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A B S T R A C T   

Optical coherence tomography (OCT) imaging is a technique that is frequently used to diagnose 
medical conditions. However, coherent noise, sometimes referred to as speckle noise, can 
dramatically reduce the quality of OCT images, which has an adverse effect on how OCT images 
are used. In order to enhance the quality of OCT images, a speckle noise reduction technique is 
developed, and this method is modelled as a low-rank tensor approximation issue. The grouped 
3D tensors are first transformed into the transform domain using tensor singular value decom-
position (t-SVD). Then, to cut down on speckle noise, transform coefficients are thresholded. 
Finally, the inverse transform can be used to produce images with speckle suppression. To further 
enhance the despeckling results, a feature-guided thresholding approach based on fractional edge 
detection and an adaptive backward projection technique are also presented. Experimental results 
indicate that the presented algorithm outperforms several comparison methods in relation to 
speckle suppression, objective metrics, and edge preservation.   

1. Introduction 

As an important non-ionizing optical imaging modality, optical coherence tomography imaging has many advantages, such as high 
safety, fast scanning speed, and high resolution [1,2]. OCT is now a significant medical diagnostic tool, particularly for the diagnosis 
and treatment of eye diseases [3,4]. However, because of the limits and defects of low-coherence interferometry and imaging 
equipment, the obtained OCT images are susceptible to coherent noise, usually called multiplicative speckle noise, which gives rise to 
significant limitations on their illness diagnosis [5,6]. Furthermore, the degraded quality of the OCT images might have a significant 
impact on the processing that follows, such as the segmentation and measurement of lesions. Therefore, speckle reduction for OCT 
images is essential to effectively help physicians accurately diagnose relevant diseases [7,8]. However, keeping fine image features and 
effectively removing speckle noise remains a difficult task in the area of the processing of OCT images. 

To effectively reconstruct OCT images from noisy versions, researchers have proposed many different methods, which are generally 
grouped into two categories: hardware-based approaches [9–15] and software-based approaches [16–43]. However, the former 
category of approaches [9–15] requires significant modifications to existing imaging system hardware, which makes them less 
applicable to ordinary commercialized imaging equipment based on OCT technologies. By contrast, software-based post-processing 
approaches [16–43] are more efficient and low-cost. For this reason, the proposed method mainly focuses on the technique related to 
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the latter. 
In the literature on software-based methods, researchers are mainly concerned with designing a certain algorithm in a certain space 

or transformation domain, for instance, spatial filtering methods [16,17], partial differential equation (PDE) methods [18–21], 
wavelet decomposition methods [22–25], probabilistic methods [26–28], etc. Each of these methods has its advantages and disad-
vantages. For example, spatial filtering methods generally work fast but tend to blur image details. PDE methods can maintain the 
detailed features of OCT images better while suppressing noise, but they often produce staircase effects and block artifacts. The wavelet 
decomposition method is a classical speckle noise suppression technique and has better performance on speckle reduction. However, 
the fixed wavelet basis cannot represent the rich image details. Therefore, unnecessary visual artifacts are always introduced in the 
denoised image. Probabilistic methods can take full advantage of the probability distribution of OCT images, but an accurate estimate 
of this distribution cannot be easily obtained in the presence of severe speckle noise pollution. These techniques are not effective in 
both preserving OCT image features and suppressing speckle noise. One reason could be the inadequacy of prior information or the 
limited representation of fixed bases. In recent years, exploring nonlocal self-similarity, sparsity, and low-rank priors has exhibited 
impressive performance in speckle reduction of OCT images. Some examples of such methods are nonlocal mean methods [29–31], 
sparse representation methods [32–36], and low-rank approximation methods [37–39]. Compared to traditional methods, these 
methods can obtain better despeckling results. However, some disadvantages still exist for these methods in despeckling OCT images. 
Nonlocal mean methods blur the fine structures of OCT images. As for sparse representation methods, the dependence on the learned 
dictionary limits their usability. If there is a previously unobserved feature in the given images, the dictionary cannot adequately 
represent and rebuild it. In addition, the inappropriateness of threshold selection can lead to over-smoothed or under-smoothed results 
of low-rank approximation methods. On the other hand, deep learning techniques are advancing at a rapid pace and have achieved 
good despeckling results [40–43]. However, the acquisition of a rich variety and a huge amount of training data can be very 
time-consuming and resource-intensive. 

As a novel theoretical and computational framework of tensor decomposition, t-SVD [44,45] can effectively extract the orientation 
information of multidimensional data and has excellent performance in the processing of digital images [46–51]. In this work, a 
two-stage despeckling method is proposed by using t-SVD and fractional edge detection that aims to effectively reduce the impact of 
speckle noise. Other than that, we also try to restore the detail structures of images. Specifically, in the first stage, the nonlocal method 
is first used to find image patches that are similar to each other, and these similar patches are grouped into 3D blocks, which are then 
converted into the transform domain by the t-SVD method. Next, transform coefficients, namely singular values accounting for the 
main signals, are thresholded to reduce speckle noise. Finally, the inverse transform and aggregation can be used to create speckle 
suppression images. The iterative regularization technique based on the backward projection method [38,52] is a widely used strategy 
to increase the despeckling performance in low-rank approximation methods. However, one of the drawbacks of such methods is that 
the projection parameter is often established as a fixed constant without taking into account the inherent feature properties, e.g., edge 
information. To address this issue, the despeckling results of the first stage are refined by an adaptive backward projection method. 
That is, the noisy OCT image, inputted in the second stage, is re-modified based on the detected edge information, which can be 
obtained by the proposed fractional-order diffusion equation. In addition, an adaptive thresholding strategy is also proposed by using 
the edge features. The motivation is as follows: in the vicinity of edges, threshold needs to be assigned a smaller value to better retain 
image structural features. In the flat regions, the threshold needs to be assigned a higher value to provide better smoothing results. 

