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Ingestion of Shiga toxin-producing Escherichia coli (STEC) can result in a range of illness
severity from asymptomatic to hemorrhagic colitis and death; thus risk assessment of
STEC strains for human pathogenicity is important in the area of food safety. Illness
severity depends in part on the combination of virulence genes carried in the genome,
which can vary between strains even of identical serotype. To better understand how core
genes are regulated differently among strains and to identify possible novel STEC virulence
gene candidates that could be added to the risk assessment repertoire, we used
comparative transcriptomics to investigate global gene expression differences between
two STEC strains associated with severe illness and a commensal E. coli strain during in
vitro intestinal epithelial cell (IEC) infections. Additionally, we compared a wide array of
concomitant cytokine levels produced by the IECs. The cytokine expression levels were
examined for a pattern representing STEC pathogenicity; however, while one STEC strain
appeared to elicit a proinflammatory response, infection by the other strain produced a
pattern comparable to the commensal E. coli. This result may be explained by the
significant differences in gene content and expression observed between the STEC
strains. RNA-Seq analysis revealed considerable disparity in expression of genes in the
arginine and tryptophan biosynthesis/import pathways between the STEC strains and the
commensal E. coli strain, highlighting the important role some amino acids play in STEC
colonization and survival. Contrasting differential expression patterns were observed for
genes involved in respiration among the three strains suggesting that metabolic diversity is
a strategy utilized to compete with resident microflora for successful colonization. Similar
temporal expression results for known and putative virulence genes were observed in the
STEC strains, revealing strategies used for survival prior to and after initial adherence to
IECs. Additionally, three genes encoding hypothetical proteins located in mobile genetic
elements were, after interrogation of a large set of E. coli genomes, determined to likely
represent novel STEC virulence factors.
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INTRODUCTION

Shiga toxin-producing Escherichia coli (STEC) is a genomically
diverse E. coli pathotype that produces Shiga toxin (Stx) and has
been isolated from humans, animals, food, and many
environmental sources (Garcia et al., 2010; Cooley et al., 2013).
As a zoonotic foodborne pathogen, STEC primarily
asymptomatically colonizes cattle; however, it has also been
isolated from other domestic livestock and a variety of wild
animals and birds (La Ragione et al., 2009; Cooley et al., 2013;
Espinosa et al., 2018). Depending on their individual gene
repertoire, STEC strains have the potential to be human
pathogens associated with gastrointestinal illness, ranging from
mild diarrhea to hemorrhagic colitis. In some cases, infection
with STEC causes hemolytic uremic syndrome (HUS), a serious
sequela that can progress to end-stage renal disease (ESRD) and
lead to death (Kaper et al., 2004; Majowicz et al., 2014). Globally,
based on data compiled between January 1990 and April 2012,
there were an estimated 2.8 million illnesses associated with
STEC, resulting in 3,890 cases of HUS, 270 cases of ESRD, and
230 deaths (Majowicz et al., 2014). Historically, STEC O157:H7
has been associated with outbreaks and severe illness (Kaper
et al., 2004) and in 2018 and 2019 has been linked to multiple
large outbreaks involving contaminated romaine lettuce (Centers
for Disease Control and Prevention, 2020b). However, the
proportion of non-O157 STEC illnesses has been increasing,
and in fact, 58% of illnesses due to STEC infection were
attributable to non-O157 serogroups in the US between 2008
and 2018 (Centers for Disease Control and Prevention, 2020a).
Although at least 100 non-O157 serotypes have been known to
cause human illness; those of serogroups O26, O45, O103, O111,
O121, and O145 account for the greatest number of clinical cases
(FAO/WHO STEC Expert Group, 2019; National Advisory
Committee On Microbiological Criteria For Foods, 2019).

To cause illness, STEC must be ingested and survive passage
through the gastrointestinal tract where it adheres to and
colonizes the colon, followed by production of Stx. Prediction
of the risk level as a human pathogen is important in the food
industry since not all STEC strains cause illness in humans.
STEC virulence genes are carried on mobile genetic elements,
thus can be easily gained or lost. Therefore, while serotype is a
useful indicator in epidemiological investigations, serotype alone
is not considered a good predictor of clinical outcome. The best
predictor of human pathogenicity is the set of virulence genes a
particular STEC strain possesses, while also taking into
consideration past illnesses linked with specific serotypes
(Newell and La Ragione, 2018; FAO/WHO STEC Expert
Group , 2019 ; Na t i ona l Adv i so ry Commi t t e e On
Microbiological Criteria For Foods, 2019). One virulence factor
associated with severe clinical outcome is the type III secretion
system (TTSS) encoded in the Locus of Enterocyte Effacement
pathogenicity island (LEE PAI) that imparts, among other
functions, the ability to adhere tightly to colonic intestinal
epithelial cells (IECs) (Kaper et al., 2004). In risk assessments,
the gene encoding the adhesin intimin, eae, is used as a marker
for the presence of the LEE PAI. Enterohemolysin, encoded by
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
ehxA, is also commonly considered when determining
pathogenic potential, as it has been observed in many STEC
strains causing severe disease (FAO/WHO STEC Expert Group,
2019; National Advisory Committee On Microbiological Criteria
For Foods, 2019). However, there is not a perfect correlation
between presence of ehxA and clinical outcome, which
underscores the necessity of interrogating the genome for
multiple factors that have been associated with virulence when
determining risk, and this has become easier with the widespread
use of whole genome sequencing (WGS) (Newell and La
Ragione, 2018; Gonzalez-Escalona and Kase, 2019). Hybrid
STEC pathotype strains have been increasingly reported
(Leonard et al., 2016), the most important of which is the
hybrid STEC/Enteroaggregative E. coli (EAEC) O104:H4 strain
that caused a massive outbreak in 2011 with a high percentage of
HUS (Rasko et al., 2011). EAEC carry aggR, encoding a
transcriptional regulator of virulence genes including genes
involved in adherence. The Stx subtype and presence/absence
of eae, ehxA, and aggR are the principal virulence factors
currently used in STEC risk assessments, although other
adherence factors and toxins are taken into consideration.
Progress on identification of novel STEC virulence genes has
been slow; however, identification of novel STEC virulence
factors is important since it would aid in refining suitable sets
of genes to use in genome interrogations for risk determinations
(Newell and La Ragione, 2018; FAO/WHO STEC Expert Group,
2019; National Advisory Committee On Microbiological Criteria
For Foods, 2019). While WGS has been of great benefit to public
health in the area of food safety (Allard et al., 2016), identification
of additional STEC virulence factors by genome sequence
comparisons alone remains elusive. For example, comparative
genomics studies have revealed only previously identified
virulence genes and were unable to differentiate STEC genomes
by illness severity (Haugum et al., 2014; Baba et al., 2019).

In addition to the combination of virulence factors carried by
an STEC strain, the dose ingested, and individual host responses
can play a role in pathogenicity. Several reports have
demonstrated that the interaction between the intestinal
ep i the l ium and di fferent STEC factors , inc luding
lipopolysaccharides (Khan et al., 2006), flagellin (Berin et al.,
2002; Rogers et al., 2003; Miyamoto et al., 2006), Stxs (Yamasaki
et al., 1999; Thorpe et al., 2001), the TTSS factor EspT (Raymond
et al., 2011), hemorrhagic coli pilus (HCP) (Ledesma et al., 2010),
and long polar fimbriae (LPF) (Farfan et al., 2013; Vergara et al.,
2014) can result in the induction of cytokines/chemokines that
attract macrophages and polymorphonuclear leukocytes (PMNs)
such as neutrophils in vitro and in vivo. Patients with STEC
O157:H7 infections have been observed to possess high levels of
PMNs in their feces (Slutsker et al., 1997), which is considered a
possible risk marker of HUS development (Buteau et al., 2000).
While most studies have focused on the induction of the
neutrophil chemoattractant Interleukin-8 (IL-8), the induction
of other cytokines and chemokines by intestinal epithelial cells
(IECs) in response to STEC and its virulence factors has also
been reported (Thorpe et al., 2001; Khan et al., 2006; Vergara
et al., 2014; Stalb et al., 2018). Furthermore, depending on the
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experimental design, the cytokine profiles induced in various IEC
models can vary greatly between different STEC strains and at
times, but not always, from commensal E. coli (Hurley et al.,
2001; Stalb et al., 2018). Comparison of induction levels of a wide
variety of cytokines/chemokines by genetically diverse STECs
known to have caused HUS and commensal E. coli may reveal
patterns useful for predicting pathogenicity.

While STEC possesses virulence genes that are absent from
commensal E. coli genomes, STEC and commensal strains share
common core genes. Whether, and how, differences in global
transcriptional responses of core genes contribute to human
pathogenicity during survival and colonization in the
gastrointestinal tract has not been elucidated. Previous reports
have focused on either specific genes or global transcriptomic
differences involving only one STEC O157:H7 strain adhered to
epithelial cells (Jandu et al., 2009; Kim et al., 2009; Hu et al., 2013;
Yang et al., 2015; Kumar and Sperandio, 2019). While these
transcriptomic studies have been useful in determining regulation
of select virulence genes and characterization of global responses in
human infection, differences in transcriptional responses between
STEC strains, and in contrast to commensal E. coli, upon adherence
to IECs is unknown. Global transcriptomics studies involving sets of
Enteropathogenic E. coli (EPEC) strains demonstrated phylogroup-
specific responses to a variety of growth conditions but also
individual differences between strains within the same phylogroup
(Hazen et al., 2015; Hazen et al., 2017), thus highlighting the
incomplete information gained from examining the
transcriptional responses of only one strain in an E. coli pathotype.

