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Abstract
Aims/hypothesis We compared the ability of genetic
(established type 2 diabetes, fasting glucose, 2 h glucose and
obesity variants) and modifiable lifestyle (diet, physical activ-
ity, smoking, alcohol and education) risk factors to predict
incident type 2 diabetes and obesity in a population-based
prospective cohort of 3,444 Swedish adults studied sequen-
tially at baseline and 10 years later.
Methods Multivariable logistic regression analyses were used
to assess the predictive ability of genetic and lifestyle risk
factors on incident obesity and type 2 diabetes by calculating
the AUC.
Results The predictive accuracy of lifestyle risk factors was
similar to that yielded by genetic information for incident type
2 diabetes (AUC 75% and 74%, respectively) and obesity
(AUC 68% and 73%, respectively) in models adjusted for
age, age2 and sex. The addition of genetic information to the
lifestyle model significantly improved the prediction of type 2
diabetes (AUC 80%; p=0.0003) and obesity (AUC 79%;

p<0.0001) and resulted in a net reclassification improvement
of 58% for type 2 diabetes and 64% for obesity.
Conclusions/interpretation These findings illustrate that life-
style and genetic information separately provide a similarly
high degree of long-range predictive accuracy for obesity and
type 2 diabetes.
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GRS Genetic risk score
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IFG Impaired fasting glucose
IGT Impaired glucose tolerance
LD Linkage disequilibrium
NNR Nordic nutrition recommendation
ob-GRS Obesity genetic risk score
PCA Principal component analysis
SNP Single nucleotide polymorphism
t2d-GRS Type 2 diabetes genetic risk score
VHU Västerbotten Health Survey

Introduction

Type 2 diabetes and obesity are caused by three forces: genetic
predisposition, the action of environmental factors and interac-
tion between the two. While genetic factors may predispose a
person to type 2 diabetes or obesity, a permissive environment
can promote the development of these cardiometabolic diseases.

In recent work by the Genetic Investigation of Anthropo-
metric Traits (GIANT) consortium [1], almost 100 loci were
reproducibly associated with adult BMI. Two other consortia
(Diabetes Genetics Replication and Meta-Analysis [DIA-
GRAM] and the Meta-Analyses of Glucose and Insulin-
Related Traits Consortium [MAGIC]) have also identified ge-
netic variants associated with type 2 diabetes [2] and fasting
and 2 h glucose concentrations [3]. However, these loci ac-
count for only a small fraction of the estimated genetic varia-
tion in BMI (∼2.7%) and type 2 diabetes (∼5.7%) [1, 2].

Although several studies have compared the ability of genetic
and clinical risk scores to predict type 2 diabetes [4–6], quanti-
tative phenotypes (e.g. blood glucose or cholesterol) used in
these clinical risk scores are biological intermediates of disease,
resulting from the combination of both unfavourable lifestyle
and genotype. To our knowledge, no published prospective
studies have reported on head-to-head comparisons of the full
array of established genetic variants and lifestyle risk factors for
type 2 diabetes and obesity. The current study sought to address
this knowledge gap in a population-based prospective cohort of
Swedish adults, the Gene–Lifestyle Interactions and Complex
Traits Involved in ElevatedDisease Risk (GLACIER) Study [7].

Methods

Study participants

The GLACIER Study is a prospective, population-based co-
hort study nested within the Northern Sweden Health and
Disease Study (NSHDS) [7, 8]. Lifestyle and clinical data
were collected within the framework of the Västerbottens
Hälsoundersökning (Västerbotten Health Survey [VHU])

initiated in 1985, inviting all residents within the county to
attend an extensive health examination in the years of their
40th, 50th and 60th birthdays. Thus, the vast majority of par-
ticipants had follow-up examinations roughly 10 years after
baseline. However, seven participants underwent follow-up ex-
aminations between four and six years after baseline. Initially,
residents turning 30 years of age were also invited but this was
later dropped. Of the 5,726 GLACIER participants with neces-
sary genotypic and phenotypic information, 3,444 had follow-
up data available. Baseline examinations were performed be-
tween 1990 and 1999, and follow-up examinations between
1995 and 2008. All participants provided written informed con-
sent as part of the VHU, and the study was approved by the
Regional Ethical Review Board in Umeå, Sweden.

