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Cancer stem cells (CSCs) are a small subset of cancer cells with stem cell-like properties, self-renewal potential, and 
differentiation capacity into multiple cell types. Critical genetic alterations or aberrantly activated signaling pathways 
associated with drug resistance and recurrence have been observed in multiple types of CSCs. In this context, CSCs 
are considered to be responsible for tumor initiation, growth, progression, therapeutic resistance, and metastasis. 
Therefore, to effectively eradicate CSCs, tremendous efforts have been devoted to identify specific target molecules 
that play a critical role in regulating their distinct functions and to develop novel therapeutics, such as proteins, mono-
clonal antibodies, selective small molecule inhibitors, and small antisense RNA (asRNA) drugs. Similar to other CSC 
types, oral CSCs can be characterized by certain pluripotency-associated markers, and oral CSCs can also survive and 
form 3D tumor spheres in suspension culture conditions. These oral CSC-targeting therapeutics selectively suppress 
specific surface markers or key signaling components and subsequently inhibit the stem-like properties of oral CSCs. 
A large number of new therapeutic candidates have been tested, and some products are currently in the pre-clinical 
or clinical development phase. In the present study, we review new oral CSC-targeted therapeutic strategies and discuss 
the various specific CSC surface markers and key signaling components involved in the stem-like properties, growth, 
drug resistance, and tumorigenicity of oral CSCs.
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Introduction 

  Head and neck cancer, including oral cancer, is the 
sixth leading type of cancer worldwide (1), representing 
approximately 6% of all solid tumors. Approximately 90% 
of diagnosed cases of head and neck cancers are oral squ-
amous cell carcinoma (SCC), which is the most common 
malignancy in the oral cavity (2). In recent decades, the 
five-year survival rate after treatment of oral cancer is still 
approximately 50% for most countries (3-5), which in-
dicates a poor prognosis for the developing world (6). 
Several chemotherapeutic agents for the treatment of oral 
cancer have been tested individually or in combination 
with other anticancer drugs, such as cetuximab, cisplatin, 
docetaxel, 5-fluorouracil, methotrexate, and paclitaxel 
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(7-10). However, even in patients that are most sensitive 
to these chemotherapeutic drugs, they experience tumor 
recurrence due to the emergence of genetically modified 
cell populations, which ultimately leads to drug resistance 
and tumor re-growth (11). Indeed, the recurrence or meta-
stasis rates for oral squamous cell carcinoma vary from 
18% to 76% in patients undergoing standard treatment 
(12). The CSC theory provided a supportive explanation 
for drug resistance and subsequent tumor recurrence after 
chemotherapy. CSCs were first identified and charac-
terized in the bone marrow of acute myeloid leukemia and 
described as key “seeds” for tumor initiation, growth, and 
therapy resistance (13). Currently, CSCs have also been 
found in almost all types of solid tumors, including those 
in the brain (14), colon (15), gastric (16), head and neck 
(17), lung (18), pancreatic (19), and prostate cancers (20), 
and are defined as a small subpopulation of tumor cells 
with stem cell-like characteristics. Unlike bulk tumor 
cells, they have both tumor-initiating potential and the ca-
pacity to reconstitute the bulk tumor with cellular hetero-
geneity, as observed in healthy tissues (21, 22). Furthermore, 
oral CSCs are commonly defined by several unique ge-
nomic and functional properties: (a) oral CSCs are in-
trinsically resistant to the majority of conventional chemo-
therapeutic agents; thus, the remaining CSC subpopu-
lation can subsequently regenerate tumors in patients 
(23-25), (b) oral CSCs can be characterized by certain plu-
ripotency-associated markers (22, 26-28), and (c) CSCs can 
survive and form 3D tumor spheres in suspension culture 
conditions (29-31). These functional characteristics of 
CSCs indicate that the majority of traditional therapeutic 
strategies, such as surgery with chemotherapy and/or radi-
ation, can only kill the bulk tumor cells but leave rare, 
oral CSC subpopulations untouched. In this context, new 
therapeutic strategies that can effectively eradicate oral 
CSCs would ultimately improve treatment outcomes and 
enhance the quality of life of patients with oral cancer 
(32). However, there is not enough information currently 
available to make a conclusive statement regarding oral 
CSC-targeted therapeutic strategies. In this study, we pro-
vide current information about several genomic and func-
tional properties of oral CSCs and discuss various ther-
apeutic approaches targeting oral CSC-specific signaling 
pathways and pluripotency-associated markers involved in 
the maintenance and drug resistance of CSCs.