In this study, we use an RNA-Seq approach to demonstrate
differences and similarities among transcriptional responses of
two non-O157 STEC strains associated with HUS that cluster
with different phylogroups and a commensal E. coli strain in in
vitro colonic IEC culture infections. In addition, we determine
the concomitant cytokine/chemokine responses by the IECs,
measuring an extensive panel of cytokine/chemokine levels in
order to identify patterns that may be representative of
pathogenic STEC. Through the RNA-Seq analysis combined
with interrogation of a large set of E. coli genomes, we also
identify hypothetical genes that represent potential novel STEC
virulence factors.
MATERIALS AND METHODS

Cell Culture
T84 cells (ATCC, Manassas, VA) were maintained at 37°C/5%
CO2 in complete Dulbecco’s modified Eagle Medium/F12
(cDMEM/F12): DMEM/F12 (Invitrogen, Carlsbad, CA)
supplemented with 10% heat-inactivated fetal bovine serum
(FBS; Hyclone Laboratories, Logan, UT), 100 U/ml Penicillin/
Streptomycin (Gibco, Gaithersburg, MD), and 2 mM L-
glutamine (Gibco). T84 cells were passaged at no greater than
80% confluency. Caco-2 cells (ATCC) were maintained at 37°C/
5% CO2 in complete DMEM (cDMEM): low glucose DMEM
(Invitrogen) supplemented with 10% heat-inactivated FBS, 100
U/ml Penicillin/Streptomycin, and 2 mM L-glutamine.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
Bacterial Isolates and Growth Conditions
Two STEC strains and one E. coli strain known to be commensal
were used in this study. Draft whole genome sequences for STEC
O26:H11 strain 97-3250 and STEC O145:H28 strain 4865/96 are
publicly available with accession numbers JHEW01000000 and
JHEY01000000, respectively. Annotation of the genomes was
provided by NCBI. The genome sequence of the commensal E.
coli O9:H4 strain HS is also publicly available (accession no.
CP000802.1). For planktonic cultures, overnight cultures of the
E. coli were grown in Luria broth at 37°C and used in subcultures
at a ratio of 1:100 into 25 ml DMEM/F12 in a 250 ml flask. The
flasks were shaken at 185 rpm and 37°C until the cultures were in
late exponential growth phase. RNAprotect Bacteria Reagent
(Qiagen, Germantown, MD) was used on aliquots of the
planktonic cultures and pellets were stored at −80°C for RNA
extraction. Biological triplicate cultures were grown for use in the
RNA-Seq analysis. E. coli cultures were grown for use in in vitro
infection experiments with polarized T84 IEC cultures using the
same method as for planktonic cultures, except that to simulate
passage through the small intestine, DMEM/F12 was
supplemented with 0.4% w/v porcine bile extract (Sigma, St.
Louis, MO). To obtain the correct density of E. coli cells for the
infection experiments, aliquots of cultures were pelleted and
resuspended in 250 µl of media as needed to yield a multiplicity
of infection of 100:1 when added to the IECs. For STEC cultures
to be used for both planktonic and adhered transcriptomics
experiments using polarized Caco-2 IECs, the same procedure
was used as for the T84 IEC experiments with the exception that
low glucose DMEM was substituted for DMEM/F12.

T84 Cell Infection
T84 cells (1 × 106 cells/well), at passage >8, were seeded onto 6-
well tissue culture plates containing collagen-coated (5 mg/cm2)
transwell inserts (Corning, Lowell, MA). Media was changed
every 2–3 days until transepithelial electrical resistance (TEER)
measurements were at least 1,000 W (approximately 14 days) as
measured by the EVOM2 Epithelial Voltohmmeter (World
Precision Instruments, Sarasota, FL). E. coli cells were added in
a volume of 250 ml into 1.75 ml of fresh cDMEM/F12 in the
transwell insert. The plates were rocked back and forth and side
to side to distribute bacteria evenly within the transwell insert.
Each plate was centrifuged at 3,000 rpm for 1 min at RT and
incubated at 37°C/5% CO2 for 3 h. Basolateral supernatants were
collected and centrifuged at 14,000 rpm for 2 min at 4°C.
Aliquots of basolateral supernatants were transferred to new
microcentrifuge tubes and stored at −80°C for cytokine analysis.
T84 cells and adherent bacteria remaining in the transwell inserts
were rinsed two times with sterile 1× phosphate buffered saline
(PBS) to remove residual non-adherent bacteria. To each
transwell, 1 ml of RLT lysis buffer (RLT buffer containing b-
mercaptoethanol) from the RNeasy mini kit (Qiagen) was added,
and the adherent cells were gently scraped from the membrane
using a sterile cell lifter (Corning). The contents from two
transwells were combined for a total of 2 ml, vortexed 1 min,
and centrifuged at 14,000 rpm for 2 min at 4°C to pellet adherent
bacterial cells. Supernatants, which contained the contents of the
October 2020 | Volume 10 | Article 575630
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lysed T84 cells, were transferred to new microcentrifuge tube and
homogenized using 1 cc VanishPoint Syringes with 25 G × 5/8″
needles (Retractable Technologies, Inc, Little Elm, Texas). The
remaining pellets of adherent bacterial cells were immediately
resuspended in 300 µl PBS followed by the use of RNAprotect
Bacteria Reagent to stabilize the RNA and stored at −80°C for
RNA extraction. Biological triplicate infection experiments were
performed starting with separate overnight cultures for each of
the three E. coli strains.

Caco-2 Cell Infection
Caco-2 cells (0.5 × 106 cells/well), at passage >70, were seeded
onto 6-well tissue culture plates (Corning). Media was changed
every 2–3 days until TEER measurements were at least 400 W
(approximately 21 days) as measured by the EVOM2 Epithelial
Voltohmmeter. Three-hour infection experiments were
performed in triplicate using the STEC strains. The same
procedure was followed as for the T84 cell infections with the
exception that low glucose DMEM media was used.

Bacterial RNA Isolation and Sequencing
Total RNA was extracted from both planktonic and adhered
E. coli cell pellets using the RNeasy Mini Kit (Qiagen). The RNA
was treated twice with DNase I from the Turbo DNA-free Kit
(Ambion, Austin, TX) to remove contaminating DNA, followed
by a clean-up step using the RNeasy Mini Kit. Depletion of
bacterial rRNA from total RNA samples was accomplished using
the MICROBExpress Bacterial mRNA Enrichment Kit
(Ambion), after which RNA quality was assessed using a
Bioanalyzer (Agilent, Santa Clara, CA). Sequencing libraries
were constructed from the mRNA-enriched RNA samples
using the TruSeq RNA Library Prep Kit v2 (Illumina, San
Diego, CA), utilizing the protocol modifications as designated
by the manufacturer for bacterial RNA. The libraries were
sequenced using 75 bp paired-end sequencing on an Illumina
MiSeq platform generating an average of 17.8 million reads
per sample.

RNA-Seq Analysis
RNA-Seq analysis was performed using CLC Genomics
Workbench version 12.0 (https://digitalinsights.qiagen.com)
with default parameters. The sequence reads generated for
each of the biological triplicate planktonic and adhered
bacterial RNA samples were trimmed for quality, and adapter
sequences were removed. The trimmed reads were mapped to
the respective E. coli genomes imported as GenBank files, thus
using the open reading frame annotations provided by NCBI.
Differential expressions were calculated for adhered bacterial
cells compared to planktonic bacterial cells for each E. coli strain,
along with statistical analysis using the triplicate samples for each
condition. CLC Genomics Workbench uses the normalization
process to correct for sample library size used in edgeR
(Robinson et al., 2010), and the False Discovery Rate (FDR)
corrected p values were determined using the method of
Benjamini and Hochberg. Differentially expressed genes were
defined as those with fold adhered/planktonic changes of either
>2 or <−2 and FDR (corrected p value) <0.05. The differential
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
expression results were exported, and gene homolog results were
used to compare differential expression for adhered versus
planktonic cultures among the three E. coli strains.