Clinical measures

The assessment of clinical measures has been described in
detail elsewhere [7]. Briefly, weight (to the nearest 0.1 kg)
and height (to the nearest 1 cm) were measured with a cali-
brated balance-beam scale and a wall-mounted stadiometer,
respectively, with participants wearing indoor clothing and
without shoes. Normal weight was defined as BMI of
18.5–24.9 kg/m2, overweight as BMI 25–29.9 kg/m2 and obe-
sity as BMI ≥30 kg/m2. Capillary blood was drawn after an
overnight fast, and a second sample was drawn 2 h after a
standard 75 g oral glucose load [9]. Capillary plasma glucose
concentrations were measured with a Reflotron bench-top
analyser (Roche Diagnostics Scandinavia, Umeå, Sweden).

At baseline and follow-up, 78% and 98% of the participants
reported having fasted for a minimum of 8 h, respectively. A
variable was, therefore, included in the analysis with glycaemic
traits to control for fasting time. Type 2 diabetes was determined
based on self-report or from a 75 g oral glucose tolerance test
performed as part of the VHU. Type 2 diabetes was defined
according to the criteria of the American Diabetes Association
[10] as a fasting plasma glucose concentration ≥7.0 mmol/l or a
2 h plasma glucose concentration ≥11.1 mmol/l. Fasting glu-
cose concentration was categorised into three levels: normal
fasting glucose (<6.1 mmol/l), impaired fasting glucose (IFG;
between ≥6.1 and <7.0 mmol/l) and diabetic fasting glucose
(≥7.0mmol/l). Two hour glucose concentrationwas categorised
into three levels: normal glucose tolerance (<7.8 mmol/l), im-
paired glucose tolerance (IGT; between ≥7.8 and <11.1 mmol/l)
and diabetic glucose tolerance (≥11.1mmol/l). Incident cases of
IFG and IGT were defined as participants changing from nor-
mal to impaired status during follow-up.

Genotyping

DNA was extracted from peripheral white blood cells, and
genomic DNA samples were diluted to 4 ng/μl as previously
described [11, 12]. Genotyping was performed using the
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Metabochip array (Illumina, San Diego, CA, USA) [13] at the
Wellcome Trust Sanger Institute, UK. Ninety-seven BMI-as-
sociated loci [1], 65 type 2 diabetes-associated loci [2], 36
fasting glucose loci and nine 2 h glucose-associated loci [3]
were extracted. Genotypes were coded as 0, 1 and 2 at each
single nucleotide polymorphism (SNP) locus, indicating the
number of effect alleles (as defined by the prior meta-analyses
[1–3]) per participant. We used proxy SNPs for 26 loci, as
indicated in electronic supplementarymaterial (ESM) Tables 1
and 2. Missing rate was ≤0.07 per participant and ≤0.007 per
SNP.Missing genotypes were imputed using mean imputation
as previously described [14] by replacing each missing geno-
type with its mean value, which was obtained from the frac-
tion of the cohort having genotype data available. No signif-
icant deviations from Hardy–Weinberg equilibrium
(p<0.0001) were observed.

Genetic risk scores In order to examine the cumulative effects
of the SNPs, four genetic risk scores (GRS) were generated for
each participant by summing the number of effect alleles at
each associated SNP for: (1) obesity (ob-GRS); (2) fasting
glucose (fg-GRS); (3) 2 h glucose (2hg-GRS); and (4) type 2
diabetes (t2d-GRS). The minimum theoretical value of all four
GRS is 0 and the maximum theoretical values are 194 for ob-
GRS (range 70–114), 72 for fg-GRS (range 27–50), 18 for 2hg-
GRS (range 2–13) and 130 for t2d-GRS (range 50–89).