The Origin of CSCs from Somatic Stem Cells or 
Differentiated Cells

  Given the functional similarities between somatic stem 

cells and CSCs, researchers have attempted to determine 
whether CSCs arise from tissue-resident stem/progenitor 
cells or differentiated cells that acquire stem cell-like char-
acteristics during the malignant process. However, the ori-
gin of cancer stem cells remains elusive, because the ori-
gin of CSCs varies greatly depending on the malignancy 
(33, 34). Tissue-resident stem/progenitor cells exhibit 
unique biological features, such as long-term recon-
stitution, self-renewal, and transdifferentiation capacity. 
Functionally, stem cells self-renew asymmetrically but al-
so give rise to daughter cells that are committed to line-
age-specific differentiation to reconstitute specific tissues 
and maintain homeostasis. The tissue-resident stem cells 
that give rise to cancer is an attractive hypothesis, given 
that the multistage theory of tumor development requires 
actively dividing and long-lived stem cells in which con-
secutive genetic mutations can accumulate (35). Similarly, 
intermediate progenitor cells, which are more abundant in 
specific tissues than stem cells and commonly undergo 
limited cell proliferation, aberrantly acquire enhanced 
self-renewal capacity, and ultimately become the long-lived 
target that acquires consecutive genetic mutations (36). 
Indeed, a number of studies have hypothesized that tis-
sue-resident stem cells or certain cells with stem cell char-
acteristics can directly give rise to CSCs. Some character-
istics and functions of leukemic CSCs with hierarchically 
arranged subpopulations (similar to those observed with 
normal bone marrow stem cells) support the stem-cell ori-
gin hypothesis (37). Interestingly, in some tissues, fully 
differentiated cells can also revert to the stem cell pheno-
type through dedifferentiation or reprogramming (38). 
Therefore, some researchers have hypothesized that cancer 
cells could be derived from mature and fully differentiated 
cells that re-acquire stem cell-like properties under certain 
conditions. In the “differentiated cell origin model”, the 
requisite of consecutive oncogenic mutations may lead to 
the dedifferentiation of mature cells into pluripotent stem 
cell-like cells. The corresponding mechanisms or physio-
logical conditions that determine which cell types would 
undergo dedifferentiation have not been completely 
elucidated. Surprisingly, this dedifferentiation process can 
be accelerated by simple genetic modifications (39, 40). 
Indeed, Takahashi et al. (40) induced the dedifferentiation 
of fully differentiated somatic cells into pluripotent stem 
cells with multidifferentiation potential by introducing 
only four pluripotency-associated genes (Oct3/4, Sox2, 
c-Myc, and Klf4). Regardless of their cellular origin, 
whether tissue-resident stem/progenitor cells or differ-
entiated somatic cells, CSCs are defined as the sub-
population of cells that retain stem cell-like characte-
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Fig. 1. Schematic diagram summarizing the therapeutic strategies 
targeting oral CSCs. The diverse phenotypic heterogeneity and plas-
ticity among cancer cells in bulk tumors have been explained by 
the CSC model of hierarchically organized tumors. Unlike bulk tu-
mor cells, CSCs are intrinsically resistant to the majority of conven-
tional chemotherapeutic agents; thus, the remaining CSC sub-
population can subsequently reconstitute tumors in patients with 
cellular heterogeneity.

ristics. Similar to normal stem cells, CSCs can divide sym-
metrically or asymmetrically, giving rise to both other 
CSCs and more differentiated progenies that ultimately 
reconstitute the bulk tumor through differentiation into 
many different cell types.

