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This study is aimed at evaluating a deep transfer learning-based model for identifying diabetic retinopathy (DR) that was trained
using a dataset with high variability and predominant type 2 diabetes (T2D) and comparing model performance with that in
patients with type 1 diabetes (T1D). The Kaggle dataset, which is a publicly available dataset, was divided into training and
testing Kaggle datasets. In the comparison dataset, we collected retinal fundus images of T1D patients at Chang Gung Memorial
Hospital in Taiwan from 2013 to 2020, and the images were divided into training and testing T1D datasets. The model was
developed using 4 different convolutional neural networks (Inception-V3, DenseNet-121, VGG1, and Xception). The model
performance in predicting DR was evaluated using testing images from each dataset, and area under the curve (AUC),
sensitivity, and specificity were calculated. The model trained using the Kaggle dataset had an average (range) AUC of 0.74
(0.03) and 0.87 (0.01) in the testing Kaggle and T1D datasets, respectively. The model trained using the T1D dataset had an
AUC of 0.88 (0.03), which decreased to 0.57 (0.02) in the testing Kaggle dataset. Heatmaps showed that the model focused on
retinal hemorrhage, vessels, and exudation to predict DR. In wrong prediction images, artifacts and low-image quality affected
model performance. The model developed with the high variability and T2D predominant dataset could be applied to T1D
patients. Dataset homogeneity could affect the performance, trainability, and generalization of the model.
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1. Introduction

Diabetic retinopathy (DR) is a severe vascular complication
that may lead to blindness in patients with type 1 diabetes
(T1D) [1]. As early detection and intervention can delay dis-
ease progression, patients are encouraged to undergo eye
examination 3–5 years after the onset of disease and an
annual DR screening thereafter [2, 3]. Despite the benefits
of early treatment, approximately 60% of patients receive
regular DR screening [2]. Reported reasons for nonadher-
ence to recommended annual screening include cost, lack
of access to eye care, and no perceived need [4]. Therefore,
automated detection may fill these resource gaps and even
improve patient outcomes by providing timely detection.

In an era of advancing technology in artificial intelli-
gence, numerous studies have proven the effectiveness of
applying deep convolutional networks for detecting DR
[5–7]. However, wide variability exists in the approaches to
prediction problems across different studies [8]. Under-
standing the factors that influence the reliability and robust-
ness of the algorithm is important for clinical deployment
and may help ensure consistency in performance under var-
ious conditions. A previous study reviewed the potential fac-
tors [9]; however, whether different etiologies of diabetes or
variability of training images affect the algorithm’s perfor-
mance has yet to be investigated.

Diabetes patients can be classified into two major catego-
ries based on different etiologies: T1D, which is caused by
insulin deficiency and is also known as insulin-dependent
diabetes, and type 2 diabetes (T2D), which is caused by insu-
lin resistance and is also known as insulin-independent dia-
betes mellitus. T2D accounts for most cases of diabetes. In
the US population, >90% of patients with diabetes have
T2D, whereas T1D accounts for only 5% [10]. T1D predom-
inantly affects the European population [11], and its preva-
lence in the Asian population is even lower; for example,
T1D is present in <1% of the diabetic population in Taiwan
[12]. Although T1D presents as the minority in the diabetic
population, patients with T1D are more likely to develop DR
and have more severe visual outcomes than patients with
T2D [1, 2, 13, 14]. A study reported that youth with T1D
also develop DR faster than those with T2D [15]. When
evaluating the cause of vision impairment in diabetes, DR
accounts for 86% of poor visual acuity in T1D and only
33% in T2D [14]. As machine learning has been widely used
for the automatic detection of DR, most images are obtained
from the dataset predominantly containing the images of
T2D patients. Furthermore, the investigation of the perfor-
mance of models in identifying DR in the specific T1D pop-
ulation is limited.

To assess whether different etiologies of diabetes (i.e.,
T1D and T2D) affect the performance and robustness of
deep learning models, we conducted this study using deep
learning models trained using two datasets: one from
open-access datasets with high image variability from T2D
patients predominantly and the other one consisting of
images obtained only from T1D patients followed at a single
medical center. As our dataset is small compared with the
recommended size [9], the deep transfer learning method

is preferably used, which allows for low training cost and
the use of a smaller training dataset by reusing a pretrained
network to solve a different task [16]. The performance and
heatmaps of deep learning models trained with the two data-
sets were then compared.

