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Abstract: Alzheimer’s disease (AD) is the most common neurodegenerative disorder affecting elderly
people worldwide. Currently, there are no effective treatments for AD able to prevent disease progres-
sion, highlighting the urgency of finding new therapeutic strategies to stop or delay this pathology.
Several plants exhibit potential as source of safe and multi-target new therapeutic molecules for AD
treatment. Meanwhile, Eucalyptus globulus extracts revealed important pharmacological activities,
namely antioxidant and anti-inflammatory properties, which can contribute to the reported neuropro-
tective effects. This review summarizes the chemical composition of essential oil (EO) and phenolic
extracts obtained from Eucalyptus globulus leaves, disclosing major compounds and their effects on
AD-relevant pathological features, including deposition of amyloid-β (Aβ) in senile plaques and
hyperphosphorylated tau in neurofibrillary tangles (NFTs), abnormalities in GABAergic, cholinergic
and glutamatergic neurotransmission, inflammation, and oxidative stress. In general, 1,8-cineole
is the major compound identified in EO, and ellagic acid, quercetin, and rutin were described as
main compounds in phenolic extracts from Eucalyptus globulus leaves. EO and phenolic extracts, and
especially their major compounds, were found to prevent several pathological cellular processes
and to improve cognitive function in AD animal models. Therefore, Eucalyptus globulus leaves are
a relevant source of biological active and safe molecules that could be used as raw material for
nutraceuticals and plant-based medicinal products useful for AD prevention and treatment.

Keywords: essential oil; phenolic extracts; eucalyptus; Alzheimer’s disease

1. Introduction

Alzheimer’s disease (AD) is a multifactorial age-related neurodegenerative disorder
that is characterized by loss of memory and impairment of other cognitive functions as
well as behavioral alterations [1,2]. AD is the most common form of dementia in the
elderly affecting 50 million people worldwide and is expected to impact on 152 million
people in 2050 [3], highlighting the urgency of developing disease-modifying strategies
able to prevent or delay its progression. The characteristic neuropathological hallmarks,
which have been implicated in AD pathophysiology, are the intracellular accumulation
of neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein and the
extracellular deposition of amyloid-β (Aβ) peptide in senile plaques [4]. In addition to
formation and deposition of Aβ and hyperphosphorylated tau, several other molecular al-
terations have been described in AD, including neuronal dystrophy, synaptic loss, oxidative
stress, inflammation, and depletion of acetylcholine (ACh) levels, among many others [5].
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In the last decades, several efforts have been made towards the identification of novel
therapeutic targets in AD because the treatments approved by Food and Drug Adminis-
tration (FDA) and European Medicines Agency (EMA) only alleviate symptoms without
altering the progression of the disease and also have multiple side effects. Interestingly,
two of the five approved drugs are from natural origin (galantamine and physostigmine-
derivative rivastigmine) [6]; therefore, the relevance of plants as sources of new safe and
multi-target therapeutic agents for AD has stimulated the research worldwide [7–9]. In
accordance, over the past 20 years, about 50% of the over 1000 different compounds that
have been studied as candidates for AD treatment are molecules obtained from natural
sources, and some have already been tested in clinical trials [10,11]. Eucalyptus globulus
(E. globulus) is a tree native to Australia and extensively cultivated in many countries of
Europe, including Portugal [12]. The exploration of eucalyptus by the pulp, paper, and
wood industry generates large quantities of residual biomass (bark, leaves, and branches)
whose valorization can represent a significant contribution to the circular economy. The
potential of some by-products of E. globulus as a source of bioactive compounds has been
demonstrated. In fact, E. globulus leaves are traditionally used for treatment of respiratory
threats. Furthermore, several compounds obtained from E. globulus leaves, such as essential
oils (EOs) and phenolic compounds, have been shown to be important antimicrobial agents
as well as to exhibit antioxidant and anti-inflammatory properties, among other relevant
biological activities [12,13], reinforcing the interest in deepening further studies focused on
this by-product. In fact, due to the already demonstrated properties, these compounds have
been used against bacteria and fungi infections, for pain relief, and to deal with immune
system-related diseases besides respiratory problems [14]. Additionally, there are some
evidence that these compounds could be applied to the skin to deal with conditions, which
is supported by our recent work demonstrating their beneficial effect against several skin
alterations such as aging and pigmentation [15]. The therapeutic potential for AD of some
of these compounds was also reported in a few studies due to their inhibitory effect on
acetylcholinesterase (AChE) and neuroprotective effects [13,16]. This review summarizes
the chemical composition and the potential of EOs and phenolic compounds extracted
from E. globulus leaves, particularly the major components, as promising therapeutic agents
for AD.

2. Chemical Composition of Essential Oil and Phenolic Compounds from
E. globulus Leaves

The International Standard Organization on Essential Oils (ISO 9235: 2013) and the
European Pharmacopoeia define an EO as the product obtained from plant raw material
by hydrodistillation, steam distillation or dry distillation, or by a suitable mechanical
process (for Citrus fruits). EOs are usually complex mixtures of volatile compounds present
in different concentrations [17]. Monoterpenes and sesquiterpenes are usually the main
groups found in EOs, and in some cases, phenylpropanoids are also important com-
ponents [18]. The yield and chemical composition of EOs depend on several extrinsic
(ecological and environmental aspects) and intrinsic (sexual, seasonal, ontogenetic, and
genetic variations) factors [19]. Generally, the chemical characterization of EOs is per-
formed by gas chromatography-mass spectrometry (GC-MS) techniques, and the quality of
EOs is evaluated by comparison with analytical monographs published by the European
Pharmacopoeia. This compendium determines the chromatographic profile of the EO
obtained from E. globulus leaves by gas chromatography, establishing the range of the
main constituents that the EO should contain at least 70% 1,8-cineole, 4–12% limonene,
1–9% α-pinene, less than 1.5% β-pinene and α-phellandrene, and less than 0.1% camphor.
Concerning the EO yield, it is reported to range from 1.5 to 3.5%. Several chemical profiles
have been described in the literature, with significant variations of the main compounds, as
well as the EO yield, which can change according to several factors, namely the geographi-
cal region of the plants, the maturity state, and the condition of the leaves (fresh or dry),
as summarized in the Table 1. According to these studies, the EOs of E. globulus leaves
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from several world regions are enriched in 1,8-cineole, and high content in this compound
was reported in EOs obtained from this specie planted in Argentina (98.9%) [20], Tunisia
(95.6%) [21], Italy (95.5%) [22], Brazil (90.0%) [23], Australia (90.0%) [24], India (85.0%) [25],
Ethiopia (81.6%) [26], Morocco (80.0%) [27], Algeria (78.5%) [28], and Portugal (74.6%) [29].
Only two EOs have a completely different chemical profile with absence or very low levels
of 1,8-cineole [30,31].
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Table 1. Chemical components present at ≥2%, of the essential oils from Eucalyptus globulus leaves.

Origin Compounds Source Extraction Yield (%) References

Algeria

1,8-cineole (78.5 %), o-cymene (2.2%) Fresh leaves Steam distillation 0.96 [28]

1,8-cineole (71.3 %), α-pinene (8.8%), trans-pinocarveol (3.3%), limonene (2.7%), α-terpineol (2.7%) Fresh leaves Steam distillation 1.10 [32]

1,8-cineole (55.3%), isovaleraldehyde (10.0%), spathulenol (7.4%), α-terpineol (5.5%), α-pinene (4.6%) Dry leaves Hydrodistillation 2.53 [33]

1,8-cineole (51.1%), α-pinene (24.6%), trans-pinocarveol (10.0%), globulol (2.8%) Fresh leaves Steam distillation 0.96 [34]

1,8-cineole (48.6%), globulol (10.9%), trans-pinocarveol (10.7%), α-terpineol (6.6%), aromadendrene (4.6%) Fresh leaves Hydrodistillation 2.50 [35]

1,8-cineole (47.1%), globulol (8.7%), α-pinene (7.7%), α-terpinene (3.6%), p-cymene (3.5%), terpineol (2.4%) Dry leaves Steam distillation - [36]

γ-terpinene (94.5%), 1,8-cineole (3.2%) Dry leaves Hydrodistillation 3.50 [30]

Argentina

1,8-cineole (98.9%) Commercial - - [20]

1,8-cineole (90.7%), α-pinene (4.1%) Fresh leaves Hydrodistillation 2.68 [37]
a 1,8-cineole (77.9%), α-terpineol (6.0%), α-pinene (5.8%), γ-terpinene (4.8%), p-cymene (2.3%)

Fresh leaves Hydrodistillation
2.25

[38–40]
b 1,8-cineole (76.7%), α-pinene (11.1%), α-terpineol acetate (4.0%) 1.66

1,8-cineole (76.7%), limonene (18.9%) Leaves Hydrodistillation - [41]

Australia

1,8-cineole (90.0%), α-pinene (2.2%) Commercial - - [24]

1,8-cineole (86.3%) Commercial - - [42]

1,8-cineole (79.4%), α-pinene (3.7%), α-terpineol (3.0%) Commercial - - [43]

1,8-cineole (77.0%), limonene (7.5%), p-cymene (5.5%), γ-terpinene (5.3%) Commercial - - [44]

1,8-cineole (64.4%), limonene (5%), α-pinene (3.8%) Commercial - - [45]

1,8-cineole (51.0%), α-pinene (16.7%), limonene (6.2%), globulol (7.3%) Leaves Hydrodistillation - [46]

Belgium 1,8-cineole (80.4%), limonene, (7.5%), γ-terpinene (3.7%), p-cymene (2.5%) Commercial - - [47]
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Table 1. Cont.

Origin Compounds Source Extraction Yield (%) References

Brazil

1,8-cineole (90.0%) Commercial - - [48]

1,8-cineole (90.0%), tricyclene (3.0%) Commercial - - [23]

1,8-cineole (83.9%), limonene (8.2%), α-pinene (4.2%), o-cymene (3.0%) Commercial - - [49]

1,8-cineole (83.7%), limonene (6.4%), p-cymene (5.4%), α-pinene (4.6%) Fresh leaves Hydrodistillation - [50]

1,8-cineole (78.9%), limonene (8.5%), p-cymene (5.7%), α-pinene (3.6%) Commercial - - [51]

1,8-cineole (77.5%), α-pinene (14.2%) Dry leaves Hydrodistillation 3.10 [52]

1,8-cineole (75.7%), p-cymene (7.5%), α-pinene (7.3%),
limonene (6.4%) Commercial - - [53,54]

1,8-cineole (71.0%), α-pinene (8.3%), α-guaiene (4.8%), globulol (3.5%), cis-verbenol (2.7%) Dry leaves Steam distillation 1.33 [55]

1,8-cineole (69.3%), camphene (9.4%), α-pinene (7.5%), α-terpineol (5.1%), globulol (2.7%) Dry leaves Hydrodistillation 1.60 [56]

1,8-cineole (68.3%), α-pinene (16.2%), α-terpineol (6.4%), limonene (3.0%) Dry leaves Steam distillation - [57]

1,8-cineole (64.3%), α-pinene (8.9%), α-terpineol (7.2%), globulol (4.8%) Dry leaves Hydrodistillation 1.60 [58]

1,8-cineole (61.3%), camphenene (12.6%), α-pinene (5.8%), limonene (4.1%), vidiflorol (3.1%),
aromadrendene (2.8%) Dry leaves Hydrodistillation 1.50 [59]

1,8-cineole (49.0%), camphenene (8.9%), globulol (7.0%), aromadendrene (2.3%), α-terpineol (2.0%) Dry leaves Hydrodistillation 0.60 [60]

