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ABSTRACT
Background: Gingipains are important virulence factors present in Porphyromonas gingivalis. 
Arginine-specific gingipains (RgpA and RgpB) are critically associated with increased proteo-
lytic activity and immune system dysfunction, including neutrophilic activity. In this study, we 
assessed the impact of gingipains (RgpA and RgpB) on neutrophil function.
Methods: Peripheral blood samples were obtained; neutrophils were isolated and incubated with 
P. gingivalis A7436, W50, and the double RgpA/RgpB double knockout mutant E8 at MOI 20 for 2  
hours. Neutrophil viability was assessed by Sytox staining. Phagocytic capacity and apoptosis were 
measured by flow cytometry. Superoxide release was measured by superoxide dismutase and 
cytochrome c reduction assay. Gene expression of TLR2, p47-phox, p67-phox, and P2 × 7was 
measured by qPCR. Inflammatory cytokine and chemokine production was measured by IL-1β, 
IL-8, RANTES, and TNF-α in cell supernatants.
Results: Neutrophil TLR2 gene expression was reduced in the absence of RgpA/RgpB (p <  
0.05), while superoxide production was not significantly impacted. RgpA/RgpB−/− significantly 
impaired neutrophil phagocytic function (p < 0.05) and increased TNF-α production when 
compared with the wild-type control (p < 0.05). Neutrophil apoptosis was not altered when 
exposed to RgpA/RgpB−/− E8 (p > 0.05).
Conclusion: These data suggest that arginine-specific gingipains (RgpA/RgpB) can modulate 
neutrophil responses against P. gingivalis infection.
SUMMARY OF KEY FINDINGS
P. gingivalis-derived arginine-specific gingipains impaired the phagocytic and apoptotic func-
tion in neutrophils.
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Introduction

Periodontitis is a chronic multifactorial inflammatory 
disease associated with a dysbiotic biofilm causing tooth 
loss [1]. Porphyromonas gingivalis is a Gram-negative, 
non-motile, proteolytic, obligatory anaerobic species 
that forms black-pigmented colonies on blood agar 
plates and requires iron under the form of hemin to 
grow [2–5]. P. gingivalis dysregulates innate immunity 
pathways in a susceptible host and facilitates an increase 
in overall community biomass [6]. P. gingivalis and host 
interaction is mediated by virulence factors that activate 
cell receptors, eliciting the immune response [7]. 
Gingipains are among the most important virulence 
factors of P. gingivalis [8,9]. The proteolytic activity 
of the gingipains is aimed at bacterial access nutrients 
[10], stimulation of host’s cytokines [11–13], and 
regulation of receptors [14,15] and components of 

the complement system [16]. The gingipain family 
comprises three related cysteine proteases that 
hydrolyze peptide bonds at the carbonyl groups of 
arginine (Arg-Xaa) and lysine residues (Lys-Xaa) 
[17]. The Lys-specific gingipain (Kgp), encoded by 
the Kgp gene [18], degrades host proteins and tissues, 
aids in immune evasion, enhances bacterial adher-
ence to host cells and tissues, and facilitates iron 
acquisition and the maturation of other virulence 
factors [19–21]. RgpA and RgpB, encoded by the 
RgpA and RgpB genes, are Arg-Xaa gingipains, that 
participate in many of the pathological effects of 
gingipains associated with periodontal destruction, 
such as increased collagenase activity [22,23], activa-
tion of matrix metalloproteinase 2 [24], increased 
RANKL/OPG ratio [13], and alveolar bone loss 
[25,26] are activated by the Arg-Xaa group [27].
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Neutrophils are the most prevalent cells in the 
gingival crevicular fluid in periodontitis, playing 
a pivotal role in periodontal health maintenance and 
the defense against microorganisms and virulence 
factors [28]. Neutrophil numbers in the periodontal 
tissues are maintained with a gradient of interleukin 
(IL)-8 produced by the gingival epithelium and other 
neutrophils. This equilibrium can be disrupted when 
IL-8 is digested by Rgps [11] and P. gingivalis serine 
phosphatase [29]. Rgps also down-regulate and 
degrade intercellular adhesion molecule (ICAM)-1, 
preventing a transient neutrophil migration into gin-
gival tissues, allowing the development of mature 
pathogenic biofilm, and inciting inflammation [30]. 
Consequently, inflammation leads to heightened 
recruitment and activity of neutrophil functions 
such as superoxide production, phagocytosis, and 
cytokine release, contributing to periodontal destruc-
tion [31].