E. coli Genome Comparisons
Shared genes were identified in the three E. coli genomes by
pairwise megablast comparisons using a custom Python
program. Genes were considered homologs if ≥90% of the gene
length had ≥90% nucleotide identity and were reciprocal best
matches. Amino acid sequences were used to assign genes to
biochemical pathways in the KEGG database. To determine
which E. coli genomes possess selected hypothetical genes
found in the two STEC genomes, a megablast search of a
database containing 25,527 publicly available E. coli genomes
as well as Escherichia cryptic lineage 1 and 6 (the two cryptic
lineages that cluster most closely with E. coli) was performed.
Parameters used to determine gene presence were at least 90%
similarity over at least 67% of the query length. E. coli genomes
representing the entire E. coli genomic landscape were used, thus
included genomes both with and without known molecular
markers representing the E. coli pathotypes. The genomes were
classified as belonging to one or more of six pathotypes, namely,
Attaching and Effacing E. coli (AEEC), EAEC, Enteroinvasive
E. coli (EIEC), Enterotoxigenic E. coli (ETEC), Extraintestinal
pathogenic E. coli (ExPEC), and STEC. The pathotypes were
defined as carrying one or more of the following molecular
markers: AEEC (eae), EAEC (aggR, aafA), EIEC (ipaH, icsP,
mkaD, ospB), ETEC (LT, ST), ExPEC (papD, afaD, cnf, hlyA),
STEC (stx1, stx2). Genomes not falling into one or more of these
pathotypes were classified as “other”.

Human Cytokine Analysis
Cell-free basolateral T84 supernatants were analyzed in duplicate
using the Bio-Plex Pro™ Human Chemokine Panel, 40-Plex Kit
(#171AK99MR2; Bio-Rad, Hercules, CA), and the Bio-Plex 200
Multiplex Reader (Bio-Rad), according to the manufacturer’s
instructions. Concentration in range values were used for
analysis to identify differences in cytokine expression among
the uninfected and infected T84 cells. Samples from three
independent experiments were analyzed in duplicate and
graphed using GraphPad Prism 6 (GraphPad Software, La
Jolla, CA). For samples where every value was out of range,
indicating very low levels of cytokine production, a value of 0.1
was substituted for statistical analysis. The data are expressed as
the means of the concentrations (pg/ml) ± standard errors of the
mean (SEM). Statistical significance was assessed at a p value of
<0.05 by one-way ANOVA with Tukey’s multiple comparisons
test using Graphpad Prism 6.
RESULTS

Gene Homologs in the E. coli Strains
Two non-O157 STEC strains and one commensal E. coli strain
were selected for this study. Both STEC strains, STEC O26:H11
strain 97-3250, and STEC O145:H28 strain 4865/96, are LEE-
October 2020 | Volume 10 | Article 575630
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positive strains with a known association with HUS. However,
the two STEC strains belong to different E. coli phylogroups.
STEC 97-3250 clusters with phylogroup B1, while STEC O145:
H28 clusters with phylogroup E. The commensal E. coli strain HS
belonging to phylogroup A was used for comparison. To enable
transcriptional response comparisons among the strains, gene
homologs were identified in the genomes of the three strains
using megablast matching of nucleotide sequences of annotated
open reading frames in the genomes (Figure 1A). The number of
genes, after removal of rRNA genes, is 5,938, 5,023, and 4,604 for
strains 97-3250, 4865/96, and HS, respectively (Table 1). Of
these, 3,419 genes are shared between all three strains and 608
genes are shared between the two STEC strains, exclusive of HS.
The genome of each strain contains over 800 unique genes.

Global Transcriptional Responses
The STEC and commensal E. coli strains were used in in vitro
infection experiments with polarized T84 colonic IECs. Genes
within the LEE PAI are expressed during planktonic growth in
virulence-promoting conditions as used in this study and found
to be most highly expressed in late exponential growth phase but
decreasing after adherence to IECs (Knutton et al., 1997; Hazen
et al., 2015; Yang et al., 2015). We reasoned that some other
virulence genes are also likely to exhibit greater expression
differences between these two conditions. Thus, to maximize
the possibility of discovering novel virulence genes in the STEC
strains, we utilized RNA-Seq to compare E. coli transcriptomic
results between late exponential planktonic growth and 3 h after
infection with IECs. The global transcriptomes were determined
for each of the three strains for both conditions, and significantly
differentially expressed genes (DEGs) in adhered E. coli
compared to planktonic E. coli were identified. Gene homolog
matches among the three strains were used to determine shared
DEGs (Figure 1B). RNA-Seq analysis identified 472 DEGs
shared between the STEC strains, and of those, 76 do not have
a homolog in HS. The HS genome does carry a homolog for the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
remaining 396 DEGs, but only 249 of those genes are also
differentially expressed in HS. The number of DEGs for each
strain were 1,877 (31.6%), 894 (17.8%), and 1,239 (26.9%) for
strains 97-3250, 4865/96, and HS, respectively (Table 1). For all
three strains, the number of upregulated genes was higher than
the downregulated genes, but the difference was small,
particularly in 97-3250 where it was only 23 genes. Variability
in expression patterns for adhered compared to planktonic E. coli
was observed among the strains. Of the 249 DEGs shared among
all three strains, not all exhibited a fold change in the same
direction and/or with similar magnitude. For some genes,
disparity was observed between the transcriptional responses of
the two STEC strains, and in others, the two STECs displayed a
similar response that was different than that observed for HS. To
determine the main biological functions of the DEGs, the genes
were mapped to terms in the Gene Ontology (GO) database. For
genes that could be classified, the percentage of DEGs was
determined for each of the three main categories: biological
process (Figure 2A), molecular function (Figure 2B), and
cellular component (Figure 2C). In general, the percentages
for the classifications in the three strains were similar, with
metabolic process, cellular process, and localization having the
highest percentages in the biological process category and
binding, catalytic activity, and transporter activity in the
molecular function category. Interestingly, for two of the
subcategories, namely, localization within biological process
A B

FIGURE 1 | Comparison of genomic content and differentially expressed genes in the STEC strains and commensal E. coli HS. (A) Venn diagram comparing the
number of shared and unique genes among the two STEC and HS strains. DNA homology of open reading frames among the strains was used to determine gene
homologs. The rRNA genes are not included. (B) Venn diagram comparing the number of shared and unique differentially expressed genes for adhered compared to
planktonic conditions among the STEC and HS strains.
TABLE 1 | Number of genes in the E. coli genomes and genes differentially
expressed in adhered compared to planktonic conditions.

E. coli strain Genes1 DEGs2 (up/down)

STEC O26:H11 strain 97-3250 5,938 1,877 (950/927)
STEC O145:H28 strain 4865/96 5,023 894 (486/408)
E. coli O9:H4 strain HS 4,604 1,239 (688/551)
Octob
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and transporter activity within molecular function, there was a
greater percentage of upregulated compared to downregulated
genes for 4865/96, while the reverse was observed for HS. The
greatest percentage of DEGs in the cellular component category
was classified as membrane and intrinsic component of the
membrane, and there was a higher percentage of upregulated
compared to downregulated DEGs.

Selected Biochemical Pathways and
Genes Exhibiting Different Expression
Patterns Between the STEC Strains and
the Commensal E. coli Strain
The RNA-Seq results were examined for genes that were
regulated similarly in the STEC strains but either in the
opposite direction than observed for HS or to a dissimilar
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
extent. In particular, two biochemical pathways, the arginine
biosynthesis/import and tryptophan biosynthesis/import
pathways, demonstrated considerable disparity in differential
expression patterns between the two STECs and the
commensal HS (Figure 3, Table 2). Nearly all of the genes
involved in arginine biosynthesis were more highly transcribed
in adhered E. coli cells compared to planktonic cultures in the
STEC strains compared to HS. In addition, the art genes,
involved in importing arginine from the environment, and
arcD, the gene encoding the arginine:ornithine antiporter that
concurrently exports ornithine while importing arginine were
more highly transcribed in the adhered compared to planktonic
STEC cells in contrast to HS. However, argR, encoding the
arginine repressor, was not differentially expressed. The
polyamine putrescine can be synthesized from ornithine or
A B

C

FIGURE 2 | Biological functions of differentially expressed genes. Genes differentially expressed by each of the STEC or commensal E. coli adhered to T84 IECs
compared to planktonic culture were classified using the Gene Ontology (GO) database. The number of upregulated and downregulated genes classified in each
category were used to determine percentages in subcategories within the three main categories in the GO database: (A) biological process, (B) molecular function,
and (C) cellular component.
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agmatine (Figure 3) as well as imported from the environment.
The transcription of genes involved in the conversion of arginine
or ornithine to putrescine is unchanged in 4865/96 and HS, and
speE, encoding the enzyme required for synthesis of spermidine
from putrescine, is downregulated. However, the genes involved
in the synthesis of putrescine and spermidine are upregulated in
97-3250. Importantly, although the transcription of genes used
for the synthesis of polyamines is unchanged in HS, import of
polyamines utilizing both the importers encoded by yeeF and the
pot genes is downregulated, while it is upregulated in 97-3250
and either unchanged or downregulated to a lesser extent in
4865/96 than in HS. The tryptophan biosynthesis pathway was
dramatically downregulated in adhered HS compared to
planktonic culture, while for both STEC strains, transcription
of the genes in the pathway was either increased, unchanged, or
in the case of trpA, decreased but to a much lesser extent than
observed for HS (Table 2). Transcription of mtr, encoding a
tryptophan importer, was also significantly decreased in adhered
HS, but increased in both STECs. Additionally, transport of other
biomolecules was regulated differently in the STECs compared to
HS. Dipeptide transport using the product of the dpp genes, as
well as expression of ompF, was downregulated to a greater
extent in HS in comparison to the STECs. The mgtA gene,
encoding a transport protein mediating import of magnesium,
was more highly expressed in adhered STEC compared to
planktonic culture, while expression was unchanged in HS.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
Pronounced disparity in transcriptional responses between the
STECs and HS were also observed for the pstSCAB-phoU operon
and the two-component regulatory system encoded by phoBR
that control the phosphate regulon. Aspartate kinase catalyzes
the first reaction in the aspartate pathway in which aspartic acid
is metabolized to produce the amino acids lysine, threonine,
methionine, and isoleucine. The gene encoding aspartate kinase,
thrA, was downregulated in the adhered STEC strains, while not
differentially expressed in HS.