1,8-cineole (44.7%), α-pinene (14.3%), globulol (9.2%), aromadendrene (7.3%), p-cymene (4.7%) Dry leaves Hydrodistillation - [61]

Cameroon 1.8-cineole (26.4%), α-pinene (14.1%), p-cymene (10.2%), β-ionone epoxyde (7.0%), p-menthen-8-ol (6.5%) Fresh leaves Steam distillation 1.00 [62]

Chile
1,8-cineole (82.6%), α-pinene (9.5%), m-mentha-6.8-diene (4.7%) Leaves Hydrodistillation - [63]

1,8-cineole (76.0%), α-pinene (7.4%), aromadendrene (3.6%), silvestrene (2.8%), sabinene (2.0%) Fresh leaves Hydrodistillation - [64]

China
1,8-cineole (94.3%) Commercial - - [65]

1,8-cineole (39.2%), α-terpineol acetate (13.8%), α-terpineol (11.3%), α-pinene (11.3%), endo-borneol (5.4%) Dry leaves Hydrodistillation - [66]

Columbia 1,8-cineole (52.3%), α-pinene (15.3%), α-terpineol (9.8%), globulol (7.6%) Fresh leaves Hydrodistillation 1.50 [67]

Democratic Republic
of the Congo 1,8-cineole (44.3%), camphene (23.1%), α-pinene (9.3%), globulol (7.3%), limonene (5.1%) Fresh leaves Hydrodistillation 1.87 [68]

Ecuador 1,8-cineole (52.6%), α-pinene (20.0%), α-phellandrene (6.2%), α-terpinyl acetate (3.7%) Commercial - - [69]

Egypt
1,8-cineole (46.8%), limonene (9.6%), tolueno (8.6%), o-cymene (6.5%), fenchene (6.3%) Dry leaves Hydrodistillation - [70]

1,8-cineole (21.4%), o-cymene (21.4%), α-pinene (6.7%), spathulenol (6.3%), 4-terpineol (3.9%) Fresh leaves Hydrodistillation 0.40 [71]
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Table 1. Cont.

Origin Compounds Source Extraction Yield (%) References

Ethiopia

1,8-cineole (81.6%), α-pinene (2.8%), cuminaldehyde (2.8%), trans-caryophyllene (2.5%) Fresh leaves Hydrodistillation - [26]

1,8-cineole (63.0%), α-pinene (16.1%), camphor (3.4%) Fresh leaves Hydrodistillation - [72]

1,8-cineole (57.5%), α-pinene (15.2%), limonene (7.8%), α-terpinyl acetate (5.3%), α-terpineol (2.0%) Fresh leaves Hydrodistillation 1.10 [73]

France 1,8-cineole (57.9%), α-pinene (13.9%), globulol (3.6%), p-cymene (3.3%), trans-pinocarveol (2.8%) Commercial - - [74]

Germany 1,8-cineole (86.5%), α-pinene (4.7%), γ-terpinene (2.6%) Commercial - - [75]

India

1,8-cineole (85.0%), α-pinene (3.0%) Commercial - [25]

1,8-cineole (71.7%), α-pinene (9.14%), α-terpineol acetate (3.6%), alloaromadendrene (2.4%),
α-terpineol (2.2%) Dry leaves Hydrodistillation - [76]

1,8-cineole (71.6%), 3-carene (15.1%), cis-ocimene (6.2%) Commercial - - [77]

1,8-cineole (68.8%), α-pinene (2.8%), p-cymene (2.1%) Commercial - - [78]

1,8-cineole (54.8%), β-pinene (18.5%), α-pinene (11.5%), β-eudesmol (4.7%), α-phellandrene (2.1%), Fresh leaves Hydrodistillation 1.10 [79]

1,8-cineole (66.3%), cis-ocimene (21.3%), α-terpinyl acetate (3.4%), aromadendrene (2.9%), globulol (1.4%) Commercial - - [80]

1,8-cineole (33.6%), α-pinene (14.2%), limonene (10.1%), α-terpinolene (6%), α-terpineol (4.7%) Commercial - - [81]

1,8-cineole (45.4%), limonene (17.8%), p-cymene (9.5%), γ-terpinene (8.8%), α-pinene (4.2%) Commercial - - [82]

p-cymene (31.9%), 1,8-cineole (17.5%), α-pinene (17.2%), α-terpinene (8.9%), β-pinene (7.5%) Fresh leaves Hydrodistillation 0.90 [83]

cymene (26.4%), β-pinene (15.2%), eudesmol (11.4%), α-pinene (10.6%), 1-phellandrene (10.3%) Dry leaves Hydrodistillation 2.00 [31]

Iran

1,8-cineole (88.0%), α-pinene (2.2%) Dry leaves Hydrodistillation - [84]

1,8-cineole (58.1%), α-phellandrene (6.0%), neo-isodihydrocarveol (3.6%), α-pinene
(3.3%), α-eudesmol (3.2%) Commercial - - [85]

Italy

1,8-cineole (95.5%), α-pinene (2.5%) Commercial - - [22]

1,8-cineole (91.5%), p-cymene (3.1%), α-pinene (2.7%) Commercial - - [86]

1,8-cineole (89.8%), p-cymene (6.7%), α-pinene (2.0%) Commercial - - [87–89]

1,8-cineole (84.9%), α-pinene (5.6%), p-cymene (5.3%) Commercial - - [90]

1,8-cineole (81.4%), limonene (7.0%) Commercial - - [91,92]

1,8-cineole (76.0%), α-pinene (6.6%), limonene (5.7%), α-terpineol (3.1%) Commercial - - [93]

1,8-cineole (48.2%), aromadendrene (13.7%), guaiol (7.6%), α-pinene (6.9%), p-mentha-1,3,5-triene (3.8%) Dry leaves Hydrodistillation 2.00 [94]

Kenya
1,8-cineole (79.6%), α-pinene (6.9%), α-terpineol (3.8%), limonene (2.7%) Fresh leaves Hydrodistillation - [26]

1,8-cineole (17.2%), α-pinene (7.1%), spathulenol (6.5%), cryptone (5.4%), isoborneol (2.5%) Fresh leaves Steam distillation - [95]

Montenegro 1,8-cineole (85.8%), α-pinene (7.2%) Dry leaves Hydrodistillation 1.80 [96]



Int. J. Mol. Sci. 2022, 23, 8812 7 of 41

Table 1. Cont.

Origin Compounds Source Extraction Yield (%) References

Morocco

1,8-cineole (80.0%), limonene (6.7%), p-cymene (5.1%), γ-terpinene (3.9%) Dry leaves Steam distillation 2.70 [27]

1,8-cineole (70.6%), α-pinene (12.9%) Dry leaves Hydrodistillation 0.60 [97]

1,8-cineole (29.5%), p-cymene (11.5%), α-terpineol (5.2%) Dry leaves Hydrodistillation 1.20 [98]

p-cymene (37.8%), 1,8-cineole (29.3%), limonene (26.1%), α-pinene (3.5%) Commercial - - [99]

Pakistan
1,8-cineole (56.5%), limonene (28.0%), α-pinene (4.2%) α-terpineol, (4.0%), globulol (2.4%) Fresh leaves Hydrodistillation 1.89 [100]

β-phellandrene (32.1%), 1,8-cineole (26.6%), α-pinene (16.8%), p-cymene (8.9%), ∆3-carene (8.1%) Fresh leaves Hydrodistillation 1.10 [101]

Portugal

1,8-cineole (74.6%), α-pinene (12.9%), metileugenol (3.5%), globulol (3.2%), terpinen-4-ol (2.0%) Dry leaves Hydrodistillation - [29]

1,8-cineole (62.5%), α-pinene (18.5%), limonene (4.0%) aromadendrene (3.1%), δ-cadinene (2.9%) Fresh leaves Hydrodistillation 1.90–2.70 [102]

1,8-cineole (36.7%), β-pinene (9.3%), aromedendrene (6.3%), globulol (5.1%), trans-pinocarveol (2.5%) Dry leaves Hydrodistillation 2.67 [103]

Slovakia 1,8-cineole (70.0%), limonene (12.0%), α-pinene (9.0%) Leaves Hydrodistillation - [104]

South Africa 1,8-cineole (80.8%), limonene (8.0%), γ-terpinene (2.8%) Commercial - - [105]

Spain
1,8-cineole (84.3%), cymene (7.5%), γ-terpinene (3.5%) Commercial - - [106]

1,8-cineole (63.8%), α-pinene (16.1%), aromadendrene (3.7%), o-cymene (2.4%) Commercial - - [107]

Switzerland 1,8-cineole (88.0%), p-cymene (6.7%), γ-terpinene (3.5%) Commercial - - [108]

Thailand
1,8-cineole (82.6%), limonene (7.4%), o-cymene (4.3%), γ-terpinene (2.7%) Commercial - - [109]

1,8-cineole (48.5%), α-pinene (20.6%), β-pinene (15.5%), terpineol (15.4%) Fresh leaves Hydrodistillation - [110]

Tunisia

1,8-cineole (95.6%) Commercial - - [21]

1,8-cineole (62.8%), 4-methyl-2-pentyl acetate (22.3%), α-pinene (8.8%), caryophyllene (2.5%),
β-humulene (2.4%) Commercial - - [111]

1,8-cineole (53.8%), α-pinene (12.1%), globulol (4.5%), trans-pinocarveol (3.7%), aromadendrene (3.4%) Dry leaves Hydrodistillation 3.80 [112]

1,8-cineole (48.2%), α-pinene (16.1%), γ-terpinene (8.9%), p-cymene (8.8%), globulol (3.8%) Fresh leaves Hydrodistillation 0.74 [113]

1,8-cineole (43.2%), α-pinene (13.6%), aromadendrene (10.1%), 4-carene (6.9%), β-cymene (4.0%) Dry leaves Hydrodistillation 1.25 [114]

p-cymene (18.2%), methyl eugenol (8.8%), terpinenol (8.5%), s-methyl 3-methylbutanethioate (7.3%),
γ-terpinene (5.1%) Fresh leaves Steam distillation - [115]

USA 1,8-cineole (90.0%), p-cymene (3.7%), α-pinene (3.5%) Commercial - - [116]
a E. globulus ssp. maidenii; b E. globulus ssp. globulus.
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According to the Encyclopedia of Food Sciences and Nutrition, phenolic compounds
present hydroxylated aromatic rings, in which the hydroxyl group is directly attached to
the phenyl, substituted phenyl, or other aryl group [117]. Phenolic compounds are a large
group of secondary metabolites produced by plants in response to environmental stresses,
such as pathogen infection, high light, low temperatures, nutrient deficiency, and predators.
Plants constitutively contain these compounds, which are a varied group of phytochemi-
cals [118]. Phenolic compounds can be divided in several classes, namely phenolic acids
(hydroxycinnamic acids, hydroxybenzoic acids), flavonoids, and tannins [119]. Usually, the
analysis of the phenolic compounds is performed by high-performance liquid chromatog-
raphy (HPLC), which offers high sensitivity and great efficiency, but gas chromatography
and capillary electrophoresis can also be used. Different detection systems can be combined
with these techniques, and mass spectrometry is the preferred system [120]. Regarding the
phenolic compounds from E. globulus leaves, the chemical composition is very heteroge-
neous and can vary according to geographical region and the extractive solvent, as reported
in several studies (Table 2). The predominant phenolic compounds from E. globulus leaves
are phenolic acids, namely the ellagic acid and flavonoids, particularly of flavonol subclass,
specifically quercetin and its glycoside rutin. Ellagitannins are predominant among the less
abundant phenolic compounds in E. globulus leaves.