Lifestyle assessment

Diet was assessed using a validated semi-quantitative food fre-
quency questionnaire (FFQ) designed to capture habitual diet
over the last year [15–17]. Participants indicated how often
they consumed foods and beverages on a nine-point frequency
scale, ranging from never to four or more per day, and also
indicated average portion size of meat and fish, vegetables,
potatoes, rice and pasta. Total energy intake was calculated
based on the National Food Administration database (www.
slv.se). The initial FFQ (used from 1985) covered 84 food
items, but in 1996 was reduced to 66 food items by
combining several questions related to similar foods. All
analyses including dietary variables were adjusted for a
variable indicating FFQ version. The current analysis
included intakes of total energy (kcal/day), alcohol (g/day),
salt (g/day), sucrose (g/day), macronutrients (g/day;
carbohydrate, protein, total fat, saturated fat, monounsaturated
fatty acids [MUFA], polyunsaturated fatty acids [PUFA],
essential fatty acids [n-3 and n-6 fatty acids] and fibre),
vitamins and minerals (vitamins A [mg/day], D [μg/day], E
[mg/day], B6 [mg/day], B12 [μg/day] and C [mg/day],
thiamin [mg/day], riboflavin [mg/day], niacin [mg/day], folate
[μg/day], calcium [mg/day], phosphorus [mg/day], potassium
[mg/day], magnesium [mg/day], iron [mg/day], zinc [mg/day],
iodine [μg/day] and selenium [μg/day]). Participants with

≥10% of the FFQ missing or an implausible total energy
intake (<500 or >4500 kcal/day; <2093 or >18841 kJ/day)
were excluded from the analyses.

Apart from diet variables, the lifestyle factors used were
smoking status (current smokers, ex-smokers, non-smokers),
education (school, college and university levels) and physical
activity. Physical activity was assessed through a modified
version of the International Physical Activity Questionnaire
[18, 19], which gathers information on leisure time physical
activity for the past 3 months categorised as never, occasion-
ally, 1–2 times/week, 2–3 times/week or >3 times/week. For
the current analysis, categories were combined into physically
inactive (never and occasionally) and physically active (≥1–
2 times/week).

Diet scores Three diet scores were constructed and tested for
association with incidence of obesity and type 2 diabetes. The
Healthy Diet (HD) score was constructed from intakes of eight
food groups: whole grains, fish, fruits and vegetables were
designated as favourable foods, whereas red and processed
meats, desserts and sweets, sugar-sweetened beverages and
fried potatoes were designated as unfavourable. The original
HD score additionally includes nuts but this information is not
available in the VHU. Intake of each food group was
categorised into quartiles, and ascending values (0,1,2,3) were
assigned for favourable foods and descending values (3,2,1,0)
for unfavourable foods. These values were then summed to
generate the HD score, with higher scores indicating a health-
ier diet [20].

The second score, the Nordic nutrition recommendation
(NNR) score, was constructed following the recommenda-
tions of the Nordic Council of Ministers [21]. For each rec-
ommendation, 1 point was assigned when the recommenda-
tion was fulfilled and 0 points when the recommendation was
not fulfilled. The points for each participant were subsequent-
ly summed, with a higher score indicating a healthier diet. A
full description of the recommendations used to construct the
NNR score is given in ESM Table 3.

A third score was constructed by conducting a principal
component analysis (PCA) in order to obtain a summary fac-
tor representing global dietary intake. All of the macronutri-
ents analysed in this study were included in the analysis and
the model was adjusted for total energy intake. A single factor
was retained that contrasted carbohydrate and fibre intake
against fat intake and accounted for 54% of the variance of
all macronutrients (ESM Table 4). Spearman’s correlations
between the three diet scores (partialled for age, age2, sex,
FFQ version and total energy intake) were calculated. All diet
scores were significantly correlated with each other
(p<0.0001); NNR score and HD score were positively corre-
lated (r=0.36), and both scores were negatively correlated
with the PCA score (r=−0.21 and −0.33, respectively).
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Statistical analyses

After excluding participants who were classified with obesity
or type 2 diabetes at baseline, the predictive ability of genetic
and lifestyle risk factors in incident obesity and type 2 diabetes
during the 10 year follow-up period was assessed by logistic
regression analysis. Multivariable logistic regression was also
used to predict weight gain ≥10%, and incident IFG and IGT
during follow-up.