Therapeutic Implications of Oral CSCs in Cancer 
Therapy

  The majority of cancer cells in heterogeneous bulk tu-
mors have limited proliferative potential, tumor-forming 
capacity, and resistance to chemotherapy. The diverse 
phenotypic heterogeneity and plasticity among cancer cells 
in bulk tumors have been explained by the CSC model 
of hierarchically organized tumors (42). After their identi-
fication from leukemia, CSCs were first isolated and char-
acterized from solid breast cancer tumors. The CD44＋/ 
CD24−/low and epithelial cell adhesion molecule-positive 
phenotypes may be typically considered pluripotency-as-
sociated characteristics in breast CSCs (43, 44). As few as 
100 cells exhibiting these cellular properties can grow rap-
idly in vitro and effectively form new tumors in vivo after 
reconstitution (43). The evidence of oral CSCs has been 
first suggested by the study, which showed that even just 
a small fraction of oral squamous cell carcinoma cells with 
“stem-like” characteristics is able to rapidly reconstitute 
a new bulk tumor after reconstitution (45). The isolation 
of oral CSCs from tumor masses has mainly been con-
ducted using the cell surface marker CD44, which is an 
important cell surface marker for isolating stem-like cells 
from breast cancer (46, 47). Although CD44 was originally 
identified as a receptor for hyaluronic acid, it has also 
been suggested as a putative marker for various types of 
stem cells (48, 49) and a key regulator for the maintenance 
of the properties of various CSCs (50, 51). Aldehyde de-
hydrogenases (ALDH), a family of intracellular enzymes 
that catalyze cellular detoxification and subsequent drug 
resistance via oxidation of intracellular aldehydes, has 
been proposed as a putative biomarker for oral CSCs (52). 
Interestingly, ALDH-positive subpopulations isolated from 
head and neck squamous cell carcinoma have typical CSC 
characteristics and enhanced tumorigenic potential in vivo 
(53, 54). Overall, acquired resistance to standard chemo-
therapy or radiation therapy is an important cause of 
treatment failure. Emerging evidence indicate that CSC 
subpopulations are more resistant to standard chemo-
therapeutic drugs when compared to non-CSC subpo-
pulations (55). CSC-mediated drug resistance has been 
previously demonstrated in multiple types of cancer, such 
as brain (56), breast (57), colorectal (58), leukemias (59), 

skin (60), and pancreatic (19) cancers. In addition, CSC- 
mediated radioresistance has also been reported in brain 
(61) and breast (62) cancers. Oral CSCs are also com-
monly resistant to various conventional chemotherapeutic 
agents (23-25) and radiation therapies (27, 63, 64) that tar-
get proliferating cells (Fig. 1). Therefore, the remaining 
resistant oral CSCs can proliferate extensively and recon-
stitute new tumors in patients and may ultimately lead to 
the failure of durable clinical responses. Therefore, re-
search efforts are underway to develop novel therapeutic 
strategies for selectively eradicating resistant oral CSCs 
without affecting normal cells (65-67). 

Several Strategies for the Selective Targeting of 
Oral CSCs

  Therapeutic efficiency could be enhanced by selectively 
targeting subtle expression differences in surface markers 
and alterations in various signaling regulators between 
CSC subpopulations and non-CSC subpopulations. Currently, 
many researchers have identified several promising ther-
apeutic targets for oral CSCs, including signaling path-
ways, cell surface markers, pluripotency-associated genes, 
and transcription factors that can selectively eliminate oral 
CSCs and subsequently reduce the risk of cancer re-
currence (Fig. 2). 
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Fig. 2. Schematic diagram summarizing the therapeutic strategies 
targeting oral CSC-specific surface markers or signaling pathways. 
Therapeutic efficiency could be enhanced by selectively targeting 
subtle expression differences in surface markers and alterations in 
various signaling regulators between CSC subpopulations and 
non-CSC subpopulations. For this reason, CSC markers can be used 
to identify CSC-enriched subpopulations and various therapeutic 
approaches effectively inhibit oral CSCs by targeting pluri-
potency-associated genes (ALDHs, CD44, CD133, and CD177) and 
CSC-specific signaling pathways (Wnt/β-catenin, Notch, and 
hedgehog signaling pathways).