2. Materials and Methods

2.1. Datasets. An open-access dataset was subsampled from
one of the Kaggle datasets, namely, Train.001, which is a
publicly available dataset provided by EyePACS [17], which
contained a group of patients with a mean age of around
55.4 years and a standard deviation of 11.3 years [5]. The
other dataset of retinal fundus images was retrospectively
acquired from T1D patients at a 3700-bed medical center,
Chang Gung Memorial Hospital, Linkou Medical Center,
Taiwan, between 2013 and 2020. All T1D patients were from
the Chang Gung Juvenile Diabetes Eye Study [18, 19] and
diagnosed based on the World Health Organization diagno-
sis criteria [20]. The T1D dataset consisted of patients with a
mean age of 25.7 years and a standard deviation of 5.8 years.
In the T1D dataset, two types of color fundus cameras were
used (Topcon Medical Systems, Oakland, NJ, USA; Kowa,
Tokyo, Japan, and Digital Non-Mydriatic Retinal Camera,
Canon, Tokyo, Japan). Image resolution in both datasets
ranged from 1,000 × 1,500 to 2,500 × 3,500 pixels. This study
was approved by the Institutional Review Board of Chang
Gung Memorial Hospital (no. 201900477B0) and adhered
to the tenets of the Declaration of Helsinki.

2.2. Classification of DR. Retinal fundus images from T1D
patients were graded by two trained retinal ophthalmologists
(EYK and NKW) according to the International Clinical
Diabetic Retinopathy Disease Severity Scale. Images with
artifacts, shadows, or poor quality that could not be classi-
fied were excluded. Retinal ophthalmologists were unaware
of clinical information, such as demographics, laboratory
data, and prior treatment. On the other hand, DR classifica-
tion in the Kaggle dataset was defined according to the labels
provided with the dataset. In this study, DR was defined as
the diagnosis of DR at any stage [21].

2.3. Data Preprocessing and Division. All input images from
both datasets were cropped and resized using OpenCV-
python to a 320-pixel wide square that tightly contained the
circular fundus region. Monochromatic fundus photography
and images not having both the optic disc and macular region
were filtered out (Figure 1). For each dataset, images were ran-
domly divided into two sets: two-thirds in the training set to
develop the model and one-third in the testing set to evaluate
model performance (Figure 2). Then, the training set was fur-
ther divided into two subsets: two-thirds of the training set for
optimizing the weights of the network and one-third as the
validation set to select hyperparameters for the model. As
images from the T1D dataset may come from the same
patients, to avoid data leakage, images from same patients
were placed in the same sets. After division, the images were
randomly shuffled in their own dataset to reduce overfitting
and variance before training and were then further batch
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normalized by subtracting the average and dividing by the
standard deviation calculated from the training dataset using
ImageDataGenerator of Keras API. Real-time data augmenta-
tion was applied by randomly rotating, shifting, and shearing
the images during the model training based on previously
published methods [22].

2.4. Architecture and Evaluation of the Model. The deep
transfer learning model consisted of a pretrained convolu-
tional neural network (CNN), followed by a global average
pooling layer and a dense layer to output prediction results
(Figure 2). The weights from the pretrained model were train-
able and were used to extract image features, and predictions

(a) (b)

Figure 1: Fundus image after (a) cropping and (b) normalization.
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Figure 2: Schematic of the development and evaluation of models. Two groups of models were trained using the T1D and Kaggle training
sets, and they were tested with both the T1D and Kaggle testing sets.

Table 1: Summary of the prediction performance of different transfer learning models in predicting diabetic retinopathy.