The remainder of this paper is organized as follows: Several key concepts and preliminaries are given in Section 2. Section 3 goes 
into great depth about the presented despeckling process. The experimental results are reported in Section 4. Section 5 draws our paper 
to a conclusion. 

2. Notions and preliminaries 

In the following part, some notions that will be utilized in the remainder of the paper are introduced. Vectors are indicated as bold 
lowercase letters, e.g., x; scalars are indicated as non-bold letters, e.g., a; and matrices are indicated as bold uppercase letters, e.g., U. 
Tensors are represented using calligraphic letters, e.g., A . For a third-order tensor A ∈ Rn1×n2×n3 , the corresponding fast Fourier 
transformation (FFT) along the 3rd dimension is denoted by A = fft(A ,[],3). And A(k), which can be expressed by the Matlab notation 

A (:,:,k), is used to represented the k-th frontal slice of A . Similarly, A(k) respresents t he k-th frontal slice of A . The elements of a tensor 
A ∈ Rn1×n2×n3 are denoted as aijk, where 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, and 1 ≤ k ≤ n3. As for a tensor A , the Frobenius norm can be defined as 
⃦
⃦
⃦
⃦
⃦

A

⃒
⃒
⃒
⃒
⃒
|F =
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√
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⃦
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⃒
⃒|
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F = n3

⃦
⃦
⃦A

⃒
⃒
⃒|

2
F [45]. The block circulant matrix of a 

third-order tensor A ∈ Rn1×n2×n3 is defined in Eq. (1) below: 

bcirc(A )=

⎡

⎢
⎢
⎣

A(1) A(n3) ⋯ A(2)

A(2) A(n3 − 1) ⋯ A(3)

⋮ ⋯ ⋱ ⋮
A(n3) A(1) ⋯ A(1)

⎤

⎥
⎥
⎦ (1) 

Two related operators, MatVec and fold, are shown in Eqs. (2) and (3) below: 
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MatVec(A )=

⎡

⎢
⎢
⎣

A(1)

A(2)

⋮
A(n3)

⎤

⎥
⎥
⎦ ∈ Rn1n3×n2 (2)  

and 

fold(MatVec(A ))=A (3)  

In particular, the block diagonal matrix of a third-order tensor A can be given by the formula defined in Eq. (4): 

A=
(
Fn3 ⊗ In1

)
· bcirc(A) ·

(
F− 1

n3
⊗ In2

)
=

⎡

⎢
⎢
⎣

A(1)

A(2)

⋱
A(n3)

⎤

⎥
⎥
⎦ (4)  

where A(k) is the k-th frontal slice of A , and Fn3 is the discrete Fourier transformation matrix. 
Definition 1. [44,45] Given two third-order tensors A ∈ Rn1×n2×n3 and B ∈ Rn2×n4×n3 , the corresponding t-product can be denoted 

as A ∗ B , as shown in Eq. (5) below: 

A ∗ B = fold(circ(A ) ·MatVec(A )) ∈ Rn1×n4×n3 (5) 

According to Eqs. (4) and (5), the t-product of two third-order tensors can be converted to the multiplication of two matrixes in the 
Fourier domain. Fox instance, C = A ∗ B can be effectively computed as C = AB. 

Definition 2 [44,45]. Let the transpose of a third-order tensor A ∈ Rn1×n2×n3 be A T. Then A T is given by Eq. (6) below: 

A
T = fold

⎛

⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎣

(
A(1))T

(
A(n3)

)T

(
A(n3 − 1))T

⋮(
A(2))T

⎤

⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎠

∈ Rn2×n1×n3 (6) 

Definition 3. [44,45] Let I ∈ Rn×n×n3 . If I (:, :, k) = 0 (k= 2, 3,⋯, n3) and I (:, :,1) is the identity matrix, then tensor I is an 
identity tensor. 

Definition 4. [44,45] If Q T ∗ Q = Q ∗ Q T = I , then the tensor Q ∈ Rn×n×n3 is an orthogonal tensor. 
Definition 5. [44,45] If each frontal slice of a third-order tensor A ∈ Rn1×n2×n3 is a diagonal matrix, then the third-order tensor A is 

referred to as the f-diagonal tensor. 
Definition 6. [45] For a third-order A ∈ Rn1×n2×n3 , the corresponding tensor nuclear norm (TNN) can be expressed by Eq. (7) as 

follows: 
⃦
⃦
⃦
⃦
⃦

A

⃒
⃒
⃒
⃒
⃒
|TNN =

1
n3

∑n3

i=1

⃒
⃒
⃒
⃒
⃒

⃒
⃒A(i)⃒⃒|∗ (7)  

where 
⃦
⃦·
⃒
⃒|∗ is the nuclear norm, defined as the sum of the singular values of a matrix. 

Theorem 1. [44,45] Let A ∈ Rn1×n2×n3 be a third-order tensor. Then the formulate defined in Eq. (8) gives its t-SVD decomposition 
form. 

A =U ∗ S ∗ V
T (8)  

where U ∈ Rn1×n1×n3 , V ∈ Rn2×n2×n3 are two orthogonal tensors defined as in Definition 4, respectively, and the f-diagonal tensor 
S ∈ Rn1×n2×n3 is the decomposition coefficient. According to the Definition 1, the following Eq. (9) is hold 

A=USVT (9) 

Theorem 2. [53] Let the SVD of the matrix Y ∈ Rn1×n2 be Y = USVT , then 

X̂ =UDτ(S)VT = argmin
X

{
1
2
⃦
⃦Y − X

⃒
⃒|

2
F + τ

⃦
⃦X

⃒
⃒
⃒
⃒|∗

}

(10)  

where U ∈ Rn1×n1 , V ∈ Rn2×n2 , S ∈ Rn1×n2 , and τ > 0. In Eq. (10), Dτ is the soft-thresholding operator defined as Dτ(t) = max(t − τ,0). 