In the prospective analyses, three different models were used:
Model 1 (the genetic model) included age, age2, follow-up du-
ration, fasting status (for glycaemic traits), sex and trait-specific
SNPs as independent variables; Model 2 (the lifestyle model)
included age, age2, follow-up duration, fasting status (for
glycaemic traits), sex, FFQ version, education, smoking status,
physical activity and intakes of total energy, alcohol, salt, su-
crose,macronutrients, vitamins andminerals;Model 3 (the com-
bined model) included all variables in Models 1 and 2 above.

Age and sex were included in all models as both are strong
predictors of type 2 diabetes and obesity, and excluding them
from lifestyle and/or genetic models may cause bias and con-
founding. This is, in part, because age and sex are stronger
confounders of the lifestyle effect estimates comparedwith the
genetic effect estimates in our analyses. Thus, without adjust-
ment, the comparison of genetic and lifestyle models is likely
to be biased by the greater degree of confounding in the latter
than in the former models. BMI, which is a strong predictor of
type 2 diabetes, was not included in glycaemic trait models as
it carries combined information on both lifestyle and genetic
risk factors and including it in either model (genetic or life-
style) could unduly influence the model.

Predictive ability The predictive accuracy of the models
outlined above was assessed by calculating the AUC. The
AUCs of the different models were compared using the meth-
od described by DeLong et al [22]. The sensitivity of the
models at 90% specificity was also estimated.

Net reclassification improvement The continuous net reclas-
sification improvement (cNRI), which quantifies the correct-
ness of upward and downward reclassification as a result of
adding the genetic information to the lifestyle model, was
calculated [23].

Model calibration Model calibration was assessed by
Akaike’s information criterion (AIC) and the Hosmer–
Lemeshow test [24].

Association of genetic and lifestyle factors For models fo-
cused on predictive accuracy, lifestyle variables and genetic
variants were entered individually to improve predictive power
(see above). However, for association analyses, diet scores and
GRS were calculated to obtain an overall estimate of the effect

of diet and genetic information. In addition, although
multicollinearity does not affect the predictive power of the
models, it affects estimates of the individual predictors [25].
By constructing GRS and diet scores, multicollinearity was
avoided when calculating ORs. In order to investigate how
modest differences in lifestyle and genetic factors related to
type 2 diabetes and obesity risk, the quartiles of each diet and
genetic score were calculated. As alcohol intake was not part of
any of the diet scores, quartiles of this variable were calculated
and included in the models. The top and the bottom quartiles of
each score and lifestyle variable were compared in the models.

Multi-trait genetic information Type 2 diabetes is a hetero-
geneous phenotype that probably includes several subtypes of
diabetes, and genetic variants operating through different path-
ways (e.g. obesity) may have greater predictive value for diabe-
tes or its subtypes than others [26]. Thus, we also evaluated the
predictive ability on incident type 2 diabetes for all variants
associated with type 2 diabetes, fasting and 2 h glucose, and
obesity. SNPs associated with multiple traits or in linkage dis-
equilibrium (LD; r2>0.8) were included only once in the model.

Data were analysed with PLINK (version 1.07) [27], R
(version 3.1.1) [28] and SAS (version 9.4, SAS Institute, Cary,
NC, USA) [29].

Results

Baseline participant characteristics and incidence of obesity,
type 2 diabetes, IFG and IGT are summarised in Table 1 and
ESM Table 5. Of the 3,444 participants followed for a median
of 9.9±0.4 years, 264 (7.7%) developed obesity, 192 (5.6%)
type 2 diabetes, 563 (16.3%) IFG and 613 (17.8%) IGT.

Obesity

Predictive ability The lifestyle model had a similar predictive
accuracy of incident obesity as the genetic model (AUC 68%
vs 73%; pdifference=0.08; Table 2). The predictive ability of
these models was lower when the models were not adjusted
for age and sex (AUC 67% and 72% for lifestyle and genetic
models, respectively). The addition of genetic information (97
SNPs) to the lifestyle model significantly improved the predic-
tive ability of the model (AUC 79%; pdifference<0.0001;
Fig. 1a). Sensitivity of the combined model was maximised
(38%) at a fixed specificity of 90%. Sensitivity was higher in
the model that included only the genetic factors compared with
the model that included only lifestyle factors (31% vs 26%).