Pluripotency-associated surface marker targeting 
strategy
  A rare subpopulation of CSCs can be identified and iso-
lated from the tumor mass by using single or combina-
tions of multiple surface markers, thus providing a more 
effective CSC-targeted therapeutic strategy (68). Currently, 
magnetic cell sorting, flow cytometry, fluorescent antibody 
staining, and real-time PCR are commonly used to isolate 
and characterize heterogeneous CSCs within a tumor 
mass. Although considerable progress has been achieved 
in identifying CSCs on the basis of their specific surface 
makers, the development of selective CSC therapies re-
mains a challenge, largely due to the many common prop-
erties between CSCs and normal stem cells.
  Aldehyde dehydrogenase: Aldehyde dehydrogenases 
(ALDHs) are a superfamily of intracellular enzymes that 
play important roles in cellular detoxification and sub-
sequent drug resistance by metabolizing various intra-
cellular aldehyde derivatives. Over two decades ago, 
ALDHs were first known to confer resistance to chemo-
therapeutic alkylating agents such as cyclophosphamide in 
hematopoietic and leukemic stem cells (69). ALDH-pos-
itive subpopulations were found in breast (70) and brain 
(71) cancers. In these tumors, cells with high ALDH activ-
ity were characterized as having enhanced self-renewal ca-
pacity and subsequent tumorigenic potential in vivo, 
which are typical characteristics of CSCs. Indeed, many 
recent studies have revealed that high levels of endoge-
nous ALDH activity may be associated with increased in 

vitro clonogenic activity, tumorigenic properties, and drug 
resistance in oral CSCs (27, 53, 72, 73). ALDH1 protein 
expression levels are positively correlated with the tumor 
formation ability of neck squamous cell carcinoma and 
negatively correlated with patients’ responses to ongoing 
treatments (27). Consistently, as few as 5×102 ALDH1- 
positive cells of head and neck squamous cell carcinoma 
were able to reconstitute visible tumors in vivo, and these 
subpopulations showed increased 3D sphere-forming abil-
ity in vitro, higher migratory capacity, and enhanced radi-
ation resistance (27, 53). Interestingly, the ALDHhigh sub-
population significantly overlaps with the CSC surface 
marker CD44-expressing populations (50.6%∼74.4%). 
Conversely, when CD44-positive subpopulations were sort-
ed for ALDH activity, only 9.8%∼23.6% of the CD44＋ 
cells overlapped with high ALDH activity (53). This result 
suggests that ALDH activity can be used as a selective 
marker for CSCs in head and neck squamous cell carcino-
ma (53). In addition, ALDH＋ stem-like populations were 
also associated with epithelial-to-mesenchymal transition 
(EMT), which is a key process in metastasis during malig-
nant progression in head and neck squamous cell carcino-
ma (27). 
  CD44: CD44 is a transmembrane receptor for hyalur-
onic acid, which is highly expressed in many cancers, and 
regulates cell migration and invasion processes (74). The 
CD44-hyaluronic acid signaling axis can promote tumor 
progression and subsequent metastasis by increasing 
self-renewal capacity, cell survival, and drug resistance 
(75, 76). CD44 can also bind to several growth factors and 
some metalloproteinases (MMPs), such as MMP-2, MMP-9, 
and MMP-14, resulting in an increased ability for meta-
stasis (77, 78), angiogenesis (79), and drug resistance (80). 
CD44-positive subpopulations with high tumorigenic po-
tential have been identified in multiple types of CSCs, 
such as in cervical (81), prostate (82), lung (83), breast 
(43), colon (84), ovarian (85), gastric (86), bladder (87), 
and pancreatic (88) cancer. In this context, the CD44high 
subpopulation with elevated tumorigenicity and metastatic 
ability is an attractive therapeutic strategy for the treat-
ment of multiple cancer types. Emerging evidence has re-
vealed the association of CD44 with tumor aggressiveness 
and its prognostic impact on patients with oral squamous 
cell carcinoma (89, 90). Consistently, it has been described 
that certain CD44 (i.e., v3, v6, v10) variant isoforms seem 
to act as metastasis genes and are associated with meta-
stasis and cancer progression in oral squamous cell carci-
noma (91). CD44-positive cell subpopulations express 
high levels of Bmi-1, which plays a key role in the self-re-
newal capacity of various stem cell types and is involved 
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in tumorigenesis (22). Since then, many previous studies 
have suggested that CD44-positive cells exhibit a sig-
nificantly higher potential for 3D sphere-forming ability 
in vitro, higher migratory capacity, and drug resistance in 
both primary tumor tissues and cell lines of oral squamous 
cell carcinoma (22, 92-96). In addition, the frequency of 
CD44-positive cells was significantly associated with poor 
prognosis and higher rates of recurrence and metastasis 
after radiation therapy in patients with oral squamous cell 
carcinoma (92).
  CD133: CD133 (also known as AC133 and prominin-1), 
a 5-pass transmembrane glycoprotein with a molecular 
mass of 120 kDa, has been identified as a novel marker 
for hematopoietic stem/precursor cells and endothelial 
progenitor cells in various organs (97). However, several 
previous studies have indicated that CD133 can also be 
used as a marker for the identification of CSCs in many 
solid tumors, including hepatocellular carcinoma (98), or-
al squamous carcinoma (99), prostate carcinoma (100), re-
nal cell carcinoma (101), and thyroid carcinoma (102). 
Consistently, CD133-positive subpopulations from the 
head and neck squamous cell carcinoma cell line Hep-2 
have a markedly increased capacity for tumor formation 
in vivo when compared with CD133-negative cells (103). 
Previous studies have revealed a significant correlation be-
tween enhanced levels of CD133 and poor prognosis in pa-
tients with oral squamous cell carcinoma (104, 105). 
Moreover, CD133-positive cells showed increased drug re-
sistance, self-renewal ability in vitro, tumorigenesis in vivo, 
and expression levels of pluripotency-associated genes, 
such as ALDH, NANOG, OCT4, and SOX2 (28). Elevated 
expression of CD133 was observed in oral cancer stem-like 
cells from patients with oral squamous cell carcinoma 
(104). Its expression is also correlated with increased mi-
gration, tumorigenicity, and the expression level of the 
ABC transporter gene ABCG2 (104). Additionally, oral 
cancer patients who are NANOG/OCT4/CD133 triple-pos-
itive were predicted to have the worst survival prognosis. 
However, due to differences in research design, sample 
size, and target population, the functions and mechanisms 
of CD133 in various aspects of oral CSCs are still not 
clear, and further investigation is necessary. 
  CD177: CD117, also known as the c-kit receptor, is a 
transmembrane protein with tyrosine kinase activity that 
plays a pivotal role in the maintenance and proliferation 
of hematopoietic stem cells (106). CD117 depletion in the 
bone marrow or spleen leads to a significant decrease in 
the number of cells from the erythrocyte and lymphocyte 
lineages (107). The CD117 signaling cascade is activated 
when CD117 binds to its cognate ligand, the stem cell fac-