3. The proposed model 

In this work, the t-SVD notion is adopted to model our method, which is further used to generate speckle suppression results. The 
first stage of our model consists of three coherent parts: patch grouping, t-SVD denoising, and aggregation. In addition, a fractional- 
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order diffusion method is used to detect image edges, which are further used to define the feature-guided threshold of singular values 
and the backward projection parameter of the iterative regularization step. The sequence of steps of the presented despeckling method 
can be explained by Fig. 1, as shown below. 

3.1. Patch grouping 

The nonlocal mean method [54] is an effective and landmark method in the field of image denoising. And nonlocal self-similarity 
prior has exhibited impressive performance in image processing. Nonlocal self-similarity means that the image contains many 
repetitively similar blocks at different scales and spaces. The Euclidean distance, which is commonly utilized in additive Gaussian 
noise, is used to quantify the similarity of two image patches in the original method. However, the speckle noise in low-coherence 
images is often regarded as a multiplicative one that follows the Gamma distribution [18]. Therefore, Euclidean distance may not 
be applicable to measuring the similarity between two low-coherence image patches. To measure the similarity of Yi ∈ Rn×n and Yc ∈

Rn×n, the following similarity criterion [6,38] was adopted, as shown in Eq. (11) below: 

SC(Yi,Yc)=
mean(Yi⨀Yc)

mean((Yi + Yc)⨀(Yi + Yc))
(11)  

where ⨀ depicts the Hadamard product and mean( ·) is the function that computes the average of all matrix elements. Eq. (11), 
Calculated from the gamma distribution [55], is suitable for OCT images. As demonstrated in the literature [6,38], the similarity 
criteria provided in Eq. (11) has been proven to work well on OCT image despeckling. For a given reference patch Yi, we can find n3− 1 
patches that are most similar to Yi by using Eq. (11) in a search window of size W× W. And then, these n3 similar patches are stacked 
into the 3D tensor, denoted as Y i ∈ Rn×n×n3 . 

3.2. T-SVD despeckling 

In the 3D tensor Y i ∈ Rn×n×n3 , the reference patch Yi shares similar features with its n3 − 1 most similar patches. In other words, 
the 3D tensor Y i should have the low-rank property. Therefore, in the logarithmic domain, the noise model can be formulated as Y i =

X i + N i, here Y i is the observed noisy tensor, X i is the latent noise-free tensor with low-rank property, and N i is the noisy tensor. 
For the reader to better understand, we are going to substitute Y i and X i with Y and X in the rest of the section, with a small misuse 
of notation. Our aim is to estimate X from Y as accurately as possible. To this end, we minimize the following equation 

min
X

1
2
⃦
⃦Y − X

⃒
⃒|

2
F + τ

⃦
⃦X

⃒
⃒
⃒
⃒|TNN (12)  

where τ = γσ log ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅n1 × n2 × n3
√ and σ is the noise variance. By using the property 

∑n3
i=1

⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒A

(i)
⃒
⃒
⃒|

2
F = n3

⃦
⃦
⃦A

⃒
⃒
⃒|

2
F and Eq. (7), the above 

problem (12) can be rewritten as 

min
X

1
n3

∑n3

i=1

{
1
2
⃦
⃦Y(i)

− X(i)⃒⃒|
2
F + τ

⃦
⃦X(i)

⃒
⃒
⃒
⃒|∗

}

(13) 

Marked the SVD of the matrix Y(i) as U(i)S(i)V(i)T , then the estimate matrix of X(i) is expressed as U(i)Dτ(S
(i)
)V(i)T 

according to Theorem 
2. That is, X = UDτ(S)V is the solution of the problem (13). The matrix bcirc(X ) can be obtained by multiplying F− 1

n3
⊗ In1 left and Fn3⊗

Fig. 1. Flowchart of the presented despeckling algorithm.  
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In2 right. By folding up bcirc(X ), we can obtain the despeckling tensor X̂ = U ∗ S τ ∗ V
T. It is worth noting that U , S τ and V are 

not necessary to perform bcirc operator explicitly and can be obtained by Matlab notation [44], e.g., U = ifft(U , [], 3), S τ =

ifft(Dτ(S ), [],3), and V = ifft(V , [],3). 
Algorithm 1 below describes the pseudo-code for the proposed t-SVD despeckling approach.  

Algorithm 1 t-SVD despeckling method 

Input: The noisy tensor Y 

Output: The despeckling tensor X̂ 

Algorithm: 
1: Compute Y = fft(Y , [],3); 

2: for i = 1,⋯,
⌈n3 + 1

2

⌉

do 

3: [U(i)
,S(i)

,V(i)
] = SVD(Y(i)

),

4: W(i)
= U(i)Dτ(S

(i)
)V(i)T

,

5: end for 6: for i =
⌈n3 + 1

2

⌉

+ 1,⋯, n3 do 

7: W(i)
= conj(W(n3 − i+2)

); 
8: end for 9: Return X̂ = ifft(W , [],3).

3.3. Aggregation 

By scanning all patches of OCT images in an overlapping fashion, each corresponding noisy 3D tensor can be processed by the above 
t-SVD despeckling method. Then, the whole OCT image can be reconstructed by writing the filtered patches back to their original 
locations. However, the overlapping fashion may make a single image patch belong to more than one tensor. That is, multiple estimates 
of each image patch may be obtained. To deal with this problem, an aggregation strategy is applied to filtered 3D tensors. Specifically, 
the final estimated ̂I(i) of I(i) can be computed using Eq. (14) below, and I(i) denotes the intensity value at pixel i. 

Î(i)=

∑V

j=1

∑Kj

k=1
T

k
j (i)

∑V

j=1
Kj

(14)  

where V represents the quantity of third-order tensors that include pixel i, Kj depicts the quantity of image patches that include the 
pixel i in the given third-order tensor T j. At the pixel i in the k-th patch of the third-order tensor T j, the corresponding intensity value 
is denoted by T k

j (i). 