The more abundant compounds found in EOs and phenolic extracts obtained from
E. globulus leaves (Figure 1) play an important role in their biological activities. The
research of E. globulus has mainly focused on the composition and biological activities of
EOs obtained from leaves, and only few studies disclosed the chemical composition of
the leaves’ phenolic extracts and their biological properties. Therefore, since E. globulus
extracts and EOs obtained from leaves are rich in bioactive compounds, their potential for
formulation of food and plant-based medicinal products should be explored. However, the
analysis of the biological properties of extracts and/or isolated compounds is a key step in
assessing their potential of valorization.
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Table 2. Phenolic compounds from Eucalyptus globulus leaves extracts.

Origin Compounds *
mg/100 g Plant Material

Total Phenolic Content
mg GAE/g Source Extraction Yield

g/100 g Plant Material Reference

Algeria
Sideroxylonal (1902.39), ellagic acid (284.30), methylellagic

acid hexose (174.88), eucalbanine (113.13), quercetin
3-O-rhamnoside (108.43)

- Dry leaves 70% Acetone and 0.5%
acetic acid 24.70 [118]

Australia Hyperoside (66.64), quercetin (28.78), myricetin (9.23), rutin
(4.87), isoquercetin (3.90) 235.87 a Dry leaves 70% Ethanol at 60 ◦C - [121]

Chile
Luteolin (260.00), quercetin (250.00), morin (170.00), sinapic

acid (170.00), ellagic acid (60.00) 0.043 b Fresh leaves Methanol - [64]

Gallic acid (2175.00), gentisic acid (1358.33), rutin (456.83),
caffeic acid (351.67), 3,4-dihydroxybenzoic acid (34.33) 54.02 c Dry leaves Water at 100 ◦C [122]

China Rutin, isorhamnetin-hexoside, isorhamnetin-rhamnoside - Dry leaves Methanol at 45 ◦C 10.50 [123]

Egypt
Isorhamnetin 3-O-beta-D-glucuronoside, galloyl
cypellocarpin B, cypellocarpin C, methyl gallate,

valoneoyl-digalloyl-glucopyranose
- Dry leaves Methanol 14.67 [124]

Greece p-Coumaric acid (6.60), quercetin (2.50), rutin (1.80), gallic
acid (1.50) - Dry leaves 62.5% Methanol and HCl at

90 ◦C - [125]

India

Gallic acid (8.62), ellagic acid (6.58), vanillic acid (4.89),
p-hydroxybenzoic acid (4.36), syringic acid (3.86) 242.50 c

Dry leaves

Methanol
-

[126]Gallic acid (5.36), ellagic acid (4.20), p-hydroxybenzoic acid
(3.55), vanillic acid (2.56), syringic acid (2.45) 156.30 c Chloroform

Gallic acid (3.08), p-hydroxybenzoic acid (2.10), syringic acid
(1.24), ellagic acid (0.86) 98.70 c Hexane

Rutin (113.20), quercetin (44.00), ferulic acid (6.66), gallic acid
(3.00), caffeic acid (1.40) 40.10 c Dry leaves 80% Methanol and 5.5%

HCl at 85 ◦C - [127]

Lithuania

Chlorogenic acid, phlorizin, rutin, quinic acid, isoquercetin -

Dry leaves

70% Methanol
-

[13]Chlorogenic acid, phlorizin, rutin, quinic acid, isoquercetin - 70% Acetone

Chlorogenic acid, phlorizin, quinic acid, quercetin, apigenin - 70% Ethanol

Portugal Flavonol glycoside (234.52), chlorogenic acid (106.91), rutin
(105.71), ellagic acid (63.81), quercetin (57.38) 311.00 c Dry leaves Water at 40 ◦C 23.80 [128]

Spain Hyperoside (29.09), chlorogenic acid (17.54), rutin (16.64),
quercetin (6.30), p-coumaric acid derivative (2.40) - Dry leaves Water 9.69 [129]

USA Gallic acid (132.90) - Dry leaves 50% Methanol 30.00 [130]

* Only the five major compounds from highest to lowest concentration are shown in the table; a value expressed in dry weight plant material; b value expressed in fresh weight plant
material; c value expressed in extract.
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3. Role of Essential Oil and Phenolic Compounds from E. globulus Leaves in
Alzheimer’s Disease

Table 3 lists neuroprotective effects of EO, phenolic extracts and its major constituents
obtained from E. globulus leaves against various neurodegeneration model systems.

3.1. Aβ Formation and Tau Hyperphosphorylation

According to the “Amyloid Cascade Hypothesis”, accumulation and oligomerization
of Aβ peptide in the brain plays a major role in AD pathophysiology [131]. Aβ is a short
fragment formed by the amyloidogenic proteolytic cleavage of the amyloid precursor
protein (APP) [132] (Figure 2), which exhibits toxic effects on neuronal and glia cells in both
oligomeric and fibrillar forms. Therefore, several approaches have been designed to de-
crease Aβ peptide formation from APP, and the most studied targets are β-secretase (BACE)
and the γ-secretase complex. APP cleavage is performed by these two enzymes at variable
sites to form numerous fragments of Aβ [133,134]. There are two isoforms of BACE [132]:
BACE-1 [135] and BACE-2 [136]. The inhibition of BACE-1 is the most attractive therapeutic
approach in AD because Aβ production from APP cleavage in the brain mainly results from
the action of this β-secretase isoform. The membrane fragment formed upon BACE1 action
is then cleaved by γ-secretase, generating Aβ fragments, namely Aβ1-40 and Aβ1-42 [137].
The inhibition of γ-secretase is also a valuable strategy but is less attractive than β-secretase
due to fact that it is a multiprotein complex. Unfortunately, serious side effects were re-
vealed in the clinical trials performed with secretase inhibitors [138,139] since the inhibition
of these two enzymes can interfere with the processing of other substrates [140,141]. For
example, γ-secretase inhibition has adverse side effects on Notch signaling that may cause
severe gastrointestinal toxicity and the β-secretase inhibition can affect negatively the
central or peripheral myelinization. Besides secretases inhibitors and modulators aimed
to reduce Aβ formation, there are other therapeutic strategies under development to halt
AD progression, such as prevention of Aβ oligomerization and aggregation into plaques,
Aβ vaccination to promote Aβ clearance, and inhibition of its accumulation [142]. In
fact, recently, FDA approved the commercialization of a new drug for AD treatment, the
aducanumab, which is an antibody capable of removing Aβ plaques from the brain and
the first drug capable of interfering with the neurodegenerative process of the disease.
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Figure 2. Effect of compounds obtained from E. globulus leaves in the amyloidogenic pathway and in
the formation of amyloid-β (Aβ) in AD. The amyloidogenic pathway is initiated with the enzymatic
breakdown of amyloid precursor protein (APP) by β-secretase enzyme followed by catalytic cleavage
of APP by γ-secretase to originate non-soluble protein or Aβ. Aβ oligomerization and accumulation
leads to synaptic dysfunction and neurodegeneration.

Hyperphosphorylated tau-enriched NFTs are another neuropathological hallmark of
AD. Under physiologic conditions, tau is the principal microtubule (MT)-associated protein
that cooperates with tubulin to regulate MTs stability, which is crucial to axonal transport
and thus to neuronal functioning [143]. In AD, hyperphosphorylated tau loses the capacity
to bind MTs and forms NFTs that contribute to the neurodegenerative process [144,145]
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(Figure 3). Overproduction of inflammatory mediators has been shown to activate kinases
such as cyclin-dependent kinase-5 (CDK-5) and glycogen synthase kinase-3β (GSK-3β),
which consequently lead to tau phosphorylation [146,147]. In AD, GSK-3β plays a crucial
role in tau hyperphosphorylation [148], but it was also demonstrated to contribute to Aβ

aggregation and deposition into senile plaques [149]. With this in mind, GSK-3β inhibitors
could represent a promising treatment strategy for AD.
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Figure 3. Effect of compounds obtained from E. globulus leaves on tau aggregation and formation
of neurofibrillary tangles (NFTs) in AD. Irregular phosphorylation of tau proteins destabilizes mi-
crotubules, leading to the formation of insoluble tau oligomers, which then accumulate to generate
protomers. Then, two twisted protomers originate paired helical filaments, which after aggregation
lead to the formation of NFTs. These intracellular structures are involved in synaptic and neuronal
dysfunction, thus contributing to cognitive decline in AD.

In the last years, some studies revealed that phenolic compounds can interfere with
both amyloid and tau pathologies, supporting their beneficial role in AD. However, there
is no information in the literature about the effect of EO from E. globulus leaves and its
major compound 1,8-cineole on AD. Ellagic acid was found as a potential BACE-1 inhibitor
as well as a protective strategy against Aβ deposition and tau hyperphosphorylation.
In a screening for anti-dementia agents from natural products, Kwak and collaborators
(2005) reported that ellagic acid was a moderate BACE-1 specific inhibitor [150] and in vitro
studies showed that ellagic acid promoted a significant loss of oligomers levels and was able
to prevent Aβ-induced toxicity [151,152]. Accordingly, ellagic acid treatment in a sporadic
AD rat model induced by streptozotocin (STZ) administration markedly decreased brain
Aβ levels, suggesting its potential to delay amyloidogenesis [153]. Finally, it was reported
that ellagic acid decreased APP and BACE-1 expression levels as well as Aβ deposition in
the hippocampus of APP/PS1 transgenic mice, a model of familial AD [154]. This study
also described the inhibition of tau hyperphosphorylation by ellagic acid mediated by the
activation of the protein kinase B (Akt)/GSK-3β signaling pathway.

Regarding quercetin and rutin, several studies identified quercetin and rutin as BACE-
1 inhibitors and provided strong evidences that both compounds are able to reduce Aβ

deposition and quercetin to decrease tau hyperphosphorylation and aggregation, prov-
ing its neuroprotective effects. In different in vitro AD models, both compounds showed
to prevent Aβ fibrils formation and cytotoxicity [155–158], and rutin was identified as a
BACE-1 inhibitor that specifically prevents APP cleavage, decreasing production of the
sAPPβ fragment [155,159,160]. In primary cortical neurons, quercetin was also described
to act as a potent BACE-1 inhibitor and to decrease Aβ levels [161]. However, an in vitro
study of Paris and co-authors provided evidences that quercetin inhibits Aβ and sAPPβ
production by regulating BACE-1 expression and not by acting directly as an inhibitor of its
activity [162]. Furthermore, a combined in vitro cell-based/in silico screening reported that
quercetin shows potent Aβ anti-aggregation activity [163]. Moreover, in HT22 hippocampal
neurons as well as in differentiated SH-SY5Y, quercetin reduced okadaic acid (OA)-induced
tau hyperphosphorylation, inhibited the activity of CD-K5, attenuated the rise of intracel-
lular calcium, and inhibited neuronal apoptosis via suppression of phosphoinositide 3-
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kinase (PI3K)/Akt/GSK-3β, mitogen-activated protein kinases (MAPKs), Bcl-2-associated
X (BAX), and caspase-3 activities as well as nuclear factor-κB (NF-κB) activation [164–166].
Furthermore, quercetin was found to prevent tau phosphorylation through AMP-activated
protein kinase (AMPK) activation and GSK-3β inhibition in OA-treated SH-SY5Y cells and
in the hippocampus of mice fed with a high-fat diet [167]. Quercetin also inhibited Aβ

fibrillization but not its toxic oligomerization in a C. elegans model of Aβ deposition [168]
by activation of macroautophagy and proteasomal degradation pathways [169]. In accor-
dance, senile plaques were reduced by quercetin in the cerebral cortex and hippocampus of
APP/PS1 mice [170]. Other in vivo studies revealed that quercetin decreased extracellular
β-amyloidosis, tauopathy, astrogliosis, and microgliosis in the hippocampus and amygdala
of 3xTg-AD mice, decreasing the number of paired helical filaments (PHF), Aβ levels, and
BACE1-mediated cleavage of APP [171,172]. In quercetin-treated 3xTg-AD mice, reactive
microglia and Aβ aggregates were reduced [173], and the oral administration of quercetin
increased brain apolipoprotein E (ApoE) and decreased Aβ levels in the cerebral cortex
of 5xFAD mice model [174]. Moreover, increased Aβ clearance and decreased astrogliosis
were observed in APP/PS1 mice receiving a quercetin-enriched diet during the early-
middle stage of AD-like pathology progression [175]. In Aβ-injected mice, an animal model
of sporadic AD, it was also demonstrated that protein levels of APP and BACE as well as
of p-tau were reduced by quercetin [176]. Finally, it was recently reported that quercetin
administration decreased the amount of Aβ in the hippocampal CA1 regions of Aβ-injected
rats [177]. Additionally, the oral administration of rutin decreased oligomeric Aβ levels in
brain of APP/PS1 transgenic mice [178].