tor (SCF), leading to the activation of the MAPK cascade 
(cRaf/Mek/Erk), the JAK/STAT pathway, and PI3K sig-
naling events (108). The signaling pathways stimulated by 
CD117 are involved in various important cellular func-
tions, such as self-renewal, apoptosis/survival, differ-
entiation, and cell migration (109). CD117-positive cells 
were observed in the bone marrow, lung, spleen, and thy-
mus (110). Previous studies have shown that CD117 is 
overexpressed in a number of solid cancer types, such as 
breast cancers (111), gastrointestinal stromal tumors (112), 
germ cell tumors (113), salivary gland tumors (114), and 
small cell lung cancer (115). Ongkeko et al. (116) analyzed 
the expression levels of CD117 in 44 patients with pri-
mary oral squamous cell carcinoma. Although its ex-
pression did not correlate with disease-free survival, the 
expression of CD117 was significantly higher in oral squ-
amous cell carcinoma of the pharynx than in laryngeal 
cancers. Tsai et al. (117) demonstrated that chemoresis-
tance to cisplatin was possibly correlated with the upregu-
lation of CD117 and the ABC transporter gene (ABCG2) 
in oral cancer stem-like cells. However, experimental evi-
dence regarding the reactivity of oral squamous cell carci-
noma to CD117 expression is limited and contradictory. 
While Mărgăritescu et al. (118) and Galbiatti-Dias et al. 
(119) used CD117 with other stemness-related genes to 
identify and isolate oral cancer stem-like cells from oral 
squamous cell carcinomas, Barth et al. (120) analyzed 
CD117 expression in squamous cell carcinomas of the oral 
cavity, pharynx, and larynx and found that its expression 
was restricted only to stromal spindle cells.