3.4. Fractional-order edge detection 

As previously mentioned, the parameter of the backward projection and the setting of the threshold value are critical for obtaining 
speckle suppression and detail preservation results. As point out in Ref. [56], fractional-order differentiation can boost the 
high-frequency components, enhance the medium-frequency components, and nonlinearly retain the low-frequency components, such 
as the fine features of the image. To get the edges of noisy input images, we proposed a novel edge detection approach by using a 
fractional-order differentiation-based diffusion equation. Moreover, the detected edge information is further applied to define the 
feature-guided threshold of singular values and the backward projection parameter of the iterative regularization step. To be more 
specific, the fractional-order diffusion equation established in Eq. (15) below is utilized for filtering the noisy input image I. After that, 
an adaptive order-based edge indicator is defined to extract the edges of the filtered result. 

∂I
∂t
= − Dα∗

x

(
g(DC)Dα

x I
)
− Dα∗

y

(
g(DC)Dα

y I
)

(15)  

where α ∈ (1, 2), the diffusivity function g(DC) is defined as exp( − DC /100), and the difference curvature DC is expressed in Eq. (16) 
below: 

DC=
⃦
⃦Iηη| − |Iξξ

⃦
⃦ (16)  

and Iηη and Iξξ are depicted in Eqs. (17) and (18): 

Iηη =
I2

x Ixx + 2IxIyIxy + I2
y Iyy

I2
x + I2

y
(17)  
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Iξξ =
I2

y Ixx − 2IxIyIxy + I2
x Iyy

I2
x + I2

y
(18)  

And first-order derivatives Ix and Iy can be effectively computed by the following central difference scheme, as shown in Eq. (19) 
below: 

Ix(i, j)=
I(i + 1, j) − I(i − 1, j)

2
and Iy(i, j)=

I(i, j + 1) − I(i, j − 1)
2

(19)  

and Ixx and Iyy can be computed similarly. And the fractional-order derivatives can be computed by the Grünwald-Letnikov definition 
[57], as shown in Eq. (20) below: 

G
t0 Dα

t s(t)= lim
h→0

1
hα

∑[(t− t0)/h]

j=0
wα

j s(t − jh) (20)  

where wα
j = (− 1)j

(
α
j

)

and 
(

α
j

)

=
α(α− 1)⋯(α− j+1)

j! . Taking the step size h = 1 and n = [t − t0], then fractional-order derivatives Dα
x and 

Dα
y can be approximated numerically using the formulas in Eqs. (21) and (22) below: 

Dα
x I(x, y) ≈

∑n

j=0
wα

j I(x − j, y) (21)  

Dα
y I(x, y) ≈

∑n

j=0
wα

j I(x, y − j) (22)  

And the conjugates Dα∗
x and Dα∗

y [56] are represented in Eqs. (23) and (24): 

Dα∗
x I(x, y) ≈

∑n

j=0
wα

j I(x+ j, y) (23)  

Dα∗
y I(x, y) ≈

∑n

j=0
wα

j I(x, y+ j) (24) 

As pointed out in Ref. [58], DC has a high value around the edges of the image and a low value in flat areas. Therefore, we can 
conclude the following behaviors of Eq. (15): (1) For flat regions, the value of DC is small, so the diffusivity function g(DC) is large. 
Therefore, Eq. (15) can effectively smooth the flat regions. (2) For edges, the value of DC is large, so the diffusivity function g(DC) is 
small. Therefore, Eq. (15) can preserve important image edges. When we obtain the smoothed image ̂I, the following equation (25) can 
be utilized to detect the edges of OCT images. 

Fig. 2. Comparisons with LoG filter. (a) Noisy images; (b) Edges obtained by Eq. (25) without smoothing; (c) Edges obtained by Eq. (25) with 
smoothing by Eq. (15); (d) Edges obtained by the LoG filter. 
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E(x, y)=
1
25

∑

(s,t)∈N

⃒
⃒
⃒(Î(s, t))b(x,y)

− (c(x, y))b(x,y)
⃒
⃒
⃒

c(x, y) + ε (25)  

where c(x, y) denotes the mean of the intensities that are located in the window N of size 5× 5, and ε is a small positive constant. In 
practice, the value of b should be very carefully set. If b is large, then E(x, y) is susceptible to interference from noise. If b is large, then 
E(x, y) does not detect smaller dynamic changes, e.g., weak edges of OCT images. To tackle this problem, an adaptive order function 
b(x, y) is defined in Eq. (26) below: 

b(x, y)=
2 ∗ (1 + T)

1 +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
I2

x + I2
y

√ (26)  

here T is the maximum value of 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
I2
x + I2

y

√
. In flat regions, 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
I2
x + I2

y

√
≈ 0, so b(x, y) ≈ 1. And at edges, 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
I2
x + I2

y

√
≈ T, so b(x, y) ≈ 2. 

Therefore, the proposed adaptive order function helps the edge detection function capture more reliable edges. As demonstrated in 
Fig. 2(a)-(d), the edge detection method proposed in this paper can obviously obtain more realistic edge information than the Lap-
lacian of Gaussian (LoG) filter. 