Although neutrophils initially follow the IL-8 gra-
dient, in infected or inflamed sites, they move 
towards chemo-attractants derived from bacteria or 
local activation of the complement system [32]. 
Interestingly, RgpA regulates the cleavage of C3 into 
C3b and C5 into C5a, both of which are potent 
chemotactic factors favoring leukocytic infiltration 
[10,33]. Neutrophils are ‘tagged’ by Rgps to confuse 
the recognition signals of phagocytosis by macro-
phages, which in turn results not only in the enhance-
ment of the dying cells clearance but also stimulation 
of the uptake of healthy and functional neutrophils by 
macrophages [34], indicating that P. gingivalis has 
developed a pathway for subverting the host defense 
dependent on neutrophils [34,35].

Since neutrophils and P. gingivalis play a key role 
in the pathogenesis of periodontal disease, mapping 
specific neutrophil functions affected by Arg- 
gingipains from P. gingivalis is crucial for under-
standing the disease. In this study, we tested the 
hypothesis that RgpA and RgpB regulate the oxida-
tive stress response, viability, and phagocytic and 
apoptotic functions in neutrophils.

Materials and methods

Ethical compliance

Informed consent was obtained from all subjects, and 
ethical approval was granted by the Forsyth 
Institutional Review Board (protocol number 11–03) 
before collecting patient blood samples at the Forsyth 
Institute Center for Clinical and Translational 
Research.

P. gingivalis culture
The study design is shown in Figure 1(a). P. gingivalis 
wild-type strains A7436 and W50 were cultured in 

blood agar plates and individually stored in an anae-
robic chamber (5% CO2, 10% H2, and 85% N2 atmo-
sphere) at 37°C. The colonies were re-plated every 
three days and 24 hours before each experiment; bac-
terial suspensions were prepared in BHI broth* from 
the primary culture at their log phase of growth. 
Concentrations were determined by an optical den-
sity of 600 nm# corresponding to 1 × 109 bacteria/mL. 
To test the role of Rgp’s, RgpA/RgpB double mutant 
E8 was obtained from Dr. J. Aduse-Opoku (Queen 
Mary’s School of Medicine and Dentistry, London, 
UK) and grown as above.

Neutrophil isolation
Donors were nonsmokers and did not present any 
systemic or periodontal disease. Their average age 
was 32 (±5.3) years, with a gender distribution of 3 
females and 5 males. Approximately 50 mL of per-
ipheral venous blood samples were collected. The 
samples were placed into vacutainer tubes containing 
25 units/ml heparin. Polymorphonuclear neutrophils 
were isolated by gradient centrifugation as 
described [36].

Superoxide assay
Neutrophils (0.5 × 105) were infected with 
P. gingivalis A7436, W50 or E8 at a multiplicity of 
infection (MOI) of 20. Superoxide production (O [2-] 
production was monitored in a spectrophotometer 
(VMax, SpectraMax 340PC, Molecular Devices, 
Sunnyvale, CA) at 37°C by reducing Cytochrome 
C at an absorbance of 550 nm. Superoxide dismutase 
was used as a negative control, and N-fMLP‖ 

(N-formyl-methionine-leucine-phenylalanine) at 1  
µM was used as a positive control. Superoxide pro-
duction was evaluated linearly and expressed in 
O [2]/min/cell.