Concerning weight gain ≥10%, genetic and lifestyle
models showed a predictive ability of 65% and the addition
of the genetic information to the lifestyle model significantly
improved its predictive ability (AUC 68%; pdifference=0.0004;
ESM Table 6).
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Net reclassification improvement The addition of genetic
information to the lifestyle factors resulted in a cNRI of 64%
(p<0.0001; Table 3), comprised of an event cNRI of 32% and
a non-event cNRI of 32%. The addition of genetic information
to the lifestyle model also improved the predictive ability of
the model for weight gain ≥10% (cNRI 26%; p<0.0001; ESM
Table 6) and the effect of the reclassification was higher for
participants with <10% weight gain during follow-up (cNRI
11% for event vs 15% for non-event).

Association of GRS and lifestyle factors The ob-GRS was
independently associated with incidence of obesity (p<0.001,

ESM Table 7a) but not significantly associated with weight
gain ≥10% (data not shown). Among lifestyle variables, edu-
cation (p<0.02) and alcohol intake (p<0.03) were significant-
ly inversely associated with incident obesity (Fig. 2a).

Type 2 diabetes

Predictive accuracyThe predictive ability of the genetic mod-
el did not significantly differ from that of the lifestyle model
(AUC 74% vs 75%; pdifference=0.47; Table 2 and Fig. 1b). The
predictive ability of these models was lower when the models
were not adjusted for age and sex (AUC 68% and 72% for

Table 1 Incidence of obesity, type 2 diabetes, IFG and IGTand baseline descriptive characteristics of the GLACIER Study participants with follow-up
information

Variables Men Women All
(n=1,322) (n=2,122) (n=3,444)

Age, years 45.8±6.5 44.9±6.8 45.2±6.7

Length of follow-up, years 10±0.4 9.9±0.4 9.9±0.4

Fasting status at baseline, % missing/<4 h/4–8 h/>8 h 19.3/0.9/5.0/74.8 15.1/0.6/5.1/79.2 16.7/0.7/5.0/77.6

Fasting status at follow-up, % missing/<4 h/4–8 h/>8 h 1.1/0/1.5/97.4 1.0/0/0.6/98.4 1.1/0/0.9/98.0

Incident obesity, n (%) 105 (7.9) 159 (7.5) 264 (7.7)

Incident type 2 diabetes, n (%) 98 (7.4) 94 (4.4) 192 (5.6)

Incident IFG, n (%) 232 (17.5) 331 (15.6) 563 (16.3)

Incident IGT, n (%) 211 (16.0) 402 (18.9) 613 (17.8)

BMI, kg/m2 25.6±3.3 24.8±4.0 25.1±3.7

Fasting glucose, mmol/l 5.4±0.7 5.3±0.6 5.3±0.7

2 h glucose, mmol/l 6.2±1.5 6.7±1.4 6.5±1.4

Data are expressed as mean ± SD for quantitative variables and as n and/or percentage for qualitative variables

Table 2 Predictive ability and model calibration for prediction of incident obesity (n=1,511), type 2 diabetes (n=2,017), IFG (n=2,778) and IGT (n=
2,420) based on lifestyle and genetic factors alone and in combination

Trait Model AUC (95% CI) AUC p valuea Sensitivity
(90% specificity)