3.5. Adaptive backward projection 

As mentioned previously, the iterative regularization strategy based on the backward projection method is an often-used technique 
to increase the despeckling performance of methods. In this study, we follow this idea. Before the next processing, the input noisy 
image is regenerated using the formula defined in Eq. (27): 

I2 = Î 1 + η(I − Î 1) (27)  

where ̂I1 represents the filtered image of I after the first denoising step, I − Î1 is the called method noise, and I2 is the regenerated noisy 
image according to Eq. (27). The projection parameter η ∈ (0,1) is often established as a fixed constant without taking into account the 
inherent feature properties, e.g., edge information. To address this issue, the projection parameter η is redefined by using the edge 
information of images. The main motivation behind this is that the lost information I − Î1 contains not only noise but also image edges. 
Therefore, the lost image edges should be reused. In addition, η should be small in flat regions so that these regions can be well 
smoothed. On the contrary, η should be large at the image edges so that image edges can be well preserved. Therefore, we define a new 
projection parameter based on image edges, as shown in Eq. (28) below: 

η=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ε， E = Emin

E − Emin

Emax − Emin
,Emin < E < Emax

1 − ε,E = Emax

(28)  

where Emax is the maximum value of E, which is obtained by Eq. (25), and the corresponding minimum value is represented by Emin. ε is 
a small positive constant. Obviously, the defined backward projection parameter η is proportional to the value of the edge image E and 
takes a value in the interval (0, 1). In addition, η takes a small value in flat regions and a large value at image edges. Consequently, the 
lost information I − Î1 can be reused according to image features. That is, I − Î1 is barely used in flat regions. Hence, flat regions can be 
further smoothed. And more lost information I − Î1 is reused at image edges. Hence, the edges of OCT images can be well preserved. 
When the input noisy image is obtained according tomEq. (27), the corresponding noise variance σ is updated using the formula in Eq. 
(29) below: 

σ̂ = λ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2 − mean
(⃦
⃦I − I2

⃒
⃒|

2
F

)√

(29)  

here, the noise variance σ̂ can be re-estimated by Eq. (29) and is regulated by the scaling factor λ .On the other hand, the noise variance 
σ of I can be estimated by the method in Ref. [59]. 

3.6. Feature-guided threshold 

The threshold parameter τ in Eq. (12) is used to control the smoothness of the filtered image. If τ is too small, then more noise will be 
retained in the filtered images. If τ is too large, an over-smoothed image will be obtained. To deal with this problem, we propose an 
adaptive threshold parameter that is constructed by using the edge feature. The threshold parameter of the second denoising stage is 
defined as illustrated in Eq. (30): 

τ2(x, y)=
γσ̂log

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n1 × n2 × n3

√

ε + |ME(x, y)|
(30) 
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where ε is a small positive constant, γ is a regulation parameter, and σ̂ is the re-estimated noise variance defined in Eq. (29). ME(x, y) is 
the average value of E(x,y)((x,y) ∈ Ω), and the set Ω collects the central points of all the frontal slices included in Y . Taking ME(x, y)
instead of E(x, y) is intended to reduce the effect of spurious edges. It is easy to find that ME(x, y) takes a larger value in the vicinity of 
edges and a smaller value in flat regions. Since the defined τ2(x, y) is inversely proportional to ME(x,y), a lesser shrinkage will result for 
these tensors with more image details; otherwise, a higher shrinkage will result. Therefore, the defined threshold parameter above can 
effectively help our model suppress speckle noise and maintain the feature detail of OCT images. 

Algorithm 2 below describes the pseudo-code for the presented speckle noise reduction method.  

Algorithm 2 The presented speckle noise reduction method 

Input: The original noisy image I 
Output: The speckle suppression image ̂I 
Algorithm: 
1: The first stage: 
2: Scanning all patches of the image I in an overlapping fashion; 
3: for each reference patch Yi do 
4: Find the corresponding 3D noise tensor Y according to Eq. (11). 
5: Obtain the estimation X̂ by Algorithm 1; 
6: end for 7: Aggregate all X̂ to form speckle suppression image ̂I1 according to Eq. (14); 
8: The second stage: 
9: Compute the image edge E by Eq. (25); 
10: Update the noisy image I2 by Eq. (27); 
11: Scanning all patches of the image I2 in an overlapping fashion; 
12: for each reference patch Yi do 
13: Find the corresponding 3D noise tensor Y according to Eq. (11). 
14: Compute the threshold parameter τ2 according to Eq. (30); 
15: Obtain the estimation X̂ by Algorithm 1; 
16: end for 17: Aggregate all X̂ to form speckle suppression image ̂I according to Eq. (14); 
18: Return The speckle suppression image ̂I.  

4. Experimental results 

Both real and synthetic OCT images are utilized to illustrate the speckle suppression effectiveness of our model, which will be 
further compared to some of the models with high performance, such as TGV [20], PNLM [30], SBSDI [32], FoSVS [37], DnCNN [43], 

Fig. 3. Two synthetic images used in this work. (a) Gaussian function-generated speckle-free image according the method proposed in Ref. [20]; (b) 
Speckle-free image randomly selected from the dataset [32]; (c) Matlab function imnoise-generated speckle noisy image according to Fig. 3(a); (d) 
Speckle noisy image of (b). 
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and CWDL [36]. If not otherwise specified, the parameters of the method in this paper remain fixed and are as follows: n = 11, n3 =

60, γ = 7 and λ = 0.6. For the sake of fairness, the comparison techniques’ parameters are kept at the fixed values indicated in the 
references. 

For the purpose of demonstrating the speckle suppression performance of our model, we will evaluate and analyze the despeckling 
results using several quantitative metrics, which are listed below: Edge preservation index (EPI) [60,61], Peak signal-to-noise ratio 
(PSNR) [6], Equivalent number of looks (ENL) [18,61], Structural similarity index measure (SSIM) [42], Contrast-to-noise ratio (CNR) 
[5], and Cross correlation (XCOR) [25]. Let ̂y ∈ RW×H be the despeckling result and y be the corresponding reference image, then these 
metrics are represented below. 

PSNR defined in Eq. (31) measures the difference in image intensity between y and ŷ, and a high PSNR value indicates an excellent 
reconstruction result. 

Fig. 4. Speckle suppression results of Fig. 3(c). (a) Speckle-free image; (b)–(i) Despeckling results respectively obtained by PNLM [30], SBSDI [32], 
TGV, FoSVS [20], WGLRR [39], DnCNN [43], CWDL [36], and our method. 
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PSNR= 10log10

⎛

⎜
⎜
⎝

2552

∑W

i=1

∑H

i=1
(ŷ(i, j) − y(i, j))2

⎞

⎟
⎟
⎠ (31) 

SSIM evaluates the structural similarities between the reference image and the recovered one and accounts for the changes in 
contrast, luminance, and local structure of the images. And SSIM is given by Eq. (32) below. 