3.2. Oxidative Stress

The presence of oxidative stress markers in the AD brain has been pointed out as
another relevant AD hallmark. Oxidative stress is caused by an imbalance between the
production of reactive oxygen species (ROS) and/or reactive nitrogen species (RNS) and
the removal capacity of the antioxidant system, promoting damage to lipids, proteins,
ribonucleic acids (RNA), and deoxyribonucleic acids (DNA) [179,180]. Despite the mecha-
nisms by which the redox balance is altered in AD and the sources of ROS/RNS remain
unknown, numerous studies suggest that Aβ is a potent trigger of oxidative stress that
is, at least in part, mediated by the disruption of mitochondrial function and subsequent
generation of oxidant species [181] (Figure 4). Therefore, development of novel antioxidant
strategies is required to prevent AD progression.

Many studies reported the antioxidant properties of EOs from E. globulus, which
contribute to its neuroprotective effects [17,116]. For example, an in vitro study performed
by Mizuno (2015) found that hydrogen peroxide (H2O2)-induced neuronal death was
attenuated by the EO of E. globulus [182]. Moreover, Yadav (2019) showed that E. globulus
oil alleviated depressive and cognitive symptoms of ketamine-induced psychosis in rats
mediated by its antioxidant effect in the cerebral cortex and hippocampus, where the levels
of reduced glutathione (GSH) were restored [77]. In both studies, the reported protective
effect of EO from E. globulus might be due to the presence of 1,8-cineole, which was shown
to be the major component. In fact, Ryu (2014) showed that 1,8-cineole may attenuate
oxidative stress in cortical neuronal/glial cells through its antioxidant capacity as ROS scav-
enger and activator of superoxide dismutase (SOD) [183]. Additionally, an in vitro study
using a neuronal cell model, performed by Khan and colleagues in 2014, demonstrated that
Aβ-induced neuronal toxicity was prevented by 1,8-cineole pretreatment. The loss of mito-
chondrial membrane potential as well as ROS accumulation were attenuated by 1,8-cineole,
supporting its anti-oxidative properties [184]. On the other hand, as observed above in the
previous section, α-pinene is also present in the EO of E. globulus leaves and in vivo studies
revealed its antioxidant effect. Lee (2017) demonstrated that α-pinene increased protein
levels of antioxidant enzymes, namely the heme oxygenase-1 (HO-1) and manganese su-
peroxide dismutase (MnSOD) in the hippocampus of the scopolamine-induced AD mice
model via activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) [185], which is
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a transcription factor that stimulates an antioxidant defense response. Nrf2 levels decrease
with age, and reduced Nrf2 levels were reported in AD animal models and postmortem
human brain tissue from patients [186]. Interestingly, recent studies revealed that Nrf2 acti-
vators may delay the progression and ameliorate the symptoms of the disease, suggesting
that Nrf2 inducers might be relevant therapeutic molecules for AD [187].
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Figure 4. Effect of compounds obtained from E. globulus leaves in oxidative stress and mitochondrial
damage in AD. Aβ oligomers can insert the plasma membrane originating pores by which Ca2+

pass into the cytoplasm. Aβ can also interact with metal ions (Fe2+ and Cu+) to generate reactive
oxygen species (ROS), which cause membrane lipid peroxidation. As consequence, the membrane
turns depolarized, and voltage-dependent Ca2+ channels (VDCC) and glutamate receptor-associated
channels (in particular NMDAR, N-methyl-D-aspartate receptor) open increasing cytoplasmic Ca2+

content. Additionally, Aβ overproduction can cause mitochondrial damage, which culminates in
ROS accumulation and ATP depletion that can impair axonal transport consequently originating
abnormal mitochondrial dynamics and promoting neurotransmission deficits. ATP depletion can also
lead to ionic alterations in the cytosol due to dysfunction of ATP-dependent ion channels. Moreover,
ROS accumulation affects the mitochondrial permeability transition pore (MPTP), which further
potentiates mitochondrial damage due to Ca2+ overload and inhibition of the electron transport chain.
ROS increase also promotes damage to proteins, namely DNA and RNA.

González-Burgos (2018) investigated the antioxidant activity of different extracts (ace-
tone, ethanol, and methanol) from E. globulus leaves and concluded that the extracts rich in
phenolic compounds were effective to prevent H2O2-induced oxidative stress and preserve
cell viability, increasing the activity of antioxidant enzymes and GSH levels as well as
decreasing lipid peroxidation and ROS production in SH-SY5Y cells [13]. As mentioned
before, the ellagic acid is one of the most predominant compounds found in phenolic
extracts from E. globulus leaves. In fact, several studies reported the antioxidant properties
of ellagic acid with significant impact on the progression of AD pathology, particularly
through the activation of several antioxidant enzymes, reducing lipid peroxidation and
free radical scavenging activity. Kabiraj and collaborators (2014) showed that ellagic acid is
able to scavenge peroxynitrite, protecting PC12 cells against rotenone-induced cell death
and also to reduce ROS and RNS production in these neuronal-like cells. Moreover, these
authors demonstrated that ellagic acid suppressed apoptosis caused by rotenone by reduc-
ing poly (ADP-ribose) polymerase-1 (PARP) cleavage, which is a hallmark of apoptotic cell
death [188]. Shen and co-authors (2017) also found that ellagic acid protected PC12 cells
from Aβ-induced damage by inhibiting ROS production and reducing calcium ion in-
flux [152]. Furthermore, ellagic acid pretreatment in intrahippocampal Aβ-microinjected
rats, a model that mimics early-onset AD, mitigated oxidative stress by increasing the
antioxidants catalase (CAT) and GSH and reducing the levels of malondialdehyde (MDA),
a lipid peroxidation product [189]. Other study of Jha (2018) used STZ to induce a sporadic
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AD-like phenotype in rats and observed a decrease in oxidative stress profile after treatment
with ellagic acid. Ellagic acid-treated animals revealed higher brain levels of mitochondrial
ATPase and a marked dose-dependent free radical scavenging activity. In addition, this
study reported attenuation of MDA levels together with an increase in GSH levels and
activation of CAT in animals treated with STZ in the presence of ellagic acid [153]. Consis-
tently, two other studies reported that ellagic acid administration reduced the production
of thiobarbituric acid reactive substances (TBARS) and prevented the depletion of the
antioxidant GSH and inhibition of SOD and CAT activities in STZ-treated rats [190,191].
Furthermore, an in vivo study performed by Uzar (2012) demonstrated that ellagic acid
protected neurons against oxidative damage in STZ-induced diabetic rats, decreasing lipid
peroxidation and total oxidant status and oxidative stress index. Additionally, ellagic acid
attenuated the effects of STZ on activated CAT and paraoxanase-1 (PON-1) enzymes [192].

Quercetin and its glycoside rutin are two abundant compounds found in phenolic ex-
tracts of eucalyptus leaves, and several in vitro and in vivo studies have investigated their
neuroprotective potential in AD. Both compounds were reported to attenuate oxidative
stress in different AD models, mainly by decreasing ROS production and lipid peroxidation
and increasing GSH content and the activity of several antioxidant enzymes. In APPswe
cells, which are a cellular model of AD consisting of cells transfected with Swedish mutated
human APP, Jimenez-Aliaga and collaborators (2011) demonstrated that quercetin and rutin
decrease ROS generation and lipid peroxidation and increase intracellular GSH content,
improving the redox status of APPswe cells treated with H2O2 [155]. In addition, rutin and
quercetin were found to have free radical scavenging activity and to ameliorate Aβ-induced
neuronal death in mouse primary cortical neuronal cultures [193]. Moreover, rutin attenu-
ated mitochondrial damage and reduced the levels of ROS and oxidized glutathione (GSSG)
as well as the formation of MDA and stimulated the activity of the antioxidant enzymes
CAT, SOD, GSH, and glutathione peroxidase (GPx) in microglia cells exposed to Aβ [156].
Rutin was also demonstrated to inhibit amylin-induced neurotoxicity in SH-SY5Y cells,
reducing the formation of ROS, GSSG, and MDA; attenuating mitochondrial damage and
increasing the GSH/GSSG ratio; and enhancing the antioxidant activity of SOD, CAT, and
GPx [194]. Additionally, quercetin was shown to preserve cell viability in PC12 cells treated
with H2O2 [195]. An in vitro study with primary hippocampal cultures described that low
doses of quercetin significantly attenuated Aβ-induced cytotoxicity, lipid peroxidation,
protein oxidation, and apoptosis; however, higher dosages were reported to potentiate neu-
ronal dysfunction [196]. Later studies demonstrated that quercetin protected rat primary
hippocampal neurons against H2O2- or Aβ-induced neurotoxicity, attenuating ROS accu-
mulation and depolarization of the mitochondrial membrane [197]. The role of quercetin in
OA-induced oxidative stress in HT22 hippocampal cells was investigated, and it was found
that pre-treatment with quercetin activates SOD, avoids GSH depletion, and decreases
ROS production and MDA levels. The alterations in membrane potential caused by OA
were reversed by quercetin, further supporting its neuroprotective action [164]. Quercetin
was also reported to raise intracellular GSH content and prevent oxidative/nitrosative
damage to DNA, lipids, and proteins in SH-SY5Y cells exposed to a neurotoxin [198]. On
the other hand, rutin pretreatment was shown to decrease TBARS and PARP activity and
increase GSH content and the activity of GPx, glutathione reductase, and CAT enzymes
in the hippocampus of rats treated with STZ [199]. The effect of rutin was investigated
in APPswe/PS1dE9 transgenic mice, and it was demonstrated that it decreased GSSG
and MDA levels and increased SOD activity and GSH/GSSG ratio [178]. Moreover, lipid
peroxidation was decreased in the brain, liver, and kidneys by treatment with rutin in an
AD mouse model induced by Aβ injection [200]. Oxidative damage was attenuated by
rutin treatment in rats with chronic cerebral hypoperfusion, namely GPx activity were
increased, and the levels of MDA and protein carbonyls were decreased in rutin-treated
animals [201]. Furthermore, it was recently demonstrated that pretreatment with rutin
reduced CAT, GSH, and SOD protein levels in rats injected with doxorubicin [202]. Further-
more, an in vivo study performed by Tota and collaborators showed that quercetin restored
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cerebral blood flow and adenosine triphosphate (ATP) content after STZ administration in
mice and reduced oxidative and nitrosative stress as demonstrated by a reduction in MDA
and by an increase in GSH content [203]. It was also reported that quercetin treatment
reduced MDA levels in the brain of STZ-induced diabetic rats [204]. In addition, quercetin
decreased MDA generation in brain homogenates of mice treated with trimethyltin and
showed strong antioxidant capacity determined through free radical scavenging activity
assays [205]. Furthermore, lipid peroxidation was shown to be significantly inhibited by
quercetin in the brain of Aβ-injected mice [206]. Indeed, increased SOD, CAT, and GSH and
decreased MDA levels were observed in the brain of Aβ-injected rats treated with quercetin,
concomitantly with activation of the antioxidant Nrf2/HO-1 pathway [177]. Quercetin
ameliorated mitochondrial dysfunction, as evidenced by restoration of mitochondrial mem-
brane potential and ROS and ATP levels in mitochondria isolated from the hippocampus of
APP/PS1 transgenic mice. Furthermore, the activity of AMPK, which is a master regulator
of cellular energy and metabolism, was significantly increased by quercetin [170]. Recent
studies demonstrated that quercetin prevented the mitochondrial apoptotic pathway and
neuronal degeneration by a mechanism involving regulation of BAX/Bcl2 and reduction of
caspase-3 activity, cytochrome c release, and PARP cleavage in the brain of mice treated
with lipopolysaccharide (LPS) [207]. Finally, reduction of MDA levels in animals injected
with Aβ by rutin and quercetin were associated with upregulation of cAMP-response
element binding protein (CREB) and brain-derived neurotrophic factor (BDNF) [208,209],
which is an important regulator of neuronal growth and synaptic plasticity. CREB is one of
the essential regulators of BDNF since its phosphorylated form binds to a specific sequence
in the BDNF promoter and controls its transcription [210].