Pluripotency-associated signaling pathway targeting 
strategy
  The most frequently used strategy for the isolation, 
characterization, and targeting of CSCs within the tumor 
mass is based on specific cell surface biomarkers, such as 
CD133, CD44, and CD24 (34, 68, 121). However, these 
pluripotency-associated markers are not uniquely specific 
for CSCs, and they frequently overlap with their tis-
sue-resident stem cells as well as normal somatic cells in 
many organs (122). Therefore, the use of single cell sur-
face markers is considered under debate for selectively tar-
geting CSCs within the tumor mass, because many studies 
found no cells with their specific characteristics (123). 
Alternatively, CSCs have also been identified and elimi-
nated by selectively targeting key CSC-specific signaling 
pathways involved in their maintenance and various tu-
morigenic functions. Although the relationship between 
certain signaling pathways and several CSC functions still 
needs to be fully characterized, some of them appear use-
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ful for developing CSC-specific therapeutic strategies that 
avoid the deleterious side effects caused by affecting nor-
mal somatic cells or tissue-resident stem cells.
  Wnt/β-catenin signaling pathway: Wnt proteins are 
a group of secreted glycoproteins that bind to cell surface 
receptors, including their cognate Frizzled (Fzd) re-
ceptors, and cause an accumulation of β-catenin in the 
cytoplasm (124). It regulates numerous processes essential 
for embryogenesis, tissue homeostasis, and cancer develop-
ment (41, 125). Wnt/β-Catenin-mediated signaling, which 
is implicated in controlling various aspects of CSC-related 
tumorigenicity, has also been found to be involved in the 
maintenance, survival, metastasis, and drug resistance of 
various CSC types, including acute myeloid leukemia 
(126), breast (127), colon (128), liver (129), and lung (130) 
cancer. Iwai et al. (131) suggests that the Wnt/β-catenin 
signaling pathway plays a critical role in the oncogenesis 
of oral squamous cell carcinoma. They also demonstrated 
that the aberrant cytoplasmic accumulation of β-catenin 
can enhance the invasion and migration of oral squamous 
cell carcinoma by upregulating MMP-7 expression and in-
ducing epithelial-mesenchymal transition (EMT) (131). 
Consistently, Yang et al. (132) reported that introducing 
a β-catenin gene into oral squamous cell carcinoma cells 
using a retrovirus vector-mediated transfection system re-
sulted in a significantly increased resistance to TNF-α
-induced apoptosis in transfected cells. Warrier et al. (133) 
also clearly demonstrated that Wnt/β-catenin signaling 
can increase the in vitro sphere-forming capacity and drug 
resistance of oral CSCs. They also reported that oral CSCs 
from squamous cell carcinoma are chemosensitized by 
naturally occurring Wnt inhibitors (sFRP4), via increasing 
apoptosis and/or reducing pluripotency (133). All-trans-ret-
inoic acid (ATRA) reduced the self-renewal capacity of or-
al CSCs in vitro and subsequent tumorigenicity in vivo by 
inhibiting Wnt/β-catenin signaling from squamous cell 
carcinoma (134).
  Notch signaling pathways: Notch signaling is an evo-
lutionarily conserved intercellular signaling pathway that 
regulates various aspects of development and disease pro-
gression (135, 136). Therefore, dysfunction frequently re-
sults in a variety of congenital anomalies and diverse 
pathological disorders (41). The Notch receptors are four 
conserved single-pass transmembrane proteins (Notch1-4) 
and contain multiple arranged epidermal growth fac-
tor-like repeats (EGFR) that bind to Notch ligands (137). 
Among their family members, Notch 1 and 2 share the 
highest degree of similarity and are the most widely ex-
pressed in a large number of fetal and adult tissues, while 
Notch 3 is primarily limited to vascular smooth muscle 