Trained on Kaggle training set Trained on T1D training set
Tested on T1D testing

set
Tested on Kaggle testing

set
Tested on T1D testing

set
Tested on Kaggle testing

set
AUC SEN SPE AUC SEN SPE AUC SEN SPE AUC SEN SPE

DenseNet-121 0.86 0.77 0.79 0.74 0.67 0.71 0.91 0.81 0.86 0.55 0.55 0.54

InceptionV3 0.86 0.74 0.79 0.74 0.62 0.74 0.87 0.73 0.86 0.59 0.56 0.59

VGG16 0.88 0.78 0.82 0.77 0.66 0.75 0.84 0.67 0.84 0.54 0.59 0.49

Xception 0.86 0.74 0.82 0.71 0.60 0.72 0.88 0.74 0.90 0.59 0.61 0.52

T1D: type 1 diabetes; AUC: area under the curve; SEN: sensitivity; SPE: specificity.
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were then made using the final classifier. Class imbalance was
addressed by estimating reweighting loss. Early stopping after
8–12 epochs of no improvement was applied to avoid overfit-
ting, and the learning curves of both the training and valida-
tion sets were plotted to detect underfitting or overfitting.
Binary cross entropy was used as the loss function, and sto-
chastic gradient descent [23] or the Adam optimizer [24]
was used with a learning rate of 1e-3 to 1e-4. Hyperparameters
were optimized using random search. The development and

analysis of the models were implemented using Keras 2.4.3
and Tensorflow 2.4.1 on Google colaboratory [25], whereas a
part of image preprocessing and gradient-weighted class acti-
vation (Grad-CAM) visualization were run in Jupyter Note-
book [26]. Two groups of models trained using the T1D and
Kaggle training sets were tested in both the T1D and Kaggle
testing sets (Figure 2).

In our model, CNNs including Inception-V3 [27],
DenseNet-121 [28], VGG16 [29], and Xception [30] were
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Figure 3: Receiver operating characteristic (ROC) curves of different transfer learning models in predicting diabetic retinopathy. The ROC
curve of models that were tested with the type 1 diabetes (T1D) testing set was plotted in blue, whereas those tested with the Kaggle testing
set were plotted in orange. The point on the ROC curve was the selected threshold. (e)–(h) There was a significant decrease in AUC when
models previously trained with the T1D training set were tested with the Kaggle dataset. (i)–(l) The models that were previously trained with
the Kaggle training set have a more robust performance when tested with the T1D testing set.
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selected for model training because of their high performance
in ImageNet Large Scale Visual Recognition Challenge and
wide implementation in other medical image classifications
[9]. All networks were pretrained on ImageNet [31]. Perfor-
mance of the model with each CNN was evaluated.

2.5. Visualization Method. To observe how the models led to
the prediction, the final convolutional layer of each model
was extracted to obtain the activation map using the Grad-
CAM visualization method [32], which highlighted the
regions that provided an important contribution to the pre-
diction. The activation map was then superimposed on the
original image for interpretation.

2.6. Statistical Analysis. Receiver operating characteristic
(ROC) curves were plotted using Matplotlib 3.2.2. Area
under the ROC curve (AUC), sensitivity, and specificity were
calculated to compare the performance of different models
trained with both datasets using Python 3.7.1 and Sklearn
0.22.2. Optimal threshold of ROCs was chosen by maximiz-
ing the geometric mean of sensitivity and specificity. The
descriptive results in this study are expressed as numbers
and percentages for discrete variables.

3. Results

3.1. Image Characteristics. In the Kaggle dataset, 8,408
images were subsampled from the original dataset, with
6,150 (73%) images classified as normal and 2,258 (27%)

images as DR. In the T1D dataset, 7,064 images from 475
patients with T1D were collected. Of these, 873 (13%)
images from 79 (17%) patients were classified as DR.

3.2. Model Performance. Model performance is shown in
Table 1. When the models were trained using the Kaggle
imaging dataset, the overall AUC reached a mean (range)
of 0.74 (0.03) in the Kaggle testing set, with VGG16 provid-
ing the best performance (AUC = 0:77). AUCs increased to a
mean (range) of 0.87 (0.01) when the models trained with
the Kaggle training set were tested using the T1D testing
set. On the other hand, the transfer learning models
achieved a mean (range) AUC of 0.88 (0.03) when trained
and tested using the T1D imaging dataset, with DenseNet-
121 providing the best performance (AUC = 0:91) and
VGG16 the worst (AUC = 0:84). However, when models
that were previously trained using the T1D training set were
tested using the Kaggle dataset, AUCs significantly
decreased to a mean (range) of 0.57 (0.02). The correspond-
ing ROC curves are illustrated in Figure 3.