AIC Hosmer–Lemeshow
p value

Obesity Genetic model 0.726 (0.693, 0.759) 0.08 31% 1,377 0.56

Lifestyle model 0.681 (0.644, 0.718) 26% 1,301 0.57

Combined model 0.789 (0.759, 0.818) <0.0001 38% 1,362 0.52

Type 2 diabetes Genetic model 0.740 (0.704, 0.777) 0.47 32% 1,176 0.64

Lifestyle model 0.754 (0.720, 0.789) 33% 1,107 0.30

Combined model 0.797 (0.765, 0.830) 0.0003 40% 1,179 0.57

IFG Genetic model 0.662 (0.636, 0.688) 0.05 25% 2,538 0.22

Lifestyle model 0.633 (0.607, 0.660) 20% 2,583 0.45

Combined model 0.686 (0.661, 0.711) <0.0001 26% 2,570 0.25

IGT Genetic model 0.612 (0.586, 0.637) 0.03 16% 2,557 0.92

Lifestyle model 0.640 (0.614, 0.665) 19% 2,574 0.83

Combined model 0.651 (0.626, 0.677) 0.03 22% 2,577 0.32

Sample sizes are comprised of participants who experienced an event during follow-up (i.e. participants who were free of obesity, type 2 diabetes, IFG or
IGT at baseline and had developed the respective disease/condition at follow-up) and healthy controls (i.e. those who were healthy at baseline and at
follow-up) with relevant lifestyle, genetic and demographic data. All other participants from the overall cohort were excluded from these analyses
a AUC p values are for genetic and combined models vs lifestyle model

466 Diabetologia (2016) 59:462–471



genetic and lifestyle models, respectively). Adding genetic in-
formation (65 SNPs) to the lifestyle model significantly im-
proved the predictive ability of the lifestyle model (AUC 80%
for the combined model; pdifference=0.0003). The sensitivity of
the combinedmodel was 40% at a fixed specificity of 90% and
the sensitivity was slightly higher in the model that included
only lifestyle factors compared with the model that included
only genetic information (33% vs 32%).

Net reclassification improvement The cNRI indicated an
improvement in prediction of type 2 diabetes after adding ge-
netic information to the lifestyle model (cNRI 58%; p<0.0001;
Table 3). The addition of genetic information had a slightly
smaller effect on the reclassification of those who developed
type 2 diabetes (cNRI 28% for event vs 29% for non-event).

Association of GRS and lifestyle factors The t2d-GRS was
significantly associated with the incidence of type 2 diabetes
(p<0.02, ESM Table 7b). The PCA score was the only diet
score that showed a significant association with incident type
2 diabetes (p=0.01). All other lifestyle risk factors, except
alcohol intake, were associated with incident type 2 diabetes:
namely, education, smoking and physical activity (all p<0.04,
Fig. 2b).

Multi-trait genetic information The analyses includingmulti-
trait genetic information (SNPs associated with type 2 diabetes,
fasting glucose, 2 h glucose and obesity) yielded higher predic-
tive accuracies compared with those conducted using only the
type 2 diabetes-associated SNPs (Table 4). The genetic model
showed a significantly higher predictive accuracy than the

Fig. 1 AUCs for incidence of (a)
obesity, (b) type 2 diabetes, (c)
IFG and (d) IGT. Solid line,
genetic model; dashed line,
lifestyle model; dotted line,
combined model

Table 3 cNRI based on the ad-
dition of genetic information to
lifestyle variables

Trait cNRI (95% CI) p value cNRI event cNRI non-event

Obesity, % 64.04 (50.92, 77.16) <0.0001 32.49 31.55

Type 2 diabetes, % 57.75 (42.49, 73.01) <0.0001 28.49 29.27

IFG, % 36.37 (26.81, 45.92) <0.0001 19.92 16.45

IGT, % 8.28 (−1.17, 17.73) 0.0846 −7.25 15.53
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lifestyle model (AUC 82% vs 75%, pdifference=0.003; ESM
Fig. 1). Adding genetic information to lifestyle variables signif-
icantly improved the predictive accuracy of the model (AUC
86% for combined model; pdifference<0.0001) and resulted in a
cNRI of 86% (p<0.0001). The Hosmer–Lemeshow test showed
that there was a significant difference between the observed and
predicted risk for the genetic (p=0.04) and combined (p=0.006)
models. The sensitivities at a fixed specificity of 90% were
higher for the genetic and combined models containing multi-
trait genetic information compared with the models including
only type 2 diabetes-associated SNPs (52% vs 32% for the ge-
netic model and 61% vs 40% for the combined model).