Contrasting Expression Patterns Were
Observed for Genes Involved in
Respiration
Although all three E. coli strains displayed marked differences in
the use of respiratory pathways when converting from a
planktonic to an adhered lifestyle, there was variability in gene
expression changes associated with aerobic and anerobic
respiration among them (Table 3). Contrasting transcriptional
responses were observed among the three strains for genes
encoding the transcription factors fnr and arcA that facilitate
metabolic shifts between aerobic and anaerobic conditions (Lin
and Iuchi, 1991; Jiang et al., 2015). While there were genes or sets
of genes encoding subunits of larger proteins that were regulated
similarly in the STECs, but different than HS, overall there was
no distinguishing transcriptional pattern differentiating the
STEC strains from HS. For example, all of the nuo genes that
FIGURE 3 | Differential expression of genes in the arginine and polyamine biosynthesis pathway in E. coli. Fold changes between the adhered and planktonic states
for genes in the biosynthesis of arginine and polyamines were determined and are indicated next to the respective gene in the diagram. Numerical values for which
the FDR adjusted p value < 0.05 are included, otherwise an asterisk is included instead. Fold change values are listed in descending order for strains 97-3250 (bold
font), 4865/96 (standard font), and HS (italic font).
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encode the NADH ubiquinone oxidoreductase respiratory
complex I involved in aerobic respiration were downregulated
to a greater extent in HS than observed for the STEC strains.
However, transcription of cytochrome oxidase, encoded by
cyoABCD, was decreased to a greater extent in 4865/96 and HS
than in 97-3250. Genes involved in anaerobic respiration
utilizing, for example, glycerol, lactate, and formate are
regulated to different magnitudes among the strains under the
two conditions tested. At 3 h post infection, expression of the
genes encoding formate hydrogenlyase, which is involved in
anaerobic oxidation of formate, was considerably higher in 4865/
96 and HS, but not differentially expressed in 97-3250.
Expression of the glpABC operon, encoding the glycerol 3-
phophate dehydrogenase utilized in anaerobic respiration was
downregulated in both STECs, while not in HS. In contrast, glpD,
involved in aerobic respiration, was upregulated in 97-3250 and
HS, but not 4865/96. Additionally, the DEGs, narG and napA,
involved in anaerobic nitrate respiration were transcribed with
considerable differences between the STECs and HS. In general,
the fold change values exhibited by 4865/96 and HS were greater
in magnitude, suggesting a greater shift in metabolic pathways
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
used for respiration between planktonic growth and adhered
cells than for 97-3250.

Transcriptional Changes in STEC
Virulence Genes Commonly Used for
Risk Assessments
The subset of genes shared between the STEC strains, but absent
from the HS genome, includes known E. coli virulence factors.
We examined selected virulence factors commonly used to assess
human pathogenicity for differential expression in STEC upon
adherence for 3 h to T84 IECs. STEC strain 97-3250 carries two
Stx alleles, stx1a and stx2a, while 4865/96 carries only stx2a. The
transcript containing the A subunit of stx1a in 97-3250 was not
differentially expressed, while expression of the B subunit was
downregulated 2.64-fold. For stx2a, neither subunit was
differentially expressed in either of the STECs, which is not
unexpected. The LEE PAI contains genes involved in intimate
adherence to colonic epithelial cells as well as genes encoding
effector proteins. All the genes located within the LEE PAI were
downregulated in both STECs, with fold change values ranging
from −10.91 (ler) to −75.25 (escI) for 97-3250 and −3.85 (ler) to
TABLE 2 | Selected biochemical pathways or genes exhibiting similar differential expression patterns for adhered compared to planktonic conditions in the STEC strains
and in contrast to the commensal HS strain.

Gene Function Fold change 97-3250 Fold change 4865/96 Fold change HS

artJ Arginine transporter (uptake) 11.25 10.30 8.94
artM Arginine transporter (uptake) 2.90 3.49 −2.22
artQ Arginine transporter (uptake) 2.42 2.64 −1.89
artI Arginine transporter (uptake) 1.83 NS −2.03
artP Arginine transporter (uptake) 3.40 3.92 NS
arcD Arginine:ornithine antiporter 7.69 2.01 NS
adiC Arginine:agmatine antiporter 20.58 53.51 33.29
yeeF Putrescine importer 4.48 −2.53 −6.81
potA Putrescine and spermidine import 3.05 NS −1.89
potB Putrescine and spermidine import 3.57 NS −3.34
potC Putrescine and spermidine import 2.33 NS −3.36
potD Putrescine and spermidine import −1.60 −2.83 −6.42
puuA Synthesis of glutamate from putrescine 5.23 5.64 NS
trpA Tryptophan biosynthesis −3.34 NS −98.96
trpB Tryptophan biosynthesis NS NS −99.23
trpC Tryptophan biosynthesis NS NS −44.56
trpD Tryptophan biosynthesis 3.82 2.21 −68.24
trpE Tryptophan biosynthesis 10.86 9.71 −135.51
mtr Tryptophan transport 3.98 2.91 −23.20
tnaA Synthesis of indole from tryptophan −4.99 −7.75 NS
dppA Dipeptide transport and peptide chemotaxis −5.46 −1.78 −5.74
dppB Dipeptide transport and peptide chemotaxis −2.29 −2.09 −11.86
dppC Dipeptide transport and peptide chemotaxis −2.96 −2.37 −26.14
dppD Dipeptide transport and peptide chemotaxis −4.69 −2.90 −27.34
dppF Dipeptide transport and peptide chemotaxis −3.68 −3.38 −21.86
mgtA Magnesium import into cytosol 13.51 6.32 NS
ompF Transport porin regulating osmotic pressure −14.77 −15.25 −30.85
phoU Negative regulator of the Pho regulon −3.08 −3.54 −33.63
phoB Response to extracellular phosphate concentration 1.92 NS −10.84
phoR Response to extracellular phosphate concentration NS NS −15.32
phoA Alkaline phosphatase (dephosphorylation in the periplasm) −2.86 −2.35 −68.12
pstA Transport of inorganic phosphate and negative regulation of the Pho regulon NS NS −44.88
pstB Transport of inorganic phosphate and negative regulation of the Pho regulon −1.58 −2.92 −34.43
pstC Transport of inorganic phosphate and negative regulation of the Pho regulon NS NS −38.80
pstS Transport of inorganic phosphate and negative regulation of the Pho regulon NS NS −80.92
thrA Phosphorylation of aspartate −4.08 −5.89 NS
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TABLE 3 | Differential expression of E. coli genes involved in respiration for adhered compared to planktonic conditions.