SSIM =

(
2μyμŷ + c1

)(
2σyŷ + c2

)

(
μ2

y + μ2
ŷ + c1

)(
σ2

y + σ2
ŷ + c2

) (32)  

Fig. 5. Speckle suppression results of Fig. 3(d). (a) Speckle-free image; (b)–(i) Despeckling results respectively obtained by PNLM [30], SBSDI [32], 
TGV, FoSVS [20], WGLRR [39], DnCNN [43], CWDL [36], and our method. 

Table 1 
Metrics about Fig. 3(c) for all methods.  

Metric PNLM SBSDI TGV FoSVS WGLRR DnCNN CWDL Ours 

PSNR 17.20802 21.7717 1.1838 22.0129 21.8148 21.6844 21.4593 23.5891 
SSIM 0.1836 0.3012 0.3434 0.3534 0.3569 0.3544 0.3339 0.5518 
XCOR 0.8716 0.9367 0.9457 0.9535 0.9457 0.9408 0.9451 0.9709 
EPI 0.3390 0.4453 0.7415 0.7883 0.7203 0.7695 0.7812 0.7432  

Table 2 
Averaged metrics about 18 images in the dataset [32] for all methods.  

Metric PNLM SBSDI TGV FoSVS WGLRR DnCNN CWDL Ours 

PSNR 27.5466 28.3132 19.9145 28.2389 28.2891 28.0918 27.8272 28.3707 
SSIM 0.6865 0.6890 0.6081 0.6962 0.6965 0.6909 0.6811 0.6975 
XCOR 0.9931 0.9937 0.9641 0.9934 0.9935 0.9932 0.9931 0.9938 
EPI 0.3255 0.3672 0.2620 0.3659 0.3648 0.3566 0.3684 0.3812  
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here, μy and μŷ are the means of the noisy image y and the filtered image ŷ, respectively. σy and σŷ are the standard deviations of the 
corresponding images, respectively. σyŷ means the cross-covariance between y and ŷ. c1 and c2 are two constants defaulted to 0.01 and 
0.03, which are used to maintain numerical stability. SSIM lies in [0,1], and a higher SSIM value means an excellent reconstruction 
result. 

XCOR is used to indicate how similar y and ̂y are to each other, and a larger value means a stronger similarity. XCOR is given by Eq. 
(33) below. 

XCOR=

∑W

i=1

∑H

i=1
ŷ(i, j) · y(i, j)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[
∑W

i=1

∑H

i=1

⃒
⃒
⃒
⃒ŷ(i, j)|

2
]

·

[
∑W

i=1

∑H

i=1

⃒
⃒
⃒
⃒y(i, j)|

2
]√ (33) 

EPI accounts for the edge-preserving capability of the algorithm, as shown in Eq. (34). 

EPI =
∑

(Δy − Δy)(Δŷ − Δŷ)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(Δy − Δy)2
·
∑

(Δŷ − Δŷ)2
√ (34)  

here, Δ is the Laplace operator of size 3× 3. y is the mean of y. EPI lies in [0, 1], and the higher value means that more fine details 
(edges) are preserved in the filtered images. 

ENL is most commonly used in speckle suppression and is utilized to evaluate the flat regions’ smoothness, As shown in Eq. (35). 

ENL=
μ2

roi

σ2
roi

(35)  

where roi represents the region of interest in the speckle suppression result ŷ. μroi stands for the mean of roi, and σroi represents the 
standard deviation of roi. And a larger ENL value means that the approach is more capable of smoothing in homogeneous areas. 

CNR defined in the following equation (36) measures the contrast between the background and foreground areas. 

Fig. 6. Two real OCT images randomly selected from the dataset [62]. The regions with blue borders are used to calculate ENL, which accounts for 
the flat regions’ smoothness. The foreground and background regions, used to calculate the CNR defined in Eq. (36), are indicated by red borders 
and green borders. The areas with black borders are two regions of interest, which will be enlarged to better observe the ability of the methods for 
speckle noise suppression. 
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CNR=

⃒
⃒μf − μb

⃒
⃒

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

0.5
(

σ2
f + σ2

b

)√ (36)  

here the subscript b stands for background, and the subscript f stands for background. σf (σb) represents the standard deviation of the 
corresponding area. In addition, μf (μb) is the mean of the corresponding area. It should be noted that the calculation of EPI and CNR 
does not require the reference image and is most commonly used in real OCT images. And a larger value means better speckle sup-
pression results. 

4.1. Results on synthetic images 

Reference OCT images are generally not available in practice. To illustrate how well the presented model reduces speckle noise, two 
synthetic OCT images depicted in Fig. 3 are used. The first synthetic image is generated by the Gaussian simulation method used in 
Ref. [30], and the generated speckle-free image is displayed in Fig. 3(a). In order to obtain a speckle noise-contaminated image, we use 
the Matlab function imnoise to add speckle noise to Fig. 3(a), and the density of noise is set to 0.2. Fig. 3(c) gives the result. The dataset 
[32] contains 18 synthetic images; Fig. 3(b) is a randomly selected image. In addition, the noisy image corresponding to Fig. 3(b) is 
presented in Fig. 3(d). 