Several evidences support a crosstalk between oxidative stress and endoplasmic retic-
ulum (ER) stress. In AD, the accumulation of misfolded proteins in susceptible brain
regions suggests that the impairment of ER proteostasis machinery is involved in AD
pathophysiology [211]. Therefore, ER stress can be considered as a therapeutic target for
AD treatment. Under conditions of misfolded proteins overload within the ER lumen, ER
stress sensors initiate the unfolded protein response (UPR) to reestablish homeostasis. This
pathway comprises the activation of three ER trans-membrane proteins, namely inositol-
requiring enzyme 1α (IRE1α), PKR-like ER kinase (PERK), and activating transcription
factor 6 (ATF6) [210,212]. IRE1α activation promotes splicing of X-Box-binding protein
1 (XBP1)-mRNA [212] and the spliced XBP1 accumulated inside the nucleus upregulates
crucial genes to reestablish global proteostasis under ER stress [213]. Furthermore, IRE1α
can also activate relevant signaling mediators, namely c-Jun N-terminal kinase (JNK), which
regulates autophagy and apoptosis [214]. ATF6 is an ER-membrane-bound transcription
factor that triggers the transcription of ER molecular chaperones [210]. PERK also acts
as an ER stress sensor, and under stress conditions, the α-subunit of eukaryotic initiation
factor 2 (eIF2α) is oligomerized and phosphorylated by PERK [212]. This inhibits global
protein translation, decreasing the overload of misfolded proteins [215,216]. Moreover,
eIF2α phosphorylation increases translation of the activating transcription factor 4 (ATF4),
which encodes genes of autophagy and proteins responsible for cell redox and metabolic
regulation [216]. In addition, under chronic ER stress, ATF4 upregulates the transcription
factor C/EBP homologous protein (CHOP), GADD34, and numerous members of Bcl2
family such as BAX and BAK, two central apoptotic regulators [217]. GADD34 can revert
the eIF2α phosphorylation in a feed-forward cycle to close PERK signaling [218]. There are
some evidences that quercetin ameliorates ER stress in AD models. In 2015, Hayakawa and
colleagues reported that quercetin can rescue proteostasis, decreasing eIF2α phosphory-
lation, ATF4 expression, and Aβ secretion through GADD34 upregulation in cells upon
autophagy impairment or ER stress conditions, which was confirmed in vivo using an AD
mouse model [219]. In addition, quercetin repressed ER stress by reducing phosphorylation
of eIF2α, PERK, and IRE1α; suppressed oxidative stress by reducing intracellular ROS
production; and restored mitochondrial membrane potential in OA-treated SH-SY5Y cells.
The same study also reported reduced IRE1α and PERK phosphorylation in mice exposed
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to high-fat diets [167]. A recent study performed by Woo and co-authors in Aβ-injected
mice revealed that quercetin attenuates oxidative stress, namely ROS and TBARS genera-
tion. Under these conditions, a decrease was observed in the levels of ER stress markers
such as phosphorylated eIF2α and PERK, XBP1, and CHOP as well as of pro-apoptotic
Bax, phosphorylated JNK, and cleaved caspases-3 and -9 together with upregulation of the
anti-apoptotic protein Bcl2 [176].

3.3. Inflammation

Recent evidences suggest that inflammation has a fundamental role in AD pathogen-
esis; therefore, controlling the interactions between the nervous and the immune system
might be crucial to prevent or delay the disease [220]. Brain inflammation seems to play a
neuroprotective role in acute-phase responses but becomes deleterious during a chronic
response to toxic insults [221]. Activated microglia release a diversity of proinflammatory
and toxic products, including ROS, nitric oxide (NO), and cytokines such as interleukin-
1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α), which play a
significant role in the neuroinflammatory process. Aβ peptide increases the levels of cy-
tokines, including TNF-α and IL-1β, and in turn, elevated levels of IL-1β potentiate Aβ

accumulation [220,222]. Additionally, elevated levels of IL-1β can increase the production
of other cytokines, such as IL-6, which activates the CDK-5 kinase that can lead to tau
hyperphosphorylation [223]. Neuroinflammation has emerged as a third relevant hallmark
in AD that can act as a link between amyloid and tau pathologies [224] (Figure 5). In fact,
immune-related cells and proteins have been reported to be located within close proximity
to senile plaques [225,226], and some evidences indicate that the prolonged use of nons-
teroidal anti-inflammatory drugs (NSAIDs) reduce the risk to develop AD and delays the
progression of the disease [227], possibly due to the inhibition of cyclooxygenases (COX)
and activation of peroxisome proliferator-activated receptor γ (PPARγ) [227]. COX expres-
sion is repressed by NSAIDs, which declines the synthesis of prostaglandins and decreases
the secretion of cytokines [228]. There are also evidences that NSAIDs decrease the level
of Aβ in neuronal cell cultures and transgenic mice modelling AD [227]. Nevertheless,
additional studies are required to confirm the beneficial effect of NSAIDs in AD.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 18 of 43 
 

 

 

Figure 5. Effect of compounds obtained from E. globulus leaves on neuroinflammation in AD. A 

vicious circle between Aβ and tau accumulation in the brain, microglia activation, and release of 

pro-inflammatory cytokines culminates in neuronal death in AD. 

E. globulus EO and its major component were recently reported to have anti-inflam-

matory activity relevant in the AD context. It has been previously reported that the ex-

pression of proinflammatory cytokines TNF-α, IL-1β, and IL-6 was lowered by 1,8-cineole 

in cells exposed to Aβ, and 1,8-cineole also succeeds in reducing NO accumulation and 

downregulating inducible NO synthase (iNOS), COX-2, and NF-κB [184]. More recently, 

the EO from E. globulus was demonstrated to reduce the serum levels of TNF-α in rats 

with psychosis, in the absence of any other significant alteration in inflammatory markers 

[77]. 

There are some evidences that extracts from eucalyptus leaves and ellagic acid reduce 

inflammation through depletion of TNF-α levels in AD models. Akhtar and collaborators 

extracted eucalyptus leaves with ethanol and detected anti-inflammatory activity, as 

shown by inhibition of TNF-α and NO production in macrophages exposed to LPS and 

interferon-γ (INF-γ) [229]. An in vitro study performed in cultured primary murine corti-

cal microglia demonstrated that ellagic acid decreases Aβ-induced TNF-α secretion [230]. 

Another in vivo study showed that the reduction of hippocampal nuclear/cytoplasmatic 

Nrf2 ratio in Aβ-microinjected rats was reversed by ellagic acid treatment, which also re-

verted the alterations in NF-κB and TLR4 expression [189]. Moreover, ellagic acid was 

shown to prevent the accumulation of TNF-α detected in the STZ-induced AD rat model 

[190,191]. 

The anti-inflammatory effects of quercetin and rutin in AD models has been reported 

in several studies, which describe a decrease in NO production and in the expression of 

proinflammatory cytokines. Regarding in vitro studies, Wang and co-authors observed 

that rutin reduced NO formation and iNOS activity and also modulated the production 

of proinflammatory cytokines by decreasing TNF-α and IL-1β generation in microglia 

cells treated with Aβ [156]. Similarly, rutin was showed to reduce the production of NO, 

iNOS activity, and release of the pro-inflammatory cytokines TNF-α and IL-1β in amylin-

treated SH-SY5Y cells, attenuating neurotoxicity [194]. Additionally, a study performed 

in LPS-stimulated microglia cells reported that rutin decreases expression levels of TNF- 

α, IL-1β, IL-6, and iNOS as well as the secretion of IL-6, TNF-α, and NO and increases the 

production of interleukin-10 (IL-10), the M2 regulatory cytokine, as well as arginase. 

Moreover, rutin also restored LPS-induced upregulation of COX-2, interleukin-18 (IL-18), 

and transforming growth factor-β (TGF-β) [231]. Similarly, in vitro studies have also 

linked quercetin’s neuroprotective effect with its anti-inflammatory activity. For example, 

quercetin was shown to prevent the release of TNF-α and IL-6 from activated microglia 

and astrocytes and attenuated the activation of proinflammatory signaling pathways such 

as MAPK and NF-κB [198]. Thioredoxin-interacting protein (TXNIP) is a crucial node in 

Figure 5. Effect of compounds obtained from E. globulus leaves on neuroinflammation in AD. A
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pro-inflammatory cytokines culminates in neuronal death in AD.

E. globulus EO and its major component were recently reported to have anti-inflammatory
activity relevant in the AD context. It has been previously reported that the expression
of proinflammatory cytokines TNF-α, IL-1β, and IL-6 was lowered by 1,8-cineole in cells
exposed to Aβ, and 1,8-cineole also succeeds in reducing NO accumulation and downregu-
lating inducible NO synthase (iNOS), COX-2, and NF-κB [184]. More recently, the EO from
E. globulus was demonstrated to reduce the serum levels of TNF-α in rats with psychosis,
in the absence of any other significant alteration in inflammatory markers [77].
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There are some evidences that extracts from eucalyptus leaves and ellagic acid reduce
inflammation through depletion of TNF-α levels in AD models. Akhtar and collaborators
extracted eucalyptus leaves with ethanol and detected anti-inflammatory activity, as shown
by inhibition of TNF-α and NO production in macrophages exposed to LPS and interferon-
γ (INF-γ) [229]. An in vitro study performed in cultured primary murine cortical microglia
demonstrated that ellagic acid decreases Aβ-induced TNF-α secretion [230]. Another
in vivo study showed that the reduction of hippocampal nuclear/cytoplasmatic Nrf2 ratio
in Aβ-microinjected rats was reversed by ellagic acid treatment, which also reverted the
alterations in NF-κB and TLR4 expression [189]. Moreover, ellagic acid was shown to
prevent the accumulation of TNF-α detected in the STZ-induced AD rat model [190,191].