IFG and IGT

Predictive accuracy The predictive ability of the genetic
model for incident IFG was 66%, 63% for the lifestyle model

and 69% for the combined model (Fig. 1c). The difference in
predictive ability between the genetic and lifestyle models was
not significant (pdifference=0.05) but adding genetic informa-
tion (36 SNPs) to the lifestyle model significantly improved
its predictive ability (pdifference<0.0001; Table 2).

For incident IGT, the predictive ability of the genetic model
(AUC 61%) was significantly lower than that for the lifestyle
model (AUC 64%; pdifference=0.03; Table 2 and Fig. 1d).
Adding the genetic information (nine SNPs) to the lifestyle
model significantly improved (pdifference=0.03) the predictive
ability of the model (AUC 65% for combined model). The
sensitivities of all the models were ≥20% at a fixed specificity
of 90% for IFG and ≥16% for IGT.

Net reclassification improvement The addition of the genet-
ic information to lifestyle model resulted in a cNRI of 36%
(p<0.0001) for IFG but did not result in a significant net

Ob−GRS

PCA score

HD score

NNR score

Alcohol intake

Physical activity

Education

Smoking status

3

OR for obesity

T2d−GRS

PCA score

HD score

NNR score

Alcohol intake

Physical activity

Education

Smoking status

1 2 1 2 3

OR for type 2 diabetes

Fg−GRS

PCA score

HD score

NNR score

Alcohol intake

Physical activity

Education

Smoking status

1.0 1.5 2.0

OR for IFG

2hg−GRS

PCA score

HD score

NNR score

Alcohol intake

Physical activity

Education

Smoking status

0.5 1.0 1.5

OR for IGT

a b

c d

Fig. 2 ORs (95% CI) for
incidence of (a) obesity, (b) type 2
diabetes, (c) IFG and (d) IGT.
Smoking status: non-smokers vs
current smokers; education:
school vs university education;
physical activity: inactive vs
active; alcohol intake, GRSs and
diet scores: 1st vs 4th quartiles

Table 4 Predictive ability, model calibration and cNRI for prediction of type 2 diabetes based on genetic factors associated with type 2 diabetes, fasting
and 2 h glucose, and obesity alone and in combination with lifestyle factors

Model AUC (95% CI) AUC p valuea Sensitivity
(90% specificity)

AIC Hosmer–Lemeshow
p value

cNRI (95% CI)b cNRI p value

Genetic model 0.815 (0.780, 0.849) 0.003 52% 1304 0.04

Lifestyle model 0.754 (0.720, 0.789) 33% 1107 0.30

Combined model 0.856 (0.826, 0.886) <0.0001 61% 1299 0.006 86.44% (72.07, 100) <0.0001

aAUC p values are for genetic and combined models vs lifestyle model
b cNRI was calculated by adding the genetic information to lifestyle variables
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reclassification improvement for IGT (cNRI 8%; p=0.08;
Table 3).

Association of GRS and lifestyle factors The fg-GRS and
2hg-GRS were significantly associated with incident IFG and
incident IGT, respectively (p<0.005; ESM Tables 7c and d).
Physical activity (p<0.01) and the PCA diet score (p=0.02)
were significantly associated with incident IGT but not with
incident IFG (Fig. 2c, d).

Discussion

This study sought to determine the relative predictive accuracy
of genetic and lifestyle variables in incident obesity and type 2
diabetes. We found that, in most scenarios, models testing the
predictive accuracy of lifestyle and genetic risk factors yielded
comparable results. An exception was for incident IGT, where
lifestyle risk factors had greater predictive accuracy than the
SNPs associated with 2 h glucose. However, this may reflect
the limited information available on the genetics of 2 h glucose,
as only nine SNPs were associated with 2 h glucose. Combin-
ing genetic and lifestyle information yielded the highest predic-
tive accuracy. For example, in models focused on incident type
2 diabetes, the combination of lifestyle and genetic factors
yielded an AUC of 80%, with the lifestyle and genetic models
yielding AUCs of 75% and 74%, respectively. The equivalent
models for incident obesity yielded AUC values of 79% for the
combined model, and 68% and 73% for the lifestyle and genet-
ic models, respectively. The addition of genetic information to
the lifestyle model improved the correct classification of partic-
ipants with type 2 diabetes by 58% and with obesity by 64%.