Fig. 4(a)-(i) show the filtered images of all methods corresponding to Fig. 3(c), and the results related to Fig. 3(d) are shown in 
Fig. 5(a)-(i). It can be observed that a lot of noise is retained in the results of TGV, SBSDI, PNLM, and CWDL. By contrast, WGLRR, 
FoSVS, DnCNN, and the proposed method not only provide more pleasant visual results but also preserve image edge information well. 
Table 1 and Table 2, which include the PSNR, SSIM, XCOR, and EPI of all methods, also indicate the well-performing speckle sup-
pression of our method. As shown in Table 1, the method in this work achieves relatively good results in terms of these metrics for Fig. 3 

Fig. 7. Speckle suppression images of Fig. 6(b). (a)–(h) Despeckling images respectively generated by PNLM [30], SBSDI [32], TGV, FoSVS [20], 
WGLRR [39], DnCNN [43], CWDL [36], and our method. 
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(c). Fig. 5 gives the speckle suppression results of different methods for Fig. 3(d). As mentioned above, Fig. 3(b) is a randomly selected 
image from the dataset [32]. The averaged metrics of all images may better reflect the speckle suppression performance of our method. 
In terms of these metrics, our method yields superior numerical outcomes, as indicated by Table 2. 

4.2. Results on real images 

Experiments on synthetic images are not sufficient to prove the superiority of our method. To further illustrate the capabilities of 
our method in terms of speckle noise removal, we adopt the real OCT dataset [62] in the following subsection. For specific details 
related to this dataset, we suggest the reader consult the literature [62]. Due to the limitation of space, two images from the real OCT 
dataset [62] are chosen at random, and they are presented in Fig. 6(a) and (b). And the speckle suppression results of all methods are 
presented in Fig. 7(a)-(h) and Fig. 8(a)-(h), which give a visual comparison. To better observe methods’ ability to retain the details of 
OCT images, close-ups of regions with blue borders in Fig. 6 are displayed in Fig. 9(a)-(h) and Fig. 10(a)-(h), respectively. It is easy to 
find that severe speckle noise is present in the two selected OCT images. And TGV, SBSDI, PNLM, and CWDL can provide a relatively 

Fig. 8. Speckle suppression images of Fig. 6(b). (a)–(h) Despeckling images respectively generated by PNLM [30], SBSDI [32], TGV, FoSVS [20], 
WGLRR [39], DnCNN [43], CWDL [36], and our method. 
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Fig. 9. Close-ups of regions with blue borders in Fig. 6(a). (a)–(h) Despeckling results respectively obtained by PNLM [30], SBSDI [32], TGV, FoSVS 
[20], WGLRR [39], DnCNN [43], CWDL [36], and our method. 
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satisfactory result with speckle reduction, but it is obvious that the corresponding residual noise is greater than that of WGLRR, FoSVS, 
DnCNN, and the proposed method. WGLRR, FoSVS, DnCNN, and our method all produce despeckling results that are generally more 
visually appealing than SBSDI, TGV, CWDL, and PNLM do. As displayed in Fig. 9(a)–(h) and Fig.10(a)–(h), the results of WGLRR and 
DnCNN are over-smoothed. The layer structure is too smooth, and the inter-layer transition pointed out by the red arrow is very vague. 
By contrast, our method and FoSVS can effectively preserve the layer feature. 

In practice, ground truth images are not easy to acquire. Therefore, the metric [63], which is the non-reference image-based 
method, is adopted to measure the effectiveness of each algorithm on real OCT images and is defined as shown in Eq. (37) below: 

Q= s1
s1 − s2

s1 + s2
(37)  

where s1 and s2 are the singular values of the gradient matrix over a square window [63], respectively. A larger Q value for the 
despeckling approach indicates that a better speckle suppression result is obtained. The metric Q, together with the ENL and CNR of all 
methods, is listed in Tables 3 and 4. It is easy to find that the CNR, ENL, and metric Q of our method are larger than those of other 
methods in terms of the selected real OCT images. It can be inferred to a certain extent that our algorithm can obtain speckle noise 
suppression and feature preservation results. In Table 5, the time costs of our algorithm and others are provided. One can find that the 
time cost of our algorithm is shorter than that of FoSVD and WGLRR but longer than that of PNLM, DnCNN, SBSDI, TGV, and CWDL. 

4.3. Performance evaluation 

The above experimental results have visually and quantitatively illustrated the despeckling effectiveness of the presented algo-
rithm. To more fully assess how well our algorithm performs on the preservation of image edges, the Canny edge detector, integrated in 
Matlab with the default parameter values, is utilized to extract the edge information from the results of all despeckling methods. The 
extracted edge information of Fig. 7(a)-(h) and Fig. 8(a)–(h) is shown in Fig. 11(a)-(h) and Fig. 12(a)-h), respectively. It is evident that 
our method performs despeckling in the background regions more effectively than other methods. As for the layer structure of the 
filtered images, our method and the FoSVS method have better preservation capabilities. By contrast, other comparable methods either 
have insufficient speckle noise suppression or an unclear layer structure (see Fig. 12). 

4.4. Effect of parameters 

As seen in the previous section, our algorithm obtains a better despeckling performance with fixed parameters, which is mainly 

Fig. 10. Close-ups of regions with blue borders in Fig. 6(b). (a)–(h) Despeckling results respectively obtained by PNLM [30], SBSDI [32], TGV, 
FoSVS [20], WGLRR [39], DnCNN [43], CWDL [36], and our method. 

Table 3 
Metrics about Fig. 6(a) for all methods.  

Metric PNLM SBSDI TGV FoSVS WGLRR DnCNN CWDL Ours 

Q 6.0878 9.4976 10.0164 13.2204 11.8548 8.3794 9.1599 13.4917 
ENL 566.7953 711.9132 631.3823 812.2935 892.2207 851.5683 613.6817 932.1125 
CNR 4.0294 4.5955 4.5119 4.3545 4.4737 4.6519 4.3705 4.7522  

Table 4 
Metrics about Fig. 6(b) for all methods.  

Metric PNLM SBSDI TGV FoSVS WGLRR DnCNN CWDL Ours 

Q 4.6111 12.2879 10.2546 13.0845 12.8771 8.7428 8.9607 13.5620 
ENL 204.8645 316.2581 377.8718 466.2603 551.5379 451.1828 390.5915 917.1556 
CNR 4.2726 4.9217 5.0524 4.9578 5.1153 5.2151 4.9745 5.2246  

Table 5 
Computational cost (seconds) for all methods.  