3.3. Class Activation Maps. The results of activation maps
from different transfer learning models of both DR and nor-
mal cases are presented in Figures 4 and 5. Aside from high-
lighting the clinically observable retinal abnormalities, which
were the traditional characteristic findings of DR, including
microaneurysms, hemorrhages, and exudates (Figures 4(c),
4(d), and 4(g)), other regions including the macula
(Figures 4(h), 4(i), 5(d), 5(h), 5(f), and 5(i)), optic disc

Trained on kaggle data set Trained on T1D data set

DensetNet-
121

Prediction: DR

Prediction: DR

Prediction: DR

Prediction: DR Prediction: DR

Prediction: DR

Prediction: DR

Prediction: DR

Xception

VGG16

InceptionV3

True: DR

A

B C

D E

F G

H I

Figure 4: The images demonstrate the original (a) and superimposed Grad-CAM activation maps ((b)–(i)) of the selected diabetic
retinopathy (DR) color fundus image. All models gave a true-positive prediction. There were some similarities in activation maps even in
different transfer learning models trained with different datasets.
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(Figures 5(e) and 5(g)), and retinal vessels (Figures 5(b),
5(c), and 5(g)) were also occasionally highlighted. Greater
similarities were observed in activation maps among transfer
learning models trained using the DR fundus image
(Figure 4) rather than the normal fundus image (Figure 5).

4. Discussion

4.1. Main Findings of the Present Study. In our study, we
trained models using the open-access Kaggle dataset, which
has high image variability and theoretically predominant
T2D patients, and the T1D dataset from the single medical
center. We found that the model trained using the Kaggle
dataset had an average AUC of 0.74 when testing using the
same dataset, but this increased to 0.87 when testing using
the T1D dataset. By contrast, the model trained using the
T1D dataset had high accuracy (up to AUC of 0.91) in
T1D patients, but it decreased (lowest AUC of 0.54) with
the Kaggle dataset. Heatmaps demonstrated weighted fea-
tures of retinal microaneurysm, hemorrhage, exudation,
and vessels. Dataset homogeneity dataset may affect the
trainability and generalization of the model.

4.2. Importance of External Validation and Standardization
of Hyperparameters. Previous studies proposed numerous
models that achieved high performance in diagnosing DR,

even when trained with only a small dataset containing
thousands of images [16]. The performance of our results
yielded comparable results with the previous study (AUCs
ranged from 0.65 to 0.86) when using a similar data size
from the Kaggle dataset [33]. However, a large DR screening
validation study found that most algorithms had significant
performance differences and even obtained concerning
results when evaluated through external validation, even
though these algorithms were already in active use in real-
world clinical settings [34]. In our study, models trained
using the T1D dataset also exhibited acceptable performance
(AUCs between 0.84 and 0.91) when internally validated,
but their performance significantly decreased when evalu-
ated using the external dataset. These results highlight the
need for rigorous training and testing of models by using
datasets containing a similar distribution of target popula-
tion to avoid the huge discrepancy between expected and
real performance. In addition, to produce a stable and repro-
ducible prediction outcome, considerably more hyperpara-
meters should be standardized. Although a previous study
had already investigated the large number of possible factors
that influence the performance of deep learning model [9],
we anticipate that many more elements still need to be deter-
mined. For instance, the etiology of DM, age range, and
comorbid eye diseases were shown to be possible influencing
factors in our study.

Trained on kaggle data set Trained on T1D data set

Denset Net–
121

Prediction: Normal

Prediction: Normal

Prediction: Normal

Prediction: Normal Prediction: Normal

Prediction: Normal

Prediction: Normal

Prediction: Normal

Xception

VGG 16

Inception V3

True: Normal

A

B C

D E

F G

H I

Figure 5: The images present the original (a) and superimposed Grad-CAM activation maps ((b)–(i)) of the selected normal color fundus
image. All models gave a true-negative prediction. There was a high variation in the activation map when given a normal fundus image.
Some models focus on the optic disc ((e) and (g)), whereas others highlight the retinal vessels ((b), (c), and (g)), or macular region ((d),
(h), (f), and (i)).
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4.3. Different Performance Levels in Different Datasets. The
models trained using the T1D dataset had poor performance
when tested using the Kaggle dataset, whereas those trained
using the Kaggle dataset showed better performance when
tested using the T1D dataset. There are several possible
explanations for the differences in the generalization of
models trained using different datasets despite the use of
the same method, similar dataset size, and imbalance ratio.
When reviewing the wrong prediction images, we found that
the images had similar problems affecting model prediction
(Figure 6). Images from the T1D dataset were evaluated by
retinal ophthalmologists, and images with poor quality or
those that could not be graded were excluded. As the T1D
dataset contained images of patients over multiple visits,
the number of unique patients with T1D may be less than