Gene Function Fold change 97-3250 Fold change 4865/96 Fold change HS

arcA aerobic respiration control NS NS 2.40
arcB aerobic respiration control sensor −2.13 NS 1.72
Fnr fumarate and nitrate reduction regulatory protein 3.74 NS NS
cyoA cytochrome o ubiquinol oxidase subunit −5.34 −5.75 −4.23
cyoB cytochrome o ubiquinol oxidase subunit −4.65 −16.04 −12.83
cyoC cytochrome o ubiquinol oxidase subunit −1.94 −24.24 −16.22
cyoD cytochrome o ubiquinol oxidase subunit NS −52.90 −28.91
fumA fumarate hydratase NS v3.36 −5.69
glpD glycerol-3-phosphate dehydrogenase 7.09 NS 4.84
maeB malate dehydrogenase −3.03 −3.30 1.98
acsA acetyl-CoA synthetase 2.04 −2.97 −4.97
nuoA NADH:ubiquinone oxidoreductase subunit NS −2.14 −3.47
nuoB NADH:ubiquinone oxidoreductase subunit −1.80 −3.17 −4.48
nuoC NADH:ubiquinone oxidoreductase subunit NS −3.44 −5.02
nuoE NADH:ubiquinone oxidoreductase subunit −2.34 −3.90 −6.68
nuoF NADH:ubiquinone oxidoreductase subunit −2.36 −3.82 −7.77
nuoG NADH:ubiquinone oxidoreductase subunit −2.14 −3.26 −6.17
nuoH NADH:ubiquinone oxidoreductase subunit −2.29 −2.69 −7.36
nuoI NADH:ubiquinone oxidoreductase subunit −2.70 −3.04 −6.05
nuoJ NADH:ubiquinone oxidoreductase subunit −2.53 −2.61 −7.01
nuoK NADH:ubiquinone oxidoreductase subunit −2.75 −2.66 −9.13
nuoL NADH:ubiquinone oxidoreductase subunit −2.79 −2.43 −6.93
nuoM NADH:ubiquinone oxidoreductase subunit −2.47 −2.79 −5.06
nuoN NADH:ubiquinone oxidoreductase subunit −1.99 −2.46 −4.90
cydA cytochrome d ubiquinol oxidase subunit NS NS NS
cydB cytochrome d ubiquinol oxidase subunit NS NS NS
narG Anaerobic nitrate respiration 2.30 NS 23.23
narZ Nitrate reductase 2.22 3.83 2.31
napA Anaerobic nitrate respiration −3.38 −4.26 −25.12
dmsA Reduction of DMSO during anaerobic respiration −5.79 −8.94 NS
dmsB Reduction of DMSO during anaerobic respiration −5.17 −5.03 NS
dmsC Reduction of DMSO during anaerobic respiration −3.60 NS NS
glpA Anaerobic glycerol 3-phophate dehydrogenase −5.94 −26.77 NS
glpB Anaerobic glycerol 3-phophate dehydrogenase −4.62 −14.54 NS
glpC Anaerobic glycerol 3-phophate dehydrogenase −3.10 −8.37 NS
adhE acetaldehyde dehydrogenase −7.97 NS 3.78
ackA Acetate kinase NS 2.34 NS
ndh NADH dehydrogenase II 3.77 5.48 2.61
aceE Pyruvate dehydrogenase 2.69 NS NS
idhA D-lactate dehydrogenase NS NS 4.68
hyaA hydrogenase −19.97 100.15 222.24
hyaB hydrogenase −12.06 103.30 346.63
frdA fumarate reductase −14.85 −5.18 NS
frdB fumarate reductase −10.49 NS 2.14
frdC fumarate reductase −10.21 NS 2.50
frdD fumarate reductase −7.06 NS NS
hypA Maturation of formate dehydrogenlyase −11.77 NS 2.29
hypB Maturation of formate dehydrogenlyase −6.23 NS 4.48
hypC Maturation of formate dehydrogenlyase −5.72 NS 3.51
hypD Maturation of formate dehydrogenlyase −3.84 NS 4.26
hypE Maturation of formate dehydrogenlyase −2.05 NS 4.76
fdhF formate dehydrogenase 2.18 −13.62 −3.08
hycA formate hydrogenlyase NS 94.92 90.19
hycB formate hydrogenlyase NS 35.49 1,656.22
hycC formate hydrogenlyase NS 30.91 83.73
hycD formate hydrogenlyase NS 33.74 216.46
hycE formate hydrogenlyase NS 30.57 93.44
hycF formate hydrogenlyase NS 35.73 784.84
hycG formate hydrogenlyase NS 10.03 18.65
hycH formate hydrogenlyase NS 12.16 18.28
hycI formate hydrogenlyase NS 4.63 8.73
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−48.05 (eae) for 4865/96. In addition to virulence genes carried
in the STEC chromosome, ehxA, catalase-peroxidase (katP), and
an extracellular serine protease autotransporter (espP) are carried
on a large virulence plasmid harbored in many pathogenic STEC
strains. The ehxA gene was downregulated in both STEC strains,
with fold changes of −5.32 and −2.16 in 97-3250 and 4865/96,
respectively. The katP gene on the plasmid harbored in 97-3250
was not differentially expressed and 4865/96 does not carry katP.
The espP gene was not differentially expressed in STEC 4865/96,
while it was downregulated 3.91-fold in 97-3250.

DEGs With No E. coli HS Homolog
Potentially Involved in STEC Pathogenesis
In addition to the genes within the LEE PAI, the STEC strains
shared 48 DEGs with noHS homolog. However, for six of the genes,
the transcript was regulated in the opposite direction between the
STEC strains, leaving 42 DEGs unique to the STEC strains with
expression in both strains either increased or decreased upon 3 h
adherence. To further corroborate that these 42 DEGs represent
genes potentially contributing to pathogenesis in humans, we
performed infection experiments utilizing polarized Caco-2 IECs,
thereby reducing specific STEC-IEC and STEC-media type
interaction effects. As for the transcriptomic experiments utilizing
T84 IECs, DEGs were identified from a comparison of 3 h infections
utilizing polarized Caco-2 IECs and STEC grown in planktonic
culture. The resulting adhered versus planktonic transcriptional
responses were compared to the T84 IEC results. Of the 42
DEGs, 20 genes were observed to be differentially expressed in
both STECs and in the same direction as was observed in the T84
IEC experiments, with nine upregulated genes and 11
downregulated genes (Table 4). Protein sequences of the
translated nucleotide sequences were used to verify or identify the
genes utilizing BLASTp searches of the non-redundant protein
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
sequence database at NCBI. Known virulence genes are included
in the subset of genes, for example, ehxA and perC. Also included
were the tellurite resistance genes terZ, terA, and terB, reported to
also be involved in colicin resistance (Whelan et al., 1995) and
increased resistance to oxidative stress caused by hydrogen peroxide
(Valkova et al., 2007). There are two diacylglycerol kinase genes in
both STECs, but only one copy in HS. The dgkA genes in the STEC
strains with closest sequence homology to dgkA in HS were not
differentially expressed; however, transcription of the second copy is
reduced in the STECs (Table 4). Additionally, lpxR, a gene encoding
a CAAX protease (Jandu et al., 2009), the P4 integrase gene,
necessary for phage excision, and a gene with locus tag
DA88_06695 encoding a protein with sequence homology to
alpha/beta hydrolases but with unknown function, were expressed
to a lesser extent in adhered compared to planktonic STEC cells. In
contrast, other genes were upregulated after 3 h of infection. The
immunoglobulin-binding regulator encoded by ibrB and a gene
encoding colanic acid biosynthesis pyruvyl transferase, wcaK,
demonstrated increased expression. A gene encoding a
diguanylate cyclase was also upregulated, as well as yhiM,
encoding an inner membrane protein with roles in acid resistance
and in regulating growth of E. coli in conditions of low osmolarity
and high temperature (Anderson et al., 2017). In addition, the gene
identified as yahM, encoding an uncharacterized protein, was more
highly transcribed. The IncFII plasmid replication initiator gene,
repA, was also upregulated after 3 h of infection, however, mobC,
involved in plasmid mobilization, was downregulated.

DEGs Representing Novel
E. coli Virulence Genes
Along with genes of known or putative function that are
differentially expressed in the same direction in both STEC
strains upon adherence to both T84 and Caco-2 IECs, three of
TABLE 4 | Genes with no homolog in E. coli HS exhibiting differential expression in both STEC strains when adhered to both T84 and Caco-2 colonic epithelial cells
compared to planktonic culture.