Viability, phagocytosis, and apoptosis
Porphyromonas gingivalis strains isolates were cul-
tured overnight in Brain Heart Infusion (BHI) broth 
(NutriSelect® Plus, Millipore, Burlington, MA). Post- 
cultivation, the isolates were subjected to three suc-
cessive washes with sterile phosphate-buffered saline 
(PBS) and resuspended to a final concentration of 
1 × 10^9 cells/mL in PBS. This concentration was 
quantified using a spectrophotometer 
(BioPhotometer, Eppendorf, Hamburg, Germany) at 
an optical density of 660 nm. For opsonization, 
P. gingivalis were incubated with human serum 
(H4522, Millipore, Burlington, MA) at 37°C for 30  
minutes under shaking conditions and labeled with 
fluorescein isothiocyanate (FITC; 100 mg/mL in 1× 
PBS) to allow detection upon phagocytosis by PMNs. 
Subsequently, the labeled P. gingivalis were incubated 
with neutrophils at a MOI of 20 in triplicate at 37°C. 
Apoptotic cell detection was performed using the 
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CellEvent™ Caspase-3/7 Green Flow Cytometry Assay 
Kit (ThermoFisher Scientific, Waltham, MA) follow-
ing the manufacturer’s protocol. Additionally, Sytox® 
(ThermoFisher Scientific, Waltham, MA) was utilized 
to identify damaged cells. After a 2-hour incubation 
period, samples were washed with PBS and resus-
pended in 500 μL of PBS for flow cytometric analysis. 
The analysis was conducted using a FACScan flow 
cytometer (BD Bioscience, San Jose, CA) with excita-
tion at 525 nm and detection using a 530/30 nm 
bandpass filter.

Expression of TLR-2, p47-phox and P2X7
Following infection, polymorphonuclear leukocytes 
(PMNs) were lysed using Trizol reagent (Invitrogen, 
Carlsbad, CA, USA) according to the manufacturer’s 
instructions. Total RNA (tRNA) was quantified, and 
1 µg was used for reverse transcription (RT) with 
a high-capacity cDNA RT kit (Applied Biosystems, 
Foster City, CA, USA) in 30 µL reactions. The RT 
conditions were set to 25°C for 10 minutes, 37°C for 
60 minutes, and 95°C for 5 minutes. Quantitative 
real-time PCR (qPCR) was performed using 
TaqMan fast advanced master mix (Applied 
Biosystems) with pre-designed probes targeting 
TLR-2, P2X7, p47-phox, p67-phox, and β-actin 
(TaqMan, Applied Biosystems, Thermo Fisher 
Scientific, Waltham, MA). The NCBI Reference 
Sequences utilized were TLR-2 (NM_001318787.2), 
P2×7(NM_002562.5), p47-phox (NR_110044.1), p67- 
phox (NM_000433.3), and β-actin (BNM_001101.3). 
For each qPCR reaction, 10 ng of cDNA (50 ng/µL) 
were used in a 20 µL volume, performed in triplicate 
using a standard 96-well format. The reactions were 
carried out in a StepOnePlus real-time PCR system 
(Applied Biosystems) with the following thermal 
cycling conditions: 50°C for 2 minutes, 95°C for 20  
seconds, followed by 40 cycles of 95°C for 1 second 
and 60°C for 20 seconds. The cycle threshold (CT) 
values were determined using StepOnePlus Software 
v2.3 (Applied Biosystems). Data were analyzed using 
the 2-ΔΔct method, and TLR-2, P2X7, p47-phox, and 
p67-phox mRNA levels were calculated by comparing 
with corresponding control samples running simulta-
neously, each normalized to β-actin mRNA as endo-
genous controls.