that in the Kaggle dataset, resulting in homogeneous data
and thus rendering the T1D database much easier to predict
for models trained using either of the databases. By contrast,
images from the Kaggle dataset may not be cleaned and may
contain more noise and artifacts, including out-of-focus,
overexposure, or underexposure images, than images from
the T1D dataset. Furthermore, the Kaggle dataset could be
collected from a more diverse population with older age
and higher age variation, thus, having more heterogeneous
characteristics, whereas T1D patients had similar demo-
graphics and younger age. Therefore, patients in the Kaggle
dataset may have other ocular diseases related to aging or
other comorbidities such as cataract and age-related macular
degeneration. Retinal features of ocular diseases other than
DR, such as retinal exudates in age-related macular

(a) (b)

(c) (d)

(e) (f)

Figure 6: Images in the Kaggle dataset with wrong prediction. (a) False-negative in an image with foggy view and retinal laser scar. (b) False-
negative in an image with poor illumination. (c) False-negative in an image with reflective spots and shadows. (d) False-positive in an image
with overexposure and halo. (e) False-positive in an image with underexposure and halo. (f) False-positive in an image with exudates caused
by age-related macular degeneration.

7Journal of Diabetes Research



degeneration, may affect model prediction. In addition, cat-
aracts may affect image quality. These findings have been
reported in our previous studies [35, 36]. As the T1D dataset
contained images of patients over multiple visits, the charac-
teristic variation in T1D may be less than that in the Kaggle
dataset, also resulting in homogeneous data. Therefore, a
homogeneous dataset may have resulted in higher trainabil-
ity and lower generalization of models and vice versa in a
more heterogenous dataset. Therefore, heterogeneity of the
testing population also influences the performance of pre-
diction models.

4.4. Highlighted Regions by Grad-CAM. Typical characteris-
tic findings of DR, such as retinal microaneurysms, hemor-
rhages, exudates, and neovascularization, were among the
most common highlighted regions by Grad-CAM in our
study, consistent with a previous report [37]. In addition,
nontraditional regions including the macula and optic disc
were occasionally highlighted. As DR may also present with
diabetic macular edema and neovascularization of the disc,
abnormal features in these regions may also be extracted.
Although neurodegeneration precedes vascular lesion in
DR [38], whether deep learning models can detect abnor-
malities before the appearance of clinically observable
lesions requires further investigation.

4.5. Limitations. This study has several limitations. First, we
only assessed how training using only the T1D dataset
affects detection performance; these results may not apply
to other etiologies, such as the inherited form, maturity
onset diabetes of the young, or other secondary causes. Sec-
ond, our T1D data were collected from a single medical cen-
ter and from a single ethnicity, making the dataset relatively
small with less heterogeneity. Third, DR was identified using
macula-centered retinal fundus images in the T1D dataset,
instead of images obtained through 7-field retinal fundus
photography, as suggested by the Early Treatment Diabetic
Retinopathy Study [39]. In addition, we did not justify fur-
ther DR grading, which may help with the determination
of treatment-required DR, because the detection of early
DR in the T1D population could provide more information
in patient care and education [18]. Finally, our models were
developed with a limited combination of hyperparameters,
and we did not conduct a combined model training on both
datasets. A different implementation may thus provide dif-
ferent results.

5. Conclusion

Our study investigated a deep learning-based DR prediction
model using two datasets. Our results showed that dataset
homogeneity can have a significant effect on the trainability
and generalization of the model. This implied that deep
learning models should be trained with data similar to the
target population and updated according to the landscape
of DM to ensure a robust prediction and outcome. As the
prevalence of diabetes continues to rise [2], along with an
alarming increase in the frequency of T2D among youth
[40], the epidemiology of diabetes will continue to change.

In addition, activation maps produced inferred that in addi-
tion to characteristic findings of DR, the macula and optic
disc may also contribute to the detection of abnormalities
in fundus imaging.
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