97-3250
Locus tag

4865/96
Locus tag

Gene Function FC 97-3250
T84

FC 97-3250
Caco-2

FC 4865/96
T84

FC 4865/96
Caco-2

DA88_01700 DC23_13485 hyp1 hypothetical protein 10.47 3.91 2.42 4.18
DA88_06695 DC23_04790 alpha/beta hydrolase, function unknown −4.54 −7.45 −5.22 −4.86
DA88_11325 DC23_02285 hyp2 hypothetical protein −5.97 −4.11 −2.29 −4.96
DA88_13870 DC23_23830 dgkA diacylglycerol kinase −3.83 −2.25 −2.22 −2.60
DA88_14020 DC23_10555 terZ tellurite resistance −5.87 −5.06 −4.99 −5.94
DA88_14025 DC23_10550 terA tellurite resistance −3.34 −4.75 −3.35 −4.40
DA88_14030 DC23_10545 terB tellurite resistance −4.17 −3.58 −2.14 −3.97
DA88_14145 DC23_03940 ibrB immunoglobulin binding regulator 3.12 7.50 2.43 2.83
DA88_14150 DC23_03945 perC transcriptional regulator 2.83 7.63 2.52 4.26
DA88_14155 DC23_03950 hyp3 hypothetical protein 2.54 3.65 3.31 2.93
DA88_14780 DC23_01755 int bacteriophage P4 integrase −2.62 −2.57 −2.12 −2.84
DA88_15545 DC23_10065 wcaK colanic acid biosynthesis pyruvyl transferase 122.26 15.65 3.55 2.16
DA88_18555 DC23_22785 yhiM environmental stress response 9.71 57.85 11.76 4.73
DA88_20255 DC23_11075 yahM function unknown 2.52 8.11 3.72 9.13
DA88_26845 DC23_21615 CAAX protease −13.35 −4.23 −5.82 −3.42
DA88_27945 DC23_14280 diguanylate cyclase 2.35 2.34 3.56 2.41
DA88_28745 DC23_18250 ehxA enterohemolysin A −5.32 −2.27 −2.16 −2.25
DA88_29555 DC23_13320 mobC plasmid mobilization −7.57 −4.73 −3.12 −2.64
DA88_30375 DC23_03830 lpxR lipid A 3-O-deacylase −9.22 −24.09 −35.96 −11.48
DA88_31020 DC23_01930 repA IncFII plasmid replication initiation 2.13 3.26 2.24 5.15
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the DEGs represent hypothetical proteins (Table 4). These genes,
referred to as hyp1, hyp2, and hyp3, are potentially novel virulence
genes involved in pathogenesis in humans. However, the
experiments undertaken in the present study include only two
STEC strains and one commensal E. coli strain, thus, to
substantiate the possibility that these genes may represent novel
virulence genes, a total of 25,527 genomes were analyzed
representing all known E. coli phylogroups as well as
Escherichia cryptic lineages 1 and 6. To compare the presence of
the three hypothetical genes in the different E. coli pathotypes with
the presence of known virulence genes, all 20 genes in Table 4
were included in the analysis. Of the 25,527 genomes, hyp1, hyp2,
and hyp3 were present in 3714, 3667, and 5475 E. coli genomes,
respectively (Figure 4A). For the genomes possessing hyp1 and
hyp2, over 88% were classified as AEEC and/or STEC, while less
than 1% of the genomes were classified as “other”. Note that a
subset of STEC carry the LEE PAI, thus are also classified as
AEEC, resulting in an overlap between the pathotypes as defined.
The hyp3 gene was present in a greater number of genomes and
58% were classified as STEC, while 14% of the genomes contain
no pathotype-specific molecular markers. These results are
consistent with those obtained for known virulence genes in the
query set, however they do not demonstrate how widespread the
three hyp genes are within the STEC pathotype. Thus, to further
investigate, the percent of genomes of a given pathotype that are
positive for each of the 20 genes was determined (Figure 4B). The
results reveal that over 61% of STEC genomes carry at least one of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
the genes. In addition to STEC and AEEC, hyp2 is carried by
10.6% of ExPEC genomes. The hyp3 gene has a higher occurrence
in a wider variety of pathotypes, notably in 82.6% of EAEC
genomes. The hyp1 and hyp2 genes are almost exclusive to E.
coli genomes that are classified as human pathogens, while hyp3
was discovered in 7.0% of genomes carrying no molecular
markers defining the genome as a known E. coli pathotype. The
genomic location of the three hypothetical genes was examined
using the closed STEC O26:H11 strain 11368 genome (accession
#AP010953.1) as a reference strain. Analysis revealed two of the
genes to be carried on prophages. The hyp1 gene has homolog
ECO26_2650 and is within prophage ECO26_P14 inserted at
ryeB, and the hyp2 gene has homolog ECO26_1103 and is within
prophage ECO26_P03 inserted at yccA. The other gene, hyp3, with
homolog ECO26_1340, is located in the tellurite adherence island
(TAI) ECO26_IE02 inserted at serX. The sequences of the contigs
containing the three hyp genes in the draft genomes of 97-3250
and 4865/96 are consistent with the hyp genes having locations
within these mobile genetic elements.

Cytokine and Chemokine Expression in
Polarized IECs
To determine whether the polarized IEC line T84 is a good
model to screen for pathogenicity of individual non-O157 STEC
strains, basolateral supernatants from uninfected T84 cells and
T84 cells infected with HS, 97-3250, or 4865/96 were analyzed
for cytokine biomarker expression using a multiplex assay of 40
A

B

FIGURE 4 | Presence of selected genes in E. coli genomes by pathotype. The STEC strains 97-3250 and 4865/96 were used in T84 and Caco-2 IEC infections and
genes differentially expressed in infections for both IEC lines were determined. For each of the genes, the nucleotide sequences from 97-3250 were used in
megablast queries performed on a database of 25,527 E. coli genomes. Percentages of (A) E. coli pathotypes comprising the positive matches and (B) genomes
within a pathotype in which the gene is present were determined.
October 2020 | Volume 10 | Article 575630

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Harrison et al. Comparative Transcriptomics of STEC
cytokines (Table S1). Cytokine data sets having fewer than two
data points or where the highest concentrations were less than 10
pg/ml, were excluded from further analyses. The remaining
cytokine profiles (24 data sets) were compared for differences
between uninfected and infected T84 cells as well as differences
between IECs infected with HS and the STEC strains. In almost
half of the cytokine profiles analyzed, infection with HS, 97-3250,
or 4865/96 resulted in significantly lower levels of several
cytokines (CCL27, CCL11, CXCL6, IL-10, IL-16, CCL7,
CXCL9, CCL23, CCL17, & CCL19) compared to uninfected
cells, and these cytokine levels were no greater than 20 pg/mL
in infected cells (data not shown), except for CXCL1 and
CXCL12 (Figure 5). For cytokine profiles CCL1, CCL20, and
CCL25, the levels from uninfected T84 cells and those infected
with 97-3250 were not significantly different (Figure 6).
Similarly, the cytokine levels produced by T84 cells infected
with HS and 4865/96 did not differ significantly. However, the
cytokine levels from both uninfected and 97-3250-infected T84
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
cells were significantly different from both HS- and 4865/96-
infected T84 cells (Figure 6). Only two cytokine profiles, CCL21
and CXCL5, demonstrated a pattern where cytokine levels
produced by uninfected T84 cells were significantly higher
than those infected with HS or 4865/96, but significantly lower
than T84 cells infected with 97-3250 (Figures 5, 6). Conversely,
for only one cytokine, MIF, a pattern was observed where
cytokine levels in uninfected T84 cells were significantly lower
than those infected with HS and 4865/96, but significantly higher
than those infected with 97-3250 (Figure 5). In the remaining six
cytokine profiles (CX3CL1, IL-1b, CXCL8, CXCL11, CCL15, and
CXCL16), the cytokine levels from T84 cells infected with 97-
3250 were significantly higher than levels from uninfected T84
cells and those infected with HS or 4865/96 (Figures 5, 6).
Furthermore, the cytokine levels from the uninfected T84 cells
and T84 cells infected with HS or 4865/96 were not significantly
different from each other and were expressed at relatively low
levels compared to cells infected with 97-3250 (Figures 5, 6).
FIGURE 5 | Secretion of PMN- and Monocyte-specific cytokines by polarized T84 cells. Polarized T84 cells were uninfected (DMEM/F12 + BS) or apically infected
with commensal E. coli strain HS, or STEC strains 97-3250 or 4865/96 at a MOI of 100. Basolateral supernatants were collected after 3 h and analyzed using a
human cytokine multiplex assay. Data are presented as a mean value of each cytokine ± standard error of the mean (n = 3). An asterisk (*) denotes significant
differences from uninfected controls (p value < 0.01). A number sign (#) denotes significant differences between 97-3250 and either HS or 4865/96 infections (p value
< 0.0001).
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DISCUSSION

Expression Comparisons Between the
STECs and Commensal E. coli HS
Interestingly, despite a larger gene repertoire, transcriptomic
analysis demonstrated that the pathogenic STEC strain 4865/96
had a significantly lower percentage of DEGs than the commensal
E. coli HS in transitioning between planktonic and adhered
conditions, whereas STEC 97-3250 had a greater percentage
(Table 1, Figure 1A). While we observed considerable differences
in global transcriptional responses among the three strains as
evidenced by the number of genes that were differentially
expressed in only one or two strains (Figure 1B), the DEGs were
classified similarly overall by GO analysis into categories that would
be expected when transitioning from a planktonic to adhered
lifestyle (Figures 2A–C). The Pho regulon includes a large
network of genes associated with many metabolic processes and
adaptive responses. In addition, numerous studies have
demonstrated that the Pho regulon is linked to a more complex
network of genes influencing bacterial pathogenesis including the
LEE genes and other virulence attributes (Cheng et al., 2009; Crepin
et al., 2011; Chekabab et al., 2014; Santos-Beneit, 2015). The
disparate transcriptional responses of phoBR and pstSCAB
between the STECs and HS (Table 2) may indicate that the Pho
regulon plays a critical role in STEC survival and colonization in the
human gut.

Metabolic pathways are a category where our RNA-Seq
results demonstrated significant diversity among the three
E. coli strains (Table 3). Metabolic diversity and/or shifts in
metabolism during infection and successful colonization among
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 13
STEC strains and among other E. coli pathotypes have been
observed in various in vitro and in vivo studies (Alteri et al., 2009;
Kim et al., 2009; Maltby et al., 2013; Pieper et al., 2013; Hazen
et al., 2015; Schinner et al., 2015; Chen et al., 2020). Additional
studies demonstrate that some Stx2a phages impact carbon
source utilization by E. coli (Berger et al., 2019), and that PerC
in EPEC also affects transcription of genes involved in
metabolism (Mellies et al., 2017). The STEC strains utilized in
our study carry multiple phages and perC homologs, cluster with
different phylogroups, and have unique gene content, which
taken together create the possibility of transcriptional
responses of various genes contributing in ways that result in
individual carbon usage patterns. Greater E. coli pathogenicity
may not be associated with a particular pattern of metabolism,
rather, metabolic diversity compared to resident commensal
E. coli and other microflora would be advantageous and may
allow an STEC strain with a unique carbon and nitrogen
utilization pattern to gain a foothold and colonize the human
colon. Our results are consistent with the idea that the two STEC
strains used in our study employ differing metabolic
transcriptional strategies for host infection.