The anti-inflammatory effects of quercetin and rutin in AD models has been reported
in several studies, which describe a decrease in NO production and in the expression of
proinflammatory cytokines. Regarding in vitro studies, Wang and co-authors observed
that rutin reduced NO formation and iNOS activity and also modulated the production of
proinflammatory cytokines by decreasing TNF-α and IL-1β generation in microglia cells
treated with Aβ [156]. Similarly, rutin was showed to reduce the production of NO, iNOS
activity, and release of the pro-inflammatory cytokines TNF-α and IL-1β in amylin-treated
SH-SY5Y cells, attenuating neurotoxicity [194]. Additionally, a study performed in LPS-
stimulated microglia cells reported that rutin decreases expression levels of TNF- α, IL-1β,
IL-6, and iNOS as well as the secretion of IL-6, TNF-α, and NO and increases the production
of interleukin-10 (IL-10), the M2 regulatory cytokine, as well as arginase. Moreover, rutin
also restored LPS-induced upregulation of COX-2, interleukin-18 (IL-18), and transforming
growth factor-β (TGF-β) [231]. Similarly, in vitro studies have also linked quercetin’s neu-
roprotective effect with its anti-inflammatory activity. For example, quercetin was shown to
prevent the release of TNF-α and IL-6 from activated microglia and astrocytes and attenu-
ated the activation of proinflammatory signaling pathways such as MAPK and NF-κB [198].
Thioredoxin-interacting protein (TXNIP) is a crucial node in ER stress and NLR family pyrin
domain containing 3 (NLRP3) inflammasome, which activates caspase-1, leading to IL-1β
secretion to cause inflammation in cells or tissues [232]. NLRP3 inflammasome is a protein
complex that comprises NLRP3, the adaptor protein apoptosis-associated speck-like protein
containing a C-terminal caspase-activation-and-recruitment domain (CARD) (ASC), and
the precursor pro-caspase-1. Consistent with this, quercetin suppressed TXNIP expression
and NLRP3 inflammasome activation indicated by downregulation of NLRP3, ASC, and
procaspase-1 in OA-treated SH-SY5Y cells. Quercetin effectively reduced IL-1β and IL-6
production in neuronal cells and restored NLRP3 activity and reduced IL-1β and TNF-α
production in mice exposed to a high-fat diet [167]. Quercetin also attenuated neuroinflam-
mation in a mouse model of AD decreasing IL-1β and monocyte chemoattractant protein-1
(MCP-1) levels [233]. A study using quercetin-treated 3xTg-AD mice showed a reduction in
reactive microglia and astrocytes, glial fibrillary acidic protein (GFAP), iNOS, and COX-2
immunoreactivity as well as IL-1β levels in hippocampal lysates [173]. Quercetin also re-
duced LPS-induced gliosis and the levels of various inflammatory markers, such as TNF-α,
COX-2, and iNOS, in the cortex and hippocampus of adult mice [207]. Finally, quercetin
decreased NO formation in STZ and Aβ- injected mice [203,206]. In vivo studies with
rutin also disclosed its anti-inflammatory activity in AD context. Indeed, rutin ameliorated
STZ-induced inflammation in rats by decreasing NO levels and the expression of GFAP,
interleukin-8 (IL-8), COX-2, iNOS, and NF-κB [199]. Rutin also inhibited glial activation;
reduced the levels of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6; and prevented
neuronal damage in rats with chronic cerebral hypoperfusion [201]. Other study showed
that chronic treatment with rutin decreases TNF-α levels in the hippocampus and frontal
cortex of rats injected with doxorubicin [202]. The oral administration of rutin was also
found to downregulate microgliosis and astrocytosis and to reduce IL-1β and IL-6 levels in
the brain of the APP/PS1 transgenic AD mice model [178]. Additionally, the NO formation
was reduced by rutin in Aβ-injected mice [200].
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3.4. Cholinesterase Activity

The “Cholinergic Hypothesis” is central to explain AD pathophysiology (Figure 6).
This hypothesis considers that cholinergic neurons are affected in AD, leading to a de-
crease in the synthesis of the neurotransmitter ACh and subsequent release to the synaptic
cleft, resulting in cognitive decline and memory loss [234,235]. Therefore, inhibitors of
AChE and butyrylcholinesterase (BChE) enzymes that degrade ACh can represent a ther-
apeutic strategy to increase the levels of ACh in the synaptic cleft and its binding to
post-synaptic receptors, thus potentiating cholinergic neurotransmission. In fact, three
of the four drugs approved for the relief of AD symptoms are AChE inhibitors, namely
donepezil, rivastigmine, and galantamine [5]. The active sites of AChE/BChE enzymes
bind these cholinesterase inhibitors in a reversible manner and avoid ACh degradation,
facilitating cholinergic neurotransmission. Thus, AD symptoms are ameliorated due to the
rise of ACh concentration in the synaptic cleft [236]. However, the efficacy of cholinesterase
inhibitors in AD treatment is limited, and side effects have been reported, such as nausea,
abdominal pain, diarrhea, dyspepsia, vomiting, and skin rash [237]. Hence, the discovery
of new cholinesterase inhibitors from medicinal plant sources concomitantly presenting
less adverse effects can be a valuable strategy.
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Synthesis of acetylcholine (ACh) neurotransmitter from acetyl coenzyme A (Acetyl CoA) and choline
(Ch) occurs by the action of the enzyme choline acetyltransferase (ChAT) in the presynaptic terminal.
Acetylcholine is released in the synaptic cleft, where it can activate both muscarinic (mAChR)
and nicotinic (nAChR) receptors. Acetylcholinesterase (AChE) or butyrylcholinesterase (BChE)
break acetylcholine into choline and acetate. ACh levels are low in AD brains and cholinergic
neurotransmission in impaired. AChE and BChE inhibitors correct these deficits increasing the
amount of ACh that remains in the synaptic cleft and interacts with postsynaptic receptors.

The effective in vitro inhibition of AChE activity by E. globulus EO has been de-
scribed [16]. Moreover, studies in cellular models detected anti-cholinesterase activity
of 1,8-cineole and α-pinene [238,239]. In addition, the AChE inhibitory activity of eucalyp-
tus EO in the hippocampus region of rat’s brain with psychotic symptoms was recently
reported [77]. Additionally, mRNA levels of enzymes involved in ACh metabolism were
evaluated in the cortex of scopolamine-induced amnesic animals, and it was observed that
the administration of α-pinene reverted the decrease in the mRNA levels of choline acetyl-
transferase (ChAT), which is responsible for the formation of ACh [185]. However, mRNA
levels of AChE were not altered by scopolamine treatment in the presence or absence of
α-pinene. These studies revealed the neuroprotective potential of E. globulus EO and its
major compounds due to their capacity to inhibit AChE activity.
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Ellagic acid was recently described to reduce AChE activity in the brain of animals
injected with Aβ [189] or with STZ [153,190], supporting the ability of ellagic acid to reduce
cerebral ACh degradation and its neuroprotective role.

Quercetin and rutin also demonstrated to inhibit AChE activity, revealing neuropro-
tective effects, particularly in AD. In fact, a study of Ademosun and colleagues showed that
both compounds significantly decrease AChE and BChE activities in rat brain homogenates,
but quercetin showed a higher inhibitory ability than rutin [240]. One docking study
concluded that rutin exhibited an elevated docking score against AChE in comparison
with quercetin, suggesting that rutin is a promising drug candidate for AD [241]. Rutin
treatment was also found to alleviate ACh depletion and ChAT inhibition as well as the
activation of AChE caused by cerebral hypoperfusion in rats [201]. On the other hand,
in vitro studies demonstrated that quercetin has a strong inhibitory effect against AChE
and BChE enzymes [160,242,243], and a relevant role of quercetin as an AChE inhibitor
has been described, supporting its therapeutic potential for AD [244–246]. Accordingly,
several other in vitro studies found similar or higher AchE inhibitory activity of quercetin
over conventional AchE inhibitors [247]. It was observed that quercetin has significant
AChE inhibitory activity almost similar to that of huperzine A [248] or donepezil [249],
which are well-known AChE inhibitors. In addition, these results were confirmed in vivo,
and quercetin has been reported to attenuate the AChE activity in the brain of STZ-treated
mice [203,204]. Another study revealed that quercetin suppressed AChE activation in a
dose-dependent manner in brain tissues of mice exposed to neurotoxic trimethyltin [205].
Finally, Liu and co-authors showed that quercetin was able to restore cortical ACh levels
and inhibit AChE activity in Aβ-injected mice [209].

3.5. GABAergic and Glutamatergic Dysfunction

γ-Aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the human
brain, which plays a relevant role in cognitive functions [250] (Figure 7A). Significant
reductions in cerebral GABA levels have been described in AD patients as well as in AD
animal models [251]. GABAA is one isoform of GABA receptors, and some studies have
demonstrated decreased GABAA/benzodiazepine (BZD) receptor density [252,253] and
expression levels [254] in the brain of AD patients. Interestingly, the role of selective
GABAA agonists to counteract Aβ-induced toxicity was showed [255] suggesting that
the GABAergic system is involved in the pathophysiology of AD and therefore may
be a potential therapeutic target for this neurodegenerative disorder. Recently, it was
found that eucalyptus oil increases brain GABA levels [77], and α-pinene acts as a partial
modulator of GABAA-BZD receptors and binds directly to the BZD binding site of the
GABAA receptor [256].

Glutamate is an excitatory neurotransmitter typically present in the hippocampus
and cerebral cortex that plays an important role in learning and memory [257] (Figure 7B).
There are two types of post-synaptic glutamate receptors, ionotropic and metabotropic
G protein-coupled receptors, which modulate calcium and sodium influx into neuronal
cells [258]. However, excessive activation of glutamate receptors, in particular the N-
methyl-D-aspartate (NMDA) subtype of ionotropic receptors, provokes excitotoxic neu-
ronal death [259]. In AD, an excessive activation of the NMDA receptor has been described
and contributes to the neurodegenerative process in consequence of the excessive influx of
calcium [259]. Numerous evidences suggest that blocking excitotoxicity might be beneficial
in AD. Indeed, memantine, which was approved by FDA and EMA for the treatment of AD
symptoms, is an uncompetitive NMDA receptor antagonist that blocks excitoxicity with
minimal side effects due to the preservation of normal glutamatergic transmission [260]. A
study using computational models proposed 1,8-cineole as a good candidate for NMDA an-
tagonism comparing its molecular features with the conventional ligand memantine [261].
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Figure 7. Effect of compounds obtained from E. globulus leaves on inhibitory (A) and excitatory
(B) synapses in AD. (A) The inhibitory γ-aminobutyric acid (GABA) synapse. GABA is synthesized
from glutamate by the glutamic acid decarboxylase enzymes in the presynaptic terminal of GABAergic
neuron. The vesicular GABA transporter packs GABA into vesicles, which, after release in the synaptic
cleft, binds GABAA receptors localized on the postsynaptic neuron. The reuptake of GABA into the
presynaptic axon stops the GABA action in the synapse. GABA levels are significantly reduced in AD
patients as well as the GABAA receptor density. (B) The excitatory glutamate synapse. Glutamine is
converted to glutamate via glutaminase in the presynaptic terminal of glutamatergic neuron, and the
vesicular glutamate transporter packs glutamate into vesicles. After glutamate release in the synaptic
cleft, it acts on glutamate receptors localized on the postsynaptic neuron. The excitatory amino
acid transporters (EAATs) present in nearby astrocytes clear the glutamate from the synaptic cleft.
Glutamate is converted to glutamine via glutamine synthetase in astrocytes before being transported
to presynaptic neurons. In AD, Aβ oligomers affect extrasynaptic N-methyl-D-aspartate (NMDA)
receptors enriched in NR2B subunits, leading to an excessive activation and consequently to an excess
of Ca2+ accumulation in the post-synaptic cell.