cells, and Notch 4 is most predominantly expressed in en-
dothelial cells (138). While the pro-oncogenic functions of 
dysregulated Notch signaling have been relatively well 
characterized in multiple types of cancers (138-140), its 
role in many aspects of CSCs is just emerging. Notch1 
mutations are found in approximately 10%∼15% of pa-
tients with oral squamous cell carcinoma, suggesting its 
possible roles in the unique biological features of oral 
CSCs, such as long-term reconstitution, self-renewal, and 
transdifferentiation capacity (141-143). Shrivastava et al. 
(144) demonstrated that Notch1 was highly expressed in 
oral squamous cell carcinoma-derived 3D sphere-forming 
cells compared to monolayer cells. Consistently, they also 
observed the activation of Hes1, a well-known target of 
Notch signaling, in oral squamous cell carcinoma-derived 
sphere-forming cells as compared to adjacent monolayer 
cells (144). Moreover, Lee et al. (145) found that pro-
longed exposure to tumor necrosis factor alpha (TNF-α), 
a major proinflammatory cytokine, significantly enhanced 
multiple oral CSC-associated characteristics such as self- 
renewal capacity, pluripotency-associated genes, drug re-
sistance, and tumorigenic potential in vivo by activating 
the Notch-Hes1 signaling cascade. Zou et al. (146) also re-
ported that Notch2 expression was markedly increased in 
ALDH-positive CSC-like subpopulations in tongue squ-
amous cell carcinoma. These results suggest that activa-
tion of the Notch signaling pathway can be mechanisti-
cally associated with the various characteristics of oral 
CSCs.
  Hh signaling pathways: Hedgehog signaling was ini-
tially discovered as a critical segment polarity gene of pat-
tern formation during early embryonic development in 
Drosophila, and its dysfunction frequently results in crit-
ical developmental anomalies and diverse pathological dis-
orders (147, 148). It plays an essential role in regulating 
diverse cellular functions such as cell growth, surviv-
al/apoptosis, cell migration/invasion, and embryonic cell 
differentiation (149-152). While only one Hh gene has 
been identified in Drosophila, three different Hh family 
members have been found in vertebrates: the Desert 
Hedgehog (DHh), Indian Hedgehog (IHh), and Sonic 
Hedgehog (SHh) (153-155). Upon binding to its cognate 
receptor Patched-1 (a 12-pass transmembrane glycopro-
tein), Hh initiates signal transduction through the tran-
scription factor Gli, either dependently or independently 
(156). Many previous studies on several different types of 
human cancer, such as breast cancer (157), chronic mye-
loid leukemia (158), colorectal cancer (159), glioblastoma 
(160), lung cancer (161), multiple myeloma (162), and 
pancreatic cancer (163), have indicated that the Hh signal-
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ing network can possibly increase the self-renewal ca-
pacity, drug resistance, and tumorigenic potential of vari-
ous CSC types. Consistently, Takebe et al. (164) provided 
a comprehensive survey of the Hh signaling pathway as 
a major regulator of many fundamental functions of CSCs, 
such as drug resistance, tumorigenic potential, pluri-
potency, and self-renewal capacity. Wang et al. (165) dem-
onstrated that Shh is highly expressed in approximately 
70% of oral squamous cell carcinoma specimens. In addi-
tion, statistical analyses showed that Shh overexpression 
is highly associated with the enhanced expression of the 
well-known Hh target gene Gli-1 and Hh receptor Ptch, 
suggesting that Hedgehog signaling is likely activated in 
oral squamous cell carcinoma cells (165). Consistently, 
Ptch expression is significantly associated with recurrence 
rates in patients with oral squamous cell carcinoma (165). 
Therefore, targeting dysregulated Hh signaling activity 
may provide effective diagnostic and therapeutic strategies 
for the treatment of oral cancers.
  Hippo-YAP signaling pathways: The Hippo-YAP sig-
naling cascades have been found as important oncogenic 
signaling pathways in various types of cancers (166). Its 
signaling activity is regulated by key downstream tran-
scription co-activator Yes-associated protein 1 (YAP1) 
with PDZ-binding motif (TAZ) (167). In addition, YAP1 
is essential transcription factor for maintaining un-
differentiated state of embryonic stem cells by increasing 
the expression levels of various pluripotency-associated 
factors (168, 169). Importantly, significantly deregulated 
Hippo-YAP signaling pathway is widely observed in mul-
tiple types of human cancers including oral squamous cell 
carcinoma (170, 171). Indeed, local amplification of 11q22 
locus in the human YAP1 gene is observed in 8.6% of pa-
tients with head-and-neck squamous cell carcinoma (172) 
and it signaling activity is closely related with poor prog-
nosis and malignant phenotypes both in vitro and in vivo 
(172, 173). Endogenous YAP1 hyperactivation promotes 
surprisingly rapid and highly reproducible tumorigenesis 
of head-and-neck squamous cell carcinoma (174). Importantly, 
Li et al. (175) found that Hippo-TAZ signaling cascades 
enriched in CSCs subpopulation (CD44＋/CD133＋) by pro-
moting the expression of pluripotency-associated tran-
scription factor SOX2 in head neck squamous cell carci-
noma. Similarly, several lines of evidence suggested that 
YAP1 could transcriptionally induce the expression of re-
programming factor SOX2 through a physical interaction 
with pluripotency-associated gene OCT4 to promote 
self-renewal capacity of CSCs subpopulation in lung can-
cer model (176). 