Amino acids can serve as sources of carbon and nitrogen along
with their role in protein synthesis. Arginine, in particular, plays
additional vital roles in bacterial cell survival, such as its use in
imparting acid resistance (Kanjee and Houry, 2013; Charlier and
Bervoets, 2019) and as a substrate for the synthesis of the
polyamines putrescine and spermidine (Igarashi and Kashiwagi,
2018; Charlier and Bervoets, 2019). With the increased
transcription of arginine biosynthesis genes along with uptake of
extracellular arginine demonstrated in our RNA-Seq results
FIGURE 6 | Secretion of T cell- and DC-specific cytokines by polarized T84 cells. Polarized T84 cells were uninfected (DMEM/F12 + BS) or apically infected with
commensal E. coli strain HS, or STEC strains 97-3250 or 4865/96 at a MOI of 100. Basolateral supernatants were collected after 3 h and analyzed using a human
cytokine multiplex assay. Data are presented as a mean value of each cytokine ± standard error of the mean (n = 3). An asterisk (*) denotes significant differences
from uninfected controls (p value < 0.01). A number sign (#) denotes significant differences between 97-3250 and either HS or 4865/96 infections (p value < 0.0001).
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(Table 2, Figure 3), the STECs possess a greater quantity of
arginine in the adhered state versus planktonic conditions than
HS. Arginine can be used by E. coli for the synthesis of polyamines,
and polyamines have been shown to increase general protein
synthesis and in particular to stimulate the translation of a specific
set of proteins involved in increasing cell viability and biofilm
formation during stationary phase in E. coli (Igarashi and
Kashiwagi, 2018). Extracellular arginine can be utilized by IECs
to either synthesize polyamines, which are vital for IEC
proliferation, or to generate nitric oxide (NO), a host defense
against pathogens. While some pathogens modulate the quantity
of NO produced by host cells either by expressing an arginase gene
encoding an enzyme used in the pathway for polyamine
biosynthesis from the substrate arginine, or by upregulating host
cell arginase (Das et al., 2010), previous studies have demonstrated
that the extracellular intestinal pathogen Giardia decreases NO
production by IECs by actively importing arginine, thus reducing
the arginine available to the IECs (Eckmann et al., 2000;
Stadelmann et al., 2012; Stadelmann et al., 2013). This
competition for arginine between the pathogen and IECs also
reduces the arginine available for polyamine biosynthesis by the
IECs, leading to reduced IEC turnover which may aid in pathogen
colonization (Stadelmann et al., 2012). Our results demonstrate
that in transitioning from planktonic growth to IEC adherence,
the STEC strains scavenge both arginine and polyamines to a
greater extent than HS, which downregulated their import (Table
2). Limiting the generation of NO by IECs serves yet another
purpose in addition to cell survival for STEC. Inhibition of stx2
gene expression and phage synthesis by NO has been previously
demonstrated (Vareille et al., 2007), thus attenuation of NO
production by decreasing arginine availability to IECs affects not
only the ability of STEC to colonize and survive, but also
affects virulence.

Tryptophan is another important amino acid involved in
metabolic cross talk between host and pathogen (Ren et al.,
2018). Depletion of tryptophan available to IECs has been
demonstrated to lessen the host immune response (Kong et al.,
2018; Ren et al., 2018). When transitioning from a planktonic to
adhered lifestyle, the gene encoding the tryptophan importer Mtr
was upregulated in the STEC strains while considerably
downregulated in HS (Table 2), suggesting the STECs actively
compete with IECs for tryptophan in the adhered state to a much
greater extent than HS. Tryptophanase, encoded by tnaA and
decreased in transcription in the STECs (Table 2), catabolizes
tryptophan to indole, ammonia, and pyruvate which allows E.
coli to utilize tryptophan as a source of carbon and nitrogen in
addition to using it in protein synthesis (Yanofsky et al., 1991).
Indole facilitates inter- and intracellular signaling among
microbiota in the human intestine, and indole concentration
affects expression of genes associated with colonization and
virulence in pathogenic E. coli including the LEE genes and
stx2a (Lee and Lee, 2010; Bommarius et al., 2013; Platenkamp
and Mellies, 2018; Kumar and Sperandio, 2019). The
pronounced disparity between the STECs and HS in the
regulation of genes associated with tryptophan biosynthesis,
import, and catabolism when transitioning to an adhered
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 14
lifestyle will result in differing effects on the interplay between
the human host and E. coli cells.

The DppBCDF permease, in conjunction with the DppA
periplasmic substrate-binding protein, actively transports
dipeptides across the inner cell membrane. In vivo and in vitro
experiments have demonstrated the importance of dppA in
UPEC infection of the bladder and kidneys (Alteri et al., 2009),
and our results suggest the dppBCDF-dppA genes are also
important in STEC infection of IECs. Interestingly, DppBCDF-
DppA has been identified to function as an inner membrane
heme transporter in E. coli (Letoffe et al., 2006), and an outer
membrane heme receptor, ChuA, was identified in an STEC
O157:H7 strain (Torres and Payne, 1997). The chuA gene is
found more frequently in STEC isolates of serotypes typically
associated with severe disease including O145 strains, and heme
uptake is thought to be advantageous for colonization and
contribute to pathogenicity in STEC (Bosilevac and
Koohmaraie, 2011). Of the three E. coli strains included in this
study, 4865/96 is the only strain carrying chuA and transcription
is upregulated 10.39-fold after 3 h of infection. Despite lacking
chuA, many O26 strains have been observed to utilize exogenous
heme, suggesting an alternate gene for transport of heme through
the outer membrane (Kresse et al., 2007). The hma gene was
identified in UPEC as encoding an alternate heme receptor
(Hagan and Mobley, 2009), but none of the E. coli strains
utilized in our study carry a hma homolog. However, this does
not preclude the presence of an as yet unidentified heme
receptor. The dpp genes are downregulated to a lesser extent in
the STECs compared to HS after IEC infection (Table 2), and
this response may be due to a greater need for dipeptide
transport in the STECs upon adherence compared to HS, but
heme transport offers an alternate or additional explanation.

Expression of STEC Virulence Genes
The RNA-Seq results in this study are in agreement with many
previous studies that demonstrate the importance of the LEE PAI
and ehxA to STEC pathogenicity. The presence/absence patterns
observed from examining 25,527 E. coli genomes for the three
hypothetical DEGs identified as possible novel virulence genes
are comparable to those of other known virulence genes,
substantiating their identification as factors involved in STEC
pathogenicity (Figure 4). Furthermore, their location in mobile
genetic elements is consistent with identification as virulence
genes. Collectively, our results indicate that these three genes
represent novel E. coli virulence factors. Given that hyp2 is
downregulated in adhered compared to planktonic STEC cells,
the product of the hyp2 gene is likely important for survival and
initial adherence in the human gastrointestinal tract, while the
products of hyp1 and hyp3 would be predicted to be important
for maintaining colonization after initial adherence.

The transcriptomics results in this study demonstrate not only
the transcriptional regulation of commonly cited virulence factors
but also highlight the fact that STEC utilizes other defense
mechanisms to initially establish infection in the human host.
The product of the gene encoded in 97-3250 and 4865/96 by locus
tags DA88_26845 and DC23_21615, respectively, has been
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previously identified as a CAAX protease and potential virulence
factor involved in subversion of IFNg-Jak1,2-STAT-1 signaling
(Jandu et al., 2009). Our results corroborate the finding that this
protease is a virulence factor. The lipid A portion of
lipopolysaccharide (LPS) is recognized by the host innate
immune system resulting in production of pro-inflammatory
cytokines. In an attempt to evade detection by the host,
Helicobacter pylori, Yersinia enterocolitica, Vibrio cholerae,
Salmonella, and many STEC strains remodel the lipid A
structure, thereby attenuating the host inflammatory response
(Reynolds et al., 2006; Cullen et al., 2011; Ogawa et al., 2018).
Modification of lipid A is accomplished utilizing the 3'-O-
deacylase encoded by lpxR. Expression of lpxR is regulated by
Ler and Pch and is part of the virulence regulon including the LEE
genes (Ogawa et al., 2018), thus the downregulation of both the
LEE PAI and lpxR demonstrated in our work is internally
consistent. Diacylglycerol kinase, encoded by dgkA, is a small
enzyme spanning the inner cell membrane that plays a role in
lipid recycling during membrane-derived oligosaccharide
biosynthesis and in the recycling of diacylglycerol produced
during LPS biosynthesis (Van Horn and Sanders, 2012). The
second copy of dgkA, carried by the STECs but having less
sequence homology to the dgkA gene found in HS, was
downregulated in the STEC strains. An interrogation of 25,527
E. coli genomes demonstrated that this copy of dgkA is exclusive to
pathogenic E. coli, predominantly STEC or AEEC (Figure 4B).
Whether the second dgkA gene has the same physiological
function as the dgkA found in all E. coli genomes is unknown.
Finally, both the P4 integrase gene and mobC were expressed
more highly in planktonic STEC cells than after adherence to IECs
for 3 h, suggesting a higher rate of transfer of some mobile genetic
elements prior to establishment of infection.