Cytokine generation
To measure cytokine release by neutrophils in 
response to gingipains, cells were infected with 
P. gingivalis A7436, W50, or E8, incubated for 2  
hours at 37°C, and a relative humidity of about 
95% before collecting the supernatants. All assays 
were performed on 100 mL of culture supernatant 
using four multiplex magnetic bead panels on 
a flexible laser analyzer platform (Luminex 200, 
Luminex, Austin, TX). IL-1β, IL-8, RANTES, and 

TNF-α were measured by a human cytokine/chemo-
kine panel (Millipore, MILLIPLEX, Billerica, MA) 
with no dilution. All assays were performed follow-
ing the manufacturer’s protocol [37] and analyzed 
(Bio-Plex Manager, Version 5.0, Bio-Rad, 
Hercules, CA).

Iron release
To measure the iron (Fe2+) released by neutrophils 
in response to gingipains, cells (1 × 106) were 
infected with P. gingivalis A7436, W50, or E8 at 
MOI = 20. After 2 hours, supernatants were har-
vested and transferred to a 96-well plate. Iron 
was evaluated using QuantiChromTM Iron Assay 
Kit (DIFE-250) following the manufacturer’s pro-
tocol (BioAssay Systems, Hayward, CA).

Statistical analyses
All raw data were used in averages of at least three 
experiments repeated in triplicate. After statistical 
analysis, data were displayed in mean and stan-
dard error. All analyses were performed using 
one-way analysis of variance (ANOVA), followed 
by Tukey’s post hoc test. In the case of non- 
parametric data, the Kruskal-Wallis test was 
used, followed by the Dunn-Bonferroni post hoc 
test in case of statistical significance. A 95% con-
fidence level was attributed before running the 
statistical analysis.

Results

PMN superoxide generation and TLR2 expression 
under P. gingivalis challenge

To evaluate the impact of gingipain RgpA/RgpB on 
human PMN function, freshly isolated neutrophils 
were exposed to the challenge by P. gingivalis W50 
or E8 (MOI = 20). P. gingivalis A7436 was used as 
a control (Figure 1a). Neutrophil TLR2 gene expres-
sion was decreased in the absence of RgpA/RgpB 
when compared to the A7436 (p < 0.05) 
(Figure 1b). Superoxide production was depleted to 
negative control levels (PBS) in the RgpA/RgpB 
knockdown group. The presence of RgpA/RgpB gin-
gipains resulted in peaks of superoxide production 
after 2 and 4 minutes of stimulation (p < 0.05) 
(Figure 1c). There was an upregulation of P2×7and 
p47-phox gene expressions in the RgpA/RgpB posi-
tive strains and, conversely, a non-significant 
expression in the knockdown group (Figure 1d). 
Regardless of the presence of RgpA/RgpB gingipain, 
no impact was found on p67-phox gene expression 
(p > 0.05) (Figure 1d), suggesting an arginine- 
specific mechanism of P2×7and p47-phox mediated 
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Figure 1. (a) Human neutrophil isolation and experimental workflow with P. gingivalisstrains. (b) TLR2 gene expression. (c) Time 
course of the fMLP-induced O2- production by human neutrophils (0.5 × 106) in response to P. gingivalis strains compared with 
fMLP stimulation alone. PBS was used as a negative control (n = 8). *: p < 0.05 statistical difference when compared with 
baseline PBS. (d) Gene expression of P2X7, p47-phox, and p67-phox in response to different P. gingivalis strains. *: p < 0.05 
statistical difference when compared with the control group. #: p < 0.05: statistical difference when compared with W50 group. 
(e) Iron release optical density (565 nm). *: p < 0.05 statistical difference when compared with the control group. (f) Levels of IL- 
1β, IL-8, RANTES, and TNF-α (pg/mL) * p < 0.05 statistical difference from PMN. # p < 0.05 statistical difference from E8. Panel 
a created with BioRender. One-way ANOVA followed by Tukey’s posthoc test was performed for graphs on B, D, E and F. Two- 
way ANOVA followed by Tukey’s posthoc test was performed on C.
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regulation of superoxide formation in neutrophils in 
response to gingipains.