Figures PNLM SBSDI TGV FoSVS WGLRR DnCNN CWDL Ours 

Fig. 3(c) (516 × 500) 
20.23 7.00 8.66 88.23 83.67 4.66 5.01 53.98 

Fig. 3(d) (450 × 900) 
11.14 11.91 19.45 133.36 130.06 7.33 20.59 87.97 

Fig. 6(a) (600 × 400) 
19.93 4.84 11.32 84.18 83.88 5.34 26.23 55.68 

Fig. 6(b) (640 × 304) 
16.08 3.64 6.52 64.97 63.9 4.13 20.03 42.58  
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determined after conducting numerous experiments. To further illustrate the effect of parameters on our model for speckle noise 
suppression, we list the results of SSIM, PSNR, XCOR, and EPI of our algorithm under different settings of these parameters, as shown in 
Tables 6–9. It is worth noting that Tables 6–9 only report the average metrics of the dataset [32], which contains 18 test images. In 
addition, testing all combinations of parameters seems like an impossible task. Therefore, we keep the other parameters unchanged 
and change the value of one of them. From Tables 6 and it can be seen that there is no change in these metrics. In other words, the 
proposed method has strong robustness for the scaling factor λ. As can be seen in Table 7, SSIM reaches its maximum value when 
regulation parameter γ is 7. And PSNR, XCOR, and EPI change very little when γ is greater than 7. As seen in Table 8, increasing image 
patch size will increase the values of SSIM and PSNR, but those of XCOR and EPI will increase more slowly. The parameter n3 de-
termines how many similar patches are included in the constructed 3D tensor, and the effect of n3 on metrics is listed in Table 9. Based 
on the numerical results, we can find that PSNR increases as n3 increases; however, SSIM reaches its maximum value when n3 is set to 
60. A fact that cannot be ignored is that the computational cost increases dramatically with increasing n and n3. To balance the running 
complexity and the despeckling effectiveness of the presented method, we set the parameters as below: n = 11, n3 = 60, γ = 7 and λ =

0.6, and these parameters remain constant in all experiments. 

5. Conclusion 

A t-SVD based two-stage speckle noise suppression method is presented to effectively reconstruct the noisy input OCT images. And 
speckle noise in both real and synthetic OCT images is initially removed in the first stage. To effectively enhance the speckle sup-
pression results, in the second stage, we define an adaptive projection parameter and construct a feature-guided thresholding strategy 
that can well suppress speckle noise and retain the image structural features. Additionally, the presented algorithm outperforms 
several comparison methods in relation to speckle suppression and objective metrics. However, the proposed method suffers from 
some limitations. For example, the currently used Matlab implementation of our method has no running-time advantages. And a lot of 
experiments need to be performed to find the parameters that balance the various performances. As a result, further research has to be 

Fig. 11. Edge maps of despeckling images shown in Fig. 7. (a)–(h) Extracted edge information by PNLM [30], SBSDI [32], TGV, FoSVS [20], 
WGLRR [39], DnCNN [43], CWDL [36], and our method, respectively. 
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Fig. 12. Edge maps of despeckling images shown in Fig. 8. (a)–(h) Extracted edge information by PNLM [30], SBSDI [32], TGV, FoSVS [20], 
WGLRR [39], DnCNN [43], CWDL [36], and our method, respectively. 

Table 6 
Effect of the parameter λ.  

Metrics Scaling factor λ defined in Eq. (12) 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 

PSNR 28.3707 28.3707 28.3707 28.3707 28.3707 28.3707 28.3707 
SSIM 0.6975 0.6975 0.6975 0.6975 0.6975 0.6975 0.6975 
XCOR 0.9838 0.9838 0.9838 0.9838 0.9838 0.9838 0.9838 
EPI 0.3812 0.3812 0.3812 0.3812 0.3812 0.3812 0.3812  
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done in the future about the criteria for determining the parameters. 
In addition, there are also some interesting future works. Compared with the convex models, the nonconvex models in the low-rank 

framework generally give better results in speckle noise reduction. Hence, the extensions to nonconvex cases can be interesting. And it 
is also interesting to use the developed method for the processing of various other kinds of information, for example, bioinformatics, 
web data, and videos. 
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Table 7 
Effect of the parameter γ.  

Metrics Regulation parameter γ defined in Eq. (13) 

1 3 5 7 9 11 13 

PSNR 28.1923 28.3063 28.3532 28.3707 28.3766 28.3766 28.3798 
SSIM 0.6808 0.6924 0.6965 0.6975 0.6974 0.6973 0.6973 
XCOR 0.9934 0.9936 0.9937 0.9938 0.9938 0.9938 0.9938 
EPI 0.3267 0.3619 0.3765 0.3812 0.3820 0.3822 0.3822  

Table 8 
Effect of the parameter n.  

Metrics Size of image patch n 

5 7 9 11 13 15 17 

PSNR 27.6895 28.1956 28.3045 28.3707 28.4144 28.4411 28.4589 
SSIM 0.6721 0.6926 0.6959 0.6975 0.6982 0.6987 0.6991 
XCOR 0.9931 0.9936 0.9937 0.9938 0.9938 0.9938 0.9938 
EPI 0.2738 0.3747 0.3798 0.3812 0.3816 0.3819 0.3821  

Table 9 
Effect of the parameter n3.  

Metrics Size of image patch n3 

30 40 50 60 70 80 90 

PSNR 28.2978 28.3297 28.3542 28.3707 28.3815 28.3874 28.3908 
SSIM 0.6966 0.6972 0.6974 0.6975 0.6974 0.6973 0.6972 
XCOR 0.9936 0.9937 0.9937 0.9938 0.9938 0.9938 0.9938 
EPI 0.3735 0.3744 0.3798 0.3812 0.3817 0.3819 0.3820  
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