Genome-wide association studies have made outstanding
progress in the identification of loci associated with cardio-
metabolic traits, increasing interest in the clinical translation
of this information. Identification of persons at higher or lower
risk for type 2 diabetes and obesity is important to effectively
target resources and interventions to reduce disease burden for
the patient and for society as a whole [30]. In this sense,
genetic information might be useful when seeking to predict
later disease in initially healthy people. However, many have
highlighted the poor predictive accuracy of models comprised
solely of genetic data for obesity and type 2 diabetes [26].
Although it is sometimes assumed lifestyle data are more
powerful in this context than genetic data, to our knowledge
no previous studies have undertaken a comprehensive head-
to-head assessment of established genetic and lifestyle risk
markers. Nevertheless, comparisons of clinical risk scores
with subsets of the genetic predictors reported here have been
described. For example, analyses conducted in the Framing-
ham Offspring Study [6] and in Nordic cohorts [31] showed
that 16–18 type 2 diabetes-associated SNPs did not consider-
ably improve the predictive accuracy of clinical risk factors.

Analyses focused on 20 type 2 diabetes-associated SNPs in
the Whitehall II study reached the same conclusion [5]. How-
ever, an extension of theWhitehall II study, which included 65
type 2 diabetes-associated SNPs, showed that the addition of
genetic information to the clinical risk factor model signifi-
cantly improved its predictive accuracy [4]. Previous analysis
conducted in the GLACIER cohort showed that adding genet-
ic information (16 fasting glucose and 15 type 2 diabetes-
associated loci) to a clinical risk factor model significantly
improved the predictive accuracy of incident IFG [32].

The comparison of genetic and lifestyle prediction models
is logical because each have independent properties that might
prove valuable for the prediction and prevention of type 2
diabetes. Lifestyle modification is expensive but has the po-
tential to substantially reduce diabetes risk in high-risk indi-
viduals [33], and thus presents logical intervention targets in
those at risk. Genotypes, however, are easily and inexpensive-
ly assessed and owing to their salient nature, could in principle
be used for risk prediction from the very earliest stages of life.
Importantly, quantitative disease phenotypes, such as blood
glucose or cholesterol, which are often used in clinical risk
scores, are outcomes of unhealthful lifestyles and unfavourable
genetic profiles; thus, these phenotypes are typically part of the
pathophysiology of disease rather than primordial risk factors.
Thus, comparing genetic and clinical prediction scores is less
logical in some respects.

An important limitation of the current study is that lifestyle
factors were assessed using questionnaires, which are prone to
error and response bias, undermining the accuracy with which
such data can be used to predict disease. However, even in
clinical practice, lifestyle is usually assessed with questions,
meaning that these are limitations that one will often face when
using lifestyle data to predict disease, regardless of the setting.
Another important consideration is that the loci were selected
from existing genetic association studies of cross-sectional da-
ta. While these associations are statistically robust, it is likely
that hitherto unknown loci exist that predict changes in quan-
titative measures of glucose and body composition, and that
some of the loci included here are uninformative because they
play no role in trait change. These factors, to some extent,
likely undermine the predictive ability of the genetic models.
Thus, as progress is made in both lifestyle and genetic epide-
miology, it is likely that the predictive accuracy of models will
improve. Finally, we did not model interactions between life-
style and genetic variables, as our study is underpowered for
this task. However, a previous study concluded that the inclu-
sion of gene–gene and gene–environment interaction data into
type 2 diabetes risk prediction models is unlikely to dramati-
cally improve the sensitivity or specificity of the models [34].

In conclusion, both lifestyle and genetic information yield
reasonably high predictive accuracies for type 2 diabetes and
obesity incidence in the GLACIER Study, and neither
outperformed the other. Adding genetic information tomodels
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containing lifestyle variables significantly improved the pre-
diction of incident type 2 diabetes and obesity. These findings
imply that genetic profiling might help the identification of
persons who are susceptible to developing obesity and type
2 diabetes in the future, and that the combination of both
genetic and lifestyle information offers high predictive accu-
racy for those diseases.
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