Oral CSCs and Their Potential Clinical 
Implications

  Since the identification of CSC subpopulations in oral 
squamous cell carcinoma (22), a number of studies have 
described the positive correlation between the presence of 
oral CSCs and poor clinical outcomes (177, 178). Chen et 
al. (179) showed that the relative expression levels of 
ALDH1 and CD44 were significantly higher in high-grade 
oral squamous cell carcinoma. They also found that cu-
curbitacin I (JSI-124) can effectively induce the apoptosis 
of CD44＋/ALDH1＋ oral squamous cell carcinoma sub-
populations through STAT3 signaling pathways (179). 
Likewise, Chen et al. (27) also demonstrated that ALDH1- 
positive cell subpopulations from oral squamous cell carci-
noma have higher tumorigenic potential and are more re-
sistant to chemotherapeutic agents and radiation than ad-
jacent ALDH1-negative cell subpopulations. In this con-
text, chemotherapy and radiation, the most commonly 
used therapeutic strategies together with surgery, often 
fail, as they do not effectively eliminate quiescent oral 
CSCs, which can reconstitute the entire bulk tumor. 
Therefore, it appears that establishing new adjuvant ther-
apeutic approaches that can effectively eliminate oral 
CSCs within the tumor mass may provide a more effective 
treatment strategy to overcome therapeutic resistance and 
subsequent recurrence. Identifying highly selective oral 
CSC surface markers, as well as establishing effective ther-
apeutic strategies, still requires intensive investigation 
(180, 181). Currently, therapeutic attempts to selectively 
target oral CSCs have not yet been used in clinical 
applications. Moreover, various pluripotency-associated 
CSC surface markers are not exclusively unique for oral 
CSCs, and they overlap with their tissue-resident stem 
cells as well as normal somatic cells (182). Therefore, a 
better understanding of CSC characteristics and the devel-
opment of novel therapeutic approaches that selectively 
target oral CSCs are urgently needed to increase the clin-
ical outcome in patients with different types of malignan-
cies.

Conclusions

  After the identification of CSCs from leukemia over 40 
years ago, they were first isolated and characterized from 
solid breast cancer tumors. CSCs not only play an essen-
tial role in cancer initiation, maintenance, and tumor pro-
gression, but they are also particularly important for me-
diating resistance to chemotherapeutic drugs and radia-
tion, subsequently leading to the failure of these conven-
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tional therapeutic approaches. In this context, identifying 
and selectively targeting CSCs with specific pluripotency- 
associated signaling pathways and/or surface markers is a 
potential therapeutic strategy for inhibiting various types 
of cancer. However, no single cell surface marker that can 
specifically target the oral CSC subpopulation is currently 
available. The identification of specific surface markers or 
their signaling regulators is the first step in uncovering 
the characteristics and functions of oral CSCs. Indeed, 
combinations of a set of putative cell surface markers 
and/or signaling pathways representing the pluripotency- 
associated phenotypes will be helpful in achieving a better 
chance of developing new therapeutic alternatives for pa-
tients with oral cancer.
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