These promising findings suggest that the effect of E. globulus EO on GABAergic
and glutamatergic transmission should also be explored as therapeutic strategies for AD.
Nevertheless, there is no information in the literature about phenolic compounds and
AD-associated perturbation of GABAergic and glutamatergic neurotransmission.

3.6. Impaired Learning and Memory

Learning is the process of acquiring new information, while memory is the process of
storing this information to use it for future purposes (Figure 8). Cognition is defined as the
combination of learning and memory and is strictly dependent on the concerted action of
several neurotransmitters.

In AD, the stage and severity of the disease are determined by the compromise in
cognition [17]. The deterioration of cholinergic neurons have been reported to be implicated
in cognitive deficits in AD patients [262]. Accordingly, anticholinergic agents such as
scopolamine have been reported to induce memory deficits [263], and on the other hand, an
improvement of the cholinergic system can revert alterations in cognition [264]. Based on
this, and as previously stated, AChE and BChE inhibitors demonstrated to revert cognitive
symptoms and have been approved for AD treatment.

EO from E. globulus was recently demonstrated to be able to restore learning and
memory function in rats treated with ketamine that induces psychosis [77]. In addition, the
administration of α-pinene attenuated learning and memory impairments induced in rats
treated with scopolamine [185].

Several in vivo studies also support the beneficial effects of ellagic acid in cognition of
AD animal models. For example, it was demonstrated that ellagic acid efficiently prevents
scopolamine- and diazepam-induced cognitive impairments without affecting animals’
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locomotion [265]. Treatment with ellagic acid also showed to ameliorate memory and
spatial learning alterations in the APP/PS1 transgenic AD mice model [154]. Moreover, the
study of Kiasalari and collaborators described that ellagic acid ameliorates learning and
memory performance in Aβ-injected rats [189]. Regarding the STZ-induced AD rat model,
it was observed that ellagic acid prevents the STZ-induced cognitive deficits in animals
without affecting locomotor activity and motor coordination [153,190,191].
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learning impairment.

Strong evidences support that quercetin and rutin prevent cognitive impairments in
several AD animal models. Pretreatment with quercetin and rutin prevented scopolamine-
induced memory impairment in zebrafish without locomotor alterations [266]. Rutin also
ameliorated deficits in learning and memory in STZ rats [199] as well as the problems in
spatial learning and memory, in working memory, and also in contextual memory in rats
with chronic cerebral hypoperfusion [201]. In AD transgenic mice, it was demonstrated
that rutin decreased spatial memory deficits [178] and alleviated cognition and memory
impairments in Aβ-injected mice [200]. Furthermore, rutin restored short- and long-term
episodic memory in scopolamine- and doxorubicin-treated rats without interfering with
the locomotor activity of the animals [202,267]. Quercetin administration in aged and
LPS-treated mice also enhanced the memory capacity in the absence of alterations in lo-
comotion [207,268]. Furthermore, quercetin avoided STZ-induced memory impairment
in mice [203] and enhanced spatial memory in rats [269]. Quercetin also prevented the
impairment of memory and the anxiogenic-like behavior induced in STZ-diabetic rats [204].
Additionally, quercetin treatment attenuated trimethyltin-induced memory impairment in
mice [205]. Moreover, in a study with mice exposed to a high-fat diet, quercetin administra-
tion enhanced cognition [167]. Another study also showed that a quercetin-enriched diet
during the early-middle pathology stages ameliorated cognitive dysfunction in APP/PS1
mice [175]. In addition, beneficial effects of quercetin in learning, memory deficits, and
cognitive function were demonstrated in APP/PS1, APP23, and 3xTg-AD transgenic mice
models of AD [170–172,219]. Furthermore, quercetin administration in Aβ-induced am-
nesic mice enhanced learning and memory performance [206,209,270]. Finally, two studies
with rats injected with Aβ also demonstrated the capacity of quercetin to enhance learning
and memory [177,271]. Importantly, in early-stage AD patients, memory recall assessed
using the Revised Hasegawa Dementia Scale was demonstrated to be enhanced by the
intake of quercetin [272].
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Table 3. Neuroprotective effects of EO, phenolic extracts, and the major constituents obtained from E. globulus leaves against various neurodegeneration
model systems.

Compound Model Dose and Duration Effects Reference

EO

Cell free IC50 = 0.1298 mg/mL Inhibited AChE activity [16]

GT1-7 cells treated with H2O2 25 ppm, 24 h Attenuated neuronal death [182]

Wistar albino rats treated with
ketamine

500 and 1000 mg/kg/day,
p.o., 21 days

Facilitated GABA release, increased GSH levels, inhibited dopamine neurotransmission,
decreased TNF-α levels, and diminished AChE activity

Restored learning and memory function
[77]

Computational - Candidate for NMDA antagonism [261]

Cineol

Cell free IC50 = 840 µM Inhibited AChE activity [239]

Differentiated PC12 cells treated
with Aβ25-35 2.5, 5 and 10 µM, 24 h

Restored cell viability
Reduced mitochondria membrane potential and ROS and NO levels
Lowered expression of TNF-α, IL-1β, IL-6, iNOS, COX-2, and NF-κB

[184]

Primary rat cortical neurons/glial 10 µM, 4 h Increased SOD activity and reduced ROS production [183]

α-pinene

Computational -

Partially modulated GABAA-BZD receptors
Directly bound to the BZD binding site of GABAA receptor [256]

Brain slices 10 µM

C57BL/6N mice treated
with pentobarbital 100 mg/kg, p.o.

C57BL/6 mice treated
with scopolamine 10 mg/kg, i.p.

Improved cognitive dysfunction
Increased expression of ChAT

Increased protein levels of antioxidant enzymes
Activated Nrf2

[185]

Phenolic extracts

SH-SY5Y cells treated with H2O2 5, 10, 25 and 50 µg/mL, 24 h Increased cell viability, GSH levels, and antioxidant enzymes activity
Decreased ROS production and lipid peroxidation levels [13]

RAW264.7 cells treated with LPS
and INF-γ 51 and 83 µg/mL, 24 h Inhibited NO and TNF-α production [229]
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Table 3. Cont.

Compound Model Dose and Duration Effects Reference

Ellagic acid

Cell free IC50 = 39 µM Inhibited BACE-1 activity [150]

SH-SY5Y cells treated with Aβ1-42 5 and 10 µM, 48 h Promoted oligomers loss
Prevented neuronal death [151]

PC12 cells treated with Aβ25-35 0.5, 2.5, and 5 µM, 12 h Attenuated Aβ-induced toxicity
Inhibited ROS production and reduced calcium ion influx

PC12 cells treated with rotenone 10 µM, 24 h
Attenuated cell death

Reduced ROS and RNS production
Suppressed apoptosis

[188]

Primary murine cortical microglia
treated with Aβ1-42 10 µM, 24 h Decreased TNF-α secretion [230]

APP/PS1 transgenic mice 50 mg/kg/day, i.g., 60 days
Ameliorated learning and memory deficits

Reduced neuronal apoptosis and amyloid deposition
Inhibited tau hyperphosphorylation and decreased GSK-3β activity

[154]

Wistar rats treated with Aβ25-35 50 and 100 mg/kg/day, i.p.,
7 days

Improved learning and memory deficits
Mitigated oxidative stress by increasing CAT and GSH and reducing MDA levels

Reduced AChE activity
Modulated NF-κB/Nrf2/TLR4 signaling pathway

[189]

Wistar rats treated with STZ 50 mg/kg/day, p.o., 30 days

Decreased brain Aβ levels
Revealed marked dose-dependent free radical scavenging effect and higher BMA levels

Reduced AChE activity
Prevented cognitive disfunction

[153]

Wistar rats treated with STZ 35 mg/kg/day, p.o.,
4 weeks

Reduced TBARS production and prevented the depletion of GSH and the inhibition of SOD
and CAT activities

Increased TNF-α levels
Reduced AChE activity

Restored memory deficits

[190]

Wistar rats treated with STZ 17.5 and 35 mg/kg/day,
p.o., 28 days

Reduced TBARS production and prevented the depletion of GSH
Increased TNF-α levels

Restored memory deficits
[191]

Diabetic rats treated with STZ 50 mg/kg/day, p.o., 21 days
Decreased lipid peroxidation and oxidative stress index

Increased antioxidant enzymes
Attenuated NO production

[192]

Wistar rats treated with scopolamine
and diazepam

30 and 100 mg/kg/day, i.p.,
10 days Prevented cognitive deficits [265]
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Compound Model Dose and Duration Effects Reference

Quercetin

Computational - Candidate as AChE inhibitor [247,249]

Cell free 50 µM Inhibited and destabilized Aβ fibril formation [158]

Cell free 1 mg/mL (76.2% and
46.8% inhibition) Inhibited AChE and BChE activities [242]

Cell free IC50 = 181 µM and
IC50 = 203 µM Inhibited AChE and BChE activities [240]

Cell free IC50 = 354 µM and
IC50 = 421 µM Inhibited AChE and BChE activities [243]

Cell free IC50 = 19.8 µM Inhibited AChE activity [244]

Cell free IC50 = 3.6 µM Inhibited AChE activity [245]

Cell free IC50 = 14.4 µM Inhibited AChE activity [246]

Cell free IC50 = 51 µM Inhibited AchE activity [248]

Cell free
Bacterial cells IC50 = 124.6 µM Decreased Aβ aggregation [163]

Cell free - Inhibited Aβ fibril formation
[157]

HT22 cells treated with Aβ25-35 - Attenuated neuronal death

HT22 cells treated with OA 5 and 10 µM, 12 h

Attenuated neuronal death
Decreased levels of SOD, mitochondria membrane potential, GPx, MDA, and ROS

Inhibited hyperphosphorylation of tau protein
Inhibited apoptosis via the reduction of Bax and up-regulation of cleaved caspase 3 via the

inhibition of PI3K/Akt/GSK-3β, MAPKs, and activation of NF-κB

[164]

HT22 cells treated with OA 5 and 10 µM, 12 h
Attenuated tau protein hyperphosphorylation

Inhibited the activity of CD-K5
Attenuated intracellular calcium rise

[165]

Differentiated SH-SY5Y cells treated
with OA 100 nM, 6 h Decreased tau phosphorylation levels [166]

SH-SY5Y cells treated with OA 10 µM, 6 h

Suppressed ER stress with decreased phosphorylation of IRE1α and PERK
Decreased ROS production and restored mitochondria membrane potential

Inhibited TXNIP and NLRP3 inflammasome activation and downregulated ASC and
pro-caspase-1

[167]

C57BL/6J mice exposed to
high-fat diets

50 mg/kg/day, p.o.,
10 weeks

Reduced IL-1β and IL-6 production
Attenuated tau phosphorylation

Reduced IL-1β and TNF-α production
Enhanced AMPK activity

Inhibited IRE1α and PERK phosphorylation, NLRP3 expression, and tau phosphorylation
Improved cognitive disorder
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Table 3. Cont.