RgpA/RgpB knockdown upregulates 
neutrophil-derived iron release

To check the possibility that RgpA/RgpB gingipains 
interfere with iron release ability from neutrophils, 
iron concentration was assessed after neutrophils 
were incubated with different P. gingivalis strains 
for 2 hours (Figure 1e). Data revealed a significant 
increase in iron release by neutrophils in the absence 
of RgpA/RgpB compared to the PMN control group 
(p < 0.05), suggesting gingipain-induced negative 
feedback on the neutrophil iron release.

Lack of RgpA/RgpB upregulates TNF-α and 
downregulates RANTES in a strain-specific 
manner

The IL-1β and IL-8 release were not dependent on 
RgpA/RgpB gingipain expression while RANTES 
gene expression was significantly decreased in 
response to all P. gingivalis strains (p < 0.05) 
(Figure 1f). Interestingly, TNF-α levels in the RgpA/ 
RgpB knockdown E8 were significantly higher when 
compared to its strain-specific wild-type control 

(W50), revealing a negative TNF-α feedback response 
related to RgpA/RgpB absence (p < 0.05) (Figure 1f).

Human neutrophil phagocytic capacity is 
impaired in the absence of gingipains

Following a two-hour incubation period, the phago-
cytic capacity of neutrophils in response to 
P. gingivalis was assessed. The lack of RgpA/RgpB 
notably impaired the neutrophil phagocytic potential 
when comparing the E8 to the A7436 (p < 0.05) 
(Figure 2b). Although no difference was found 
between W50 and E8, only the RgpA/RgpB knock-
down significantly reduced the percentage of phago-
cytic events compared to the wild-type controls, 
suggesting the contribution of gingipains in govern-
ing neutrophil phagocytic function (Figure 2b).

The RgpA/RgpB profile does not regulate 
neutrophil apoptotic cell death

After 2 hours of incubation, apoptotic cell death was 
visualized in neutrophils exposed to P. gingivalis 
(Figure 3b). Data revealed no statistical significance, 
suggesting that apoptotic cell death was not depen-
dent on RgpA/RgpB gingipain status (Figure 3b).

Figure 2. (a) Experimental workflow. (b) Representative flow cytometry density plots. (c) Influence of three different strains of 
P. gingivalis (A7436, W50, and E8) on PMN phagocytic capacity. *: p < 0.05 statistical difference when compared with the control 
group. #: p < 0.05: statistical difference when compared with W50 group. Panel A was created with BioRender. One-way ANOVA 
followed by Tukey’s posthoc test was performed.
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Discussion

P. gingivalis is a keystone etiologic agent associated with 
dysbiosis and disrupts the host’s innate responses in the 
periodontium. When neutrophil functions such as 
migration, peptides/enzyme production, and superox-
ide release are defective, tissue breakdown may be cat-
alyzed during periodontal disease [38]. Gingipains are 
one of the principal proteinases exerted by this bacter-
ium. They are associated with immunoglobulin degra-
dation, disruption of the coagulation cascade, iron 
caption, collagen destruction, cytokines lysing, and 
destruction of pro-adhesion molecules [39]. RgpA/ 
RgpB gingipains are involved in several mechanisms 
that shape the neutrophilic response to P. gingivalis 
infection. Neutrophil extracellular traps (NETs), which 
are networks with antimicrobial properties, are directly 
affected by the presence of Rgps, where a proteolytic 
activation of the protease-activated receptor-2 (PAR-2) 
takes place, inducing the malformation of NETs lacking 
bactericidal properties [40]. We investigated whether 
the absence of gingipains RgpA/RgpB impacted neu-
trophil function and immune regulation. We found that 
arginine-specific gingipains (RgpA/RgpB) can modu-
late neutrophil functions and regulate the survival of 
P. gingivalis. The RgpA/RgpB absence led to an 
impaired phagocytic function, suggesting that gingi-
pains play an important role in P. gingivalis survival. 
Our human data corroborates a murine periodontitis 

study demonstrating that eliminating RgpA from 
P. gingivalis increased neutrophil phagocytosis [26]. 
A plausible mechanistic explanation for these findings 
is that Arg-gingipains can degrade components of the 
complement system [16,41,42], leading to a decrease in 
bacterial opsonization and leukocyte phagocytosis.

