol.
Struct. 2021, 1228, 129748.
(57) Milenkovic,́ D.; Avdovic,́ E.; Dimic,́ D.; Sudha, S.; Ramarajan,
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