Compound Model Dose and Duration Effects Reference

Cell free 1, 5 and 10 µM Inhibited the formation of Aβ fibrils and disaggregated Aβ fibrils

[155]
APPswe-transfected SH-SY5Y cells 25, 50, and 100 nM, 24 h Decreased ROS production and lipid peroxidation

Increased GSH content and the redox status

Cell free
IC50 = 55 µM and

IC50 = 19 µM
IC50 = 0.55 µM

Inhibited AChE and BChE activities
Inhibited BACE activity

[160]

SH-SY5Y cells treated with L-DOPA 10, 50, 250, and 1000 µM,
24 h Attenuated neuronal death

7W CHO cells
overexpressing APP 10, 25, and 50 µM, 24 h Inhibited Aβ and sAPPβ production

Regulated BACE expression [162]

SH-SY5Y cells treated with TNF-α 20 µM, 30 min

SH-SY5Y, U373, and THP-1 cells
treated with LPS and INF-γ or INF-γ 33 µM, 8 h

Reduced oxidative/nitrative damage to DNA, lipids, and proteins
Increased intracellular GSH content

Reduced the release of TNF-α and IL-6
Attenuated the activation of MAPK and NF-kB

[198]

PC12 cells treated with H2O2 10, 30, 60 and 100 µM, 2 h Preserved cell viability [195]

Cell free IC50 = 5.4 µM Inhibited BACE activity
[161]

Primary rat E18 cortical neurons 20 µM, 24 h Decreased Aβ levels

Primary rat hippocampal neurons
treated with Aβ1-42 5 and 10 µM, 24 h Attenuated neuronal death, protein oxidation, lipid peroxidation, and apoptosis [196]

Primary rat hippocampal neurons
treated with Aβ1-42 and H2O2

10 µM, 24 h Attenuated neuronal death, ROS accumulation, and depolarization of mitochondrial
membrane [197]

Primary mouse cortical neurons
treated with

Aβ25-35
30 µM, 24 and 48 h Demonstrated free radical scavenging activity

Ameliorated neuronal death [193]

Cell free 250 µM Inhibited Aβ fibrilization
[168]

C. elegans treated with Aβ1-42 73 µM, ~12 days Increased % of survival

C. elegans treated with Aβ1-42 100 µM, 48 h
Increased proteasomal activity

Enhanced the flow of proteins through the macroautophagy
pathway

[169]

Zebrafish treated with scopolamine 50 mg/kg/single dose, i.p. Attenuated memory deficits [266]
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Table 3. Cont.

Compound Model Dose and Duration Effects Reference

APP/PS1 transgenic mice 20 and 40 mg/kg/day,
16 weeks

Improved cognitive deficits
Reduced scattered senile plaques

Ameliorated mitochondrial dysfunction by restoration of mitochondrial
membrane potential, ROS, and ATP levels

Increased AMPK activity

[170]

APP/PS1 transgenic mice 2 mg/g diet, 12 months Increased Aβ clearance and reduced astrogliosis
Ameliorated cognitive dysfunction [175]

APP/PS1 transgenic mice 1% in mouse chow,
10 months Attenuated neuroinflammation by reducing IL-1β and MCP-1 levels [233]

APP23 transgenic mice 0.5% in mouse chow,
52 weeks

Reduced eIF2α phosphorylation and ATF4 expression through GADD34 induction
Improved memory deficits [219]

3xTg-AD mice 25 mg/kg/48 h, i.p.,
3 months

Decreased extracellular β-amyloidosis, tauopathy, astrogliosis, and microgliosis
Reduced PHF and Aβ levels

Decreased BACE-1-mediated cleavage of APP
Improved performance on learning and spatial memory

[171]

3xTg-AD mice 100 mg/kg/48 h, p.o.,
12 months Reduced β-amyloidosis and tauopathy

Improved cognitive deficits
[172]

3xTg-AD mice 25 mg/kg/48 h,
i.p., 3 months

Decreased reactive microglia and Aβ
Reduced GFAP, iNOS, COX-2, and IL-1β [173]

5xFAD mice 500 mg/kg/day, oral
gavage, 10 days Increased brain ApoE and reduced Aβ levels [174]

ICR mice injected with Aβ1-42 50 and 100 mg/kg/day, p.o.,
1 month Improved learning and memory loss [270]

ICR mice injected with Aβ25-35 50 mg/kg/day, p.o.,
2 weeks

Decreased protein levels of APP, BACE, and p-tau
Reduced oxidative stress such as ROS and TBARS levels

Decreased the protein levels of ER stress markers GRP78, p-PERK, p-eIF2α, XBP1, and CHOP
and the proapoptotic molecules Bax, p-JNK, and cleaved caspases-3 and -9

[176]

Mice injected with Aβ25-35 30 mg/kg/day, p.o., 14 days Decreased NO formation and lipid peroxidation
Improved cognitive function [206]

Kunming mice injected
with Aβ25-35

5, 10, 20 and 40 mg/kg/day,
oral gavage, 8 days

Regulated ERK/CREB/BDNF pathway
Restored ACh levels and inhibited AChE activity
Improved the learning and memory capabilities

[209]

ICR mice treated with trimethyltin 5, 10, and 20 mg/kg/day,
3 weeks

Decreased MDA generation and showed antioxidant capacity
Inhibited AChE activity

Improved cognitive deficits
[205]
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Compound Model Dose and Duration Effects Reference

C57BL/6N mice treated with LPS 30 mg/kg/day, i.p., 2 weeks

Prevented the mitochondrial apoptotic pathway and neuronal degeneration by regulating
Bax/Bcl2, decreasing activated cytochrome c and caspase-3 activity, and cleaving PARP-1

Reduced activated gliosis and levels of various inflammatory markers such as TNF-α, COX-2,
and iNOS

Improved memory performance

[207]

Swiss mice treated with LPS 25, 50, and 100 mg/kg/day,
i.p., 7 days Reversed memory deficits [268]

Sprague–Dawley rats injected
with Aβ1-42

100 mg/kg/day, p.o.,
19 days

Reduced Aβ levels
Increased SOD, CAT, and GSH and decreased MDA levels

Increased Nrf2/HO-1 pathway
Improved cognitive deficits

[177]

Wistar rats injected with Aβ1-42 40 mg/kg/day, p.o.,
1 month Alleviated learning and memory deficits [271]

Wistar rats treated with STZ 5, 25, and 50 mg/kg/day,
oral gavage, 40 days

Reduced MDA levels
Prevented the increase in AChE activity

Prevented memory deficits
[204]

Wistar rats treated with STZ 40 and 80 mg/kg/day, i.p.,
12 days Enhanced spatial memory [269]

Human early-stage
AD patients

80 mg/patient/day, p.o.,
4 weeks Enhanced memory recall [272]

Rutin

Computational - Candidate as AChE inhibitor [241]

Cell free 10 µM Inhibited BACE activity [159]

Cell free IC50 = 0.219 mM and IC50 =
0.288 mM Inhibited AChE and BChE activities [240]

Cell free
APPswe-transfected SH-SY5Y cells

1, 5, and 10 µM
100 µM

25, 50, and 100 nM, 24 h

Inhibited the formation of Aβ fibrils and disaggregated Aβ fibrils
Inhibited BACE activity

Decreased ROS production and lipid peroxidation
Increased GSH content and the redox status

[155]

Cell free 50 and 200 µM Inhibited Aβ fibrillization and attenuated Aβ-induced cytotoxicity

[156]SH-SY5Y and BV-2 cells treated
with Aβ1-42 0.8 and 8 µM, 24 h

Decreased ROS, NO, GSSG, and MDA formation
Reduced iNOS activity and attenuated mitochondrial damage

Increased GSH/GSSG ratio
Enhanced SOD, CAT, and GPx activities
Decreased TNF-α and IL-1β generation
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Compound Model Dose and Duration Effects Reference

Cell free
SH-SY5Y cells treated with L-DOPA

IC50 = 3.8 nM
10, 50, 250, and 1000 µM,

24 h

Inhibited BACE activity
Attenuated neuronal death [160]

SH-SY5Y cells treated with amylin 0.8, 4, and 8 µM, 24 and 48 h

Attenuated neuronal death
Decreased the production of ROS, NO, GSSG, MDA, and pro-inflammatory cytokines TNF-α

and IL-1β
Attenuated mitochondrial damage and increased the GSH/GSSG ratio

Enhanced the antioxidant enzyme activity of SOD, CAT, and GPx
Reduced iNOS activity

[194]

Primary mouse cortical neurons
treated with Aβ25-35 30 µM, 24 and 48 h Demonstrated free radical scavenging activity

Ameliorated neuronal death [193]

Primary rat microglia treated
with LPS 50 mM, 24 h

Decreased expression levels of TNF- α, IL-1β, IL-6, and iNOS
Reduced the production of IL-6, TNF-α, and NO

Increased production of the M2 regulatory cytokine IL-10 and arginase
Restored upregulation of COX-2, IL-18, and TGF-β

[231]

Zebrafish treated with scopolamine 50 mg/kg/single dose, i.p. Attenuated memory deficits [266]

APP/PS1 transgenic mice 100 mg/kg/day, p.o.,
6 weeks

Decreased oligomeric Aβ level
Increased SOD activity and GSH/GSSG ratio

Reduced GSSG and MDA levels
Downregulated microgliosis and astrocytosis

Decreased IL-1β and IL-6 levels
Attenuated memory deficits

[178]

ICR mice injected with Aβ25-35 100 mg/kg/day, p.o.,
14 days

Decreased NO formation and lipid peroxidation
Attenuated cognitive deficits [200]

Swiss albino mice treated with STZ 2.5, 5, and 10 mg/kg/day,
p.o., 21 days

Restored cerebral blood flow and ATP content
Reduced MDA and NO levels and increased GSH content

Attenuated elevated AChE activity
Prevented memory impairment

[203]

Wistar rats injected with Aβ1-42 100 mg/kg/day, i.p.,
3 weeks

Increased ERK, CREB, and BDNF expression and decreased MDA level
Improved memory deficits [208]

Wistar rats treated with STZ 25 mg/kg/day, p.o.,
3 weeks

Decreased TBARS, PARP activity, and NO level
Increased GSH content and activities of GPx, glutathione reductase, and CAT

Reduced the expression of COX-2, GFAP, IL-8, iNOS, and NF-kB
Improved cognitive deficits

[199]
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Sprague–Dawley rats with chronic
cerebral hypoperfusion

50 mg/kg/day, i.p., 12
weeks

Attenuated oxidative damage, namely increased GPx activity and decreased MDA levels and
protein carbonyls

Inhibited glial activation; reduced the levels of TNF-α, IL-1β, and IL-6; and prevented
neuronal damage

Alleviated ACh depletion, ChAT inhibition, and AChE activation
Improved cognitive deficits

[201]

Wistar rats injected with doxorubicin 50 mg/kg/day, p.o., 50 days Reduced CAT, GSH, SOD, and TNF-α levels
Prevented memory deficits [202]

Wistar rats treated with scopolamine 50 and 100 mg/kg/day, p.o.,
15 days Improved short- and long-term episodic memory deficits [267]
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4. Conclusions

Several efforts have been made to develop alternatives to the current therapies for AD
treatment, which only alleviate symptoms without altering the progression of the disease,
increasing efficiency, and decreasing side effects. A promising strategy to identify novel
disease-modifying therapies is to test compounds extracted from natural resources. The
present review discusses findings obtained in in vitro and in vivo studies performed with
EO, phenolic extracts, and the major constituents obtained from E. globulus leaves in what
concerns therapeutic effect and mechanism of action. Overall, 1,8-cineole was found to
be the major compound present in EO, and ellagic acid, quercetin, and rutin are the main
components of phenolic extracts from E. globulus, which were demonstrated to efficiently
prevent or attenuate several AD-related hallmarks, namely amyloid and tau pathologies,
oxidative stress and neuroinflammation, neurotransmission deficits, and also memory
and learning impairments. The information reviewed herein suggests that extracts from
E. globulus leaves could be used as raw material to develop efficient and safe nutraceuticals
and/or plant-based medicinal products useful for AD prevention and novel therapies able
to modify the progression of the disease. However, further studies are required to further
confirm the beneficial effects described for extracts from E. globulus leaves in AD.
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