Superoxide produced by neutrophils is essential 
for the elimination of phagocytosed microorganisms 
[43]. Our data revealed neutrophil superoxide pro-
duction was not impacted by the absence of arginine- 
specific gingipains. Neutrophil apoptosis and its sub-
sequent clearance by macrophages are important 
events during the resolution of inflammation [44]. 
The inability to effectively complete the efferocytic 
process fuels a prolonged inflammatory response 
that impairs resolution and subsequent events to 
achieve tissue homeostasis [45]. In this study, neu-
trophil apoptosis was not impacted regardless of the 
RgpA/RgpB presence, suggesting that although argi-
nine-specific gingipains can increase the number of 
living neutrophils, they are functionally compro-
mised. These findings corroborate with the previous 
literature, where a human study found fewer apopto-
tic neutrophils in gingival tissue sections from peri-
odontitis patients compared to healthy subjects [46]. 
Further, some studies have demonstrated that 
P. gingivalis LPS can prolong the lifetime of neutro-
phils [47] and may lead to diminished secretion of 

Figure 3. (a) Experimental workflow. (b) Results from caspase-3/7 activity assayed by measuring the fluorescence of AMC; the 
activity of caspase-3 was expressed in % of relative fluorescence units (RFU), which is translated to PMN apoptosis. (c) Results 
from Sytox staining of % PMN necrosis. Data are the mean of six independent experiments, and bars are SE. *: p < 0.05 statistical 
difference. Panel A was created with BioRender. One-way ANOVA followed by Tukey’s posthoc test was performed.
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proapoptotic signals, resulting in persistent neutro-
phil migration with a delay in their physiological 
clearance [48].

Our data demonstrated that P. gingivalis had no 
significant impact on PMN apoptosis independent of 
the presence of arginine-specific gingipains. An 
increased expression of TLR2 was found in both 
W50 and E8 groups, corroborating with studies that 
have demonstrated the TLR2-PI3K stimulus as a way 
in which P. gingivalis avoids clearance from immune 
cells, such as neutrophils [49].

Increased number of living neutrophils could 
result in greater iron concentration in the microen-
vironment, favoring its scavenging by P. gingivalis 
and boosting the growth and survival of this micro-
organism. Iron availability regulates P. gingivalis viru-
lence and influences its growth and survival [50]. We 
quantified iron concentration to check whether 
P. gingivalis increased iron secretion in neutrophils. 
P. gingivalis induced neutrophil iron release regard-
less of arginine-specific gingipains RgpA/RgpB. 
Although the E8 group showed a statistically signifi-
cant upregulation of iron release, the average values 
are comparable to those of the other strain groups. 
This suggests that the observed difference may not 
translate into a biologically relevant effect.

As P. gingivalis can degrade cytokines disrupting 
the immune system, we measured the IL-1β, IL-8, 
RANTES, and TNF-α levels. There was no significant 
impact on IL-1β levels, agreeing with previous 
research that demonstrated P. gingivalis did not affect 
IL-1β production by dendritic cells [51]. P. gingivalis 
can degrade IL-8 and RANTES, essential components 
of the innate and adaptive immune response, inde-
pendently of arginine-specific gingipains RgpA/RgpB 
in line with P. gingivalis proteases degrading IL-8 
[52]. P. gingivalis can disturb the cytokine network 
by eliminating a variety of cytokines [53]. Our results 
showed that RgpA/RgpB led to TNF-α degradation in 
line with the literature, showing that P. gingivalis 
cysteine proteinases can digest TNF-α [54].

Conclusion

Taken together, our data suggested that P. gingivalis 
can evade neutrophil phagocytosis through gingi-
pains by multiple mechanisms, including the modu-
lation of neutrophils function, apoptosis, and 
immune regulation, and thus compromise the host’s 
ability to eliminate infection and sustain chronic per-
iodontal inflammation.
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