In contrast to virulence factors more highly expressed before
adherence to IECs, transcription of other virulence factors was
increased after 3 h of infection (Table 4). These included the
transcriptional regulators perC and ibrB. The role of perC in
virulence and niche adaptation has been well described (Mellies
et al., 2017). In comparison to strains lacking ibrB, under inducing
conditions the presence of ibrB in the genome activates enhanced
expression of Eib on the bacterial cell surface (Sandt et al., 2002).
The gene encoding IbrB is not restricted genomically to STEC but,
similar to the terZAB and perC genes, is found in subsets of other
E. coli pathotypes as well as approximately 8% of the E. coli genomes
in our analysis carrying no pathotype-specific markers (Figure 4B).
Transcription of the gene wcaK in the colanic acid biosynthesis
pathway was also upregulated in the STECs after adherence to IECs
(Table 4). Colanic acid is a secreted exopolysaccharide establishing a
capsule around the bacterial cell that is protective from a variety of
environmental stresses and plays a role in biofilm formation (Mao
et al., 2001; Kocharunchitt et al., 2014; Miajlovic et al., 2014).
Although the colanic acid capsule is produced and confers
protection in the environment outside the human host, studies
have demonstrated that it is protective against the bactericidal effects
of serum in extraintestinal E. coli pathogens (Miajlovic et al., 2014;
Ma et al., 2018). Interestingly, although even commensal E. coli can
produce colanic acid, the sequence of wcaK carried in the STECs
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 15
used in our work is fairly restricted to STEC and other AEEC
genomes (Figure 4B). Whether this conveys any physiological
relevance is unknown. Finally, there were genes found in most
E. coli irrespective of pathotype, but not carried by HS, that were
determined to be important for colonization, namely yhiM, yahM,
and a diguanylate cyclase gene (Table 4, Figure 4B). E. coli genomes
carry a variety of diguanylate cyclase genes. Diguanylate cyclase is
involved in the synthesis of cyclic-di-GMP, a second messenger
signaling molecule that regulates various physiological functions
involved in the transition from a planktonic to sessile state (Hengge,
2009; Whiteley and Lee, 2015). Consistent with our work, several
diguanylate cyclase genes were identified as DEGs in transcriptomic
experiments comparing planktonic ETEC and ETEC adhered to
Caco-2 IECs (Kansal et al., 2013). Additionally, reduced intracellular
levels of cyclic-di-GMP have been demonstrated to reduce
adherence of STEC O157:H7 to HT-29 epithelial cells and cattle
colon explants (Hu et al., 2013).

Cytokine/Chemokine Responses from
IECs
We observed the differential induction of a range of cytokines/
chemokines following infection of polarized T84 IECs with
pathogenic STEC or commensal E. coli. The PMN chemoattractants
CXCL8, CXCL1, CXCL5, and CCL15 were differentially expressed in
T84 cells infected with 97-3250 compared toHS or 4865/96 (Figure 5).
While the role of epithelial-derived CXCL8/IL-8 in mucosal defense
and inflammatory responses related to STECs may not be fully
understood, its role in PMN recruitment during acute inflammation
is considered an important early component of host defense against
bacterial pathogens. Numerous studies have reported the involvement
of CXCL8/IL-8 in STEC pathogenesis including intestinal barrier
disruption through the induction of PMN transmigration into the
intestinal lumen, leading to fecal leukocytes in infected patients, Stx
access to the bloodstream, and PMN transport of Stxs to target cells and
tissues (Elliott et al., 1994; Slutsker et al., 1997; Hurley et al., 2001; Karve
et al., 2017). Several STEC factors such as Stxs, flagellin, LPF, and HCP
can induce CXCL8/IL-8, CXCL1/GRO-a, and CXCL5/ENA-78 in a
variety of intestinal epithelial cell lines (Yamasaki et al., 1999; Thorpe
et al., 2001; Berin et al., 2002; Rogers et al., 2003; Miyamoto et al., 2006;
Ledesma et al., 2010; Farfan et al., 2013). Our results demonstrate that
97-3250 may promote greater PMN infiltration during IEC infection
than 4865/96 or HS.

In correlation with our PMN chemoattractant results, expression
patterns of the monocyte/macrophage cytokines/chemokines
macrophage migration inhibitory factor (MIF), CX3CL1/
Fractalkine, IL-1b, and CXCL12/SDF-1 differed significantly
between T84 cells infected with 97-3250 versus 4865/96 and HS
(Figure 5). MIF is constitutively produced by untreated human
IECs in vitro and in vivo, biologically active, and inhibits the
migration of macrophages when there is no infection (Maaser
et al., 2002). In our model, the reduced MIF levels induced by 97-
3250 and increased MIF levels induced by 4865/96 and HS suggest
that 97-3250 promotes while 4865/96 and HS reduce macrophage
recruitment by IECs. IL-1b has been reported to modulate various
aspects of immune function including the increased expression of
adhesion molecules that can promote monocyte/macrophage and
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neutrophil infiltration to infection sites as well as the induction of
CX3CL1/Fractalkine by IECs (Huang et al., 1996; Muehlhoefer
et al., 2000; Dinarello, 2009). Recruited or circulating macrophages
that encounter Stxs may produce additional cytokines, including IL-
1b, leading to increased inflammation and disease (Ramegowda and
Tesh, 1996; Harrison et al., 2004; Lee et al., 2013; Lee et al., 2016).
Our IL-1b and CX3CL1/Fractalkine results (Figure 5) demonstrate
that 97-3250 may promote a greater inflammatory response than
4865/96 through macrophage recruitment. In the intestine,
CXCL12/SDF-1 may play a role in immune surveillance through
the promotion of monocyte extravasation (Bleul et al., 1996).
Although reduced compared to uninfected T84 cells, CXCL12/
SDF-1 is still induced during 97-3250 infection and may allow for
normal immune surveillance, while its absence during 4865/96 and
HS infections may limit surveillance functions (Figure 5).
Collectively, our monocyte/macrophage chemoattractant
expression profiles suggest that 97-3250 infections may promote
monocyte/macrophage infiltration to the intestine, and thus
inflammation, while HS and 4865/96 may downregulate or fail to
promote these responses.

The role of T cells and dendritic cells (DCs) in STEC
pathogenesis in humans is not well understood or studied.
Interestingly, we observed significantly higher levels of the T cell
chemoattractants CX3CL1, CCL25, CCL1, CCL21, CXCL11, and
CXCL16 but lower levels of the DC chemoattractant CCL20/MIP-
3a in T84 cells infected with 97-3250 compared to cells infected
with HS or 4865/96 (Figure 6). The role of these T cell
chemoattractants in STEC pathogenesis is unknown; however,
CCL25 (Wurbel et al., 2011; Trivedi et al., 2016; Hernandez-Ruiz
and Zlotnik, 2017), CCL1 (Regan et al., 2013), CCL21 (Luther
et al., 2002), CXCL11 (Dwinell et al., 2001), and CXCL16
(Diegelmann et al., 2010) have established roles in the
maintenance of normal intestinal functions or during intestinal
inflammation. The differential expression of these T cell
chemoattractants observed during infection with HS or 4865/96
compared to 97-3250 suggests that 4865/96may be recognized as a
nonpathogenic E. coli strain, possibly as a way to evade detection.
CCL20/MIP-3a can be expressed in inflamed epithelial crypts and
at varying levels in IECs depending on the STEC serotype and
their TTSS and flagellin (Dieu et al., 1998; Gobert et al., 2008). The
differing CCL20/MIP-3a levels induced by 97-3250 and 4865/96
in our study are supported by these previous reports and further
suggest that these two STEC serotypes are able to elicit opposing
inflammatory responses on their path to causing disease.
SUMMARY

In vitro infection models do not fully represent the overall in vivo
condition, which includes a complex interplay between host cells,
resident microbiota, and the invading STEC. Nevertheless, the
cytokine and transcriptomics results presented in this study
provide further insight into similarities and differences elicited by
pathogenic STEC, a commensal E. coli strain, and IECs at the onset
of infection. Although our infection model was not able to provide a
single distinct cytokine profile indicative of STEC infection resulting
in severe clinical outcome, it is a useful model for understanding
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 16
individual cellular activities in response to STEC and highlights the
variable strain-specific responses to pathogenic STEC that arise
irrespective of host differences. Overall, our cytokine profiles suggest
that 4865/96 either inhibits the proinflammatory response of
polarized T84 IECs to resemble nonpathogenic E. coli
commensals like HS, or lacks certain factors, which may be
present in 97-3250, that elicit a proinflammatory response. While
the transcriptomics results demonstrate biochemical pathways,
regulons, and shared virulence genes that are regulated similarly
in the STECs, STEC genomes contain a considerable mobilome that
is often diverse and this is demonstrated by the number of unique
genes found in the STECs used in this study (Figure 1A). Moreover,
not all shared genes are transcriptionally regulated in an analogous
way. These differences in STEC gene content and/or regulation
support both the disparate IEC cytokine responses and DEGs
associated with metabolism observed in this study and suggest
there are multiple pathways involving different sets of genes that
may lead to successful infection. However, through our focus on
genes shared between the STECs, we have identified candidate genes
likely representing novel STEC virulence factors that, if proven by
further phenotypic study, may be added to the repertoire of genes
considered for risk assessments.
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