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Abstract: It has been demonstrated that the content of certain amino acids in eggs is not 

sufficient to fully support embryonic development. One possibility to supply the embryo 

with extra nutrients and energy is in ovo administration of nutrients. Nanoparticles of 

diamond are highly biocompatible non-toxic carbonic structures, and we hypothesized that 

bio-complexes of diamond nanoparticles with L-glutamine may affect molecular responses 

in breast muscle. The objective of the investigation was to evaluate the effect of diamond 

nanoparticle (ND) and L-glutamine (Gln) on expression of growth and differentiation 

factors of chicken embryo pectoral muscles. ND, Gln, and Gln/ND solutions (50 mg/L) 

were injected into fertilized broiler chicken eggs at the beginning of embryogenesis. 

Muscle tissue was dissected at day 20 of incubation and analysed for gene expression of 

FGF2, VEGF-A, and MyoD1. ND and especially Gln/ND up-regulated expression of genes 

related to muscle cell proliferation (FGF2) and differentiation (MyoD1). Furthermore, the 

ratio between FGF2 and MyoD1 was highest in the Gln/ND group. At the end of 

embryogenesis, Gln/ND enhanced both proliferation and differentiation of pectoral muscle 

cells and differentiation dominated over proliferation. These preliminary results suggest 

OPEN ACCESS 



Int. J. Mol. Sci. 2013, 14 23034 

 

that the bio-complex of glutamine and diamond nanoparticles may accelerate growth and 

maturation of muscle cells.  

Keywords: chicken embryo; myogenesis; diamond nanoparticles; L-glutamine;  

gene expression 

 

1. Introduction 

Modern broiler lines are intensively selected for a higher growth rate and increased size of muscles, 

including pectoral muscles [1]. This leads to an enhanced requirement of chicken embryos for energy 

and protein, and consequently the imbalance between requirement and reserves of nutrients stored 

within eggs may limit maximal (according to genotype) growth and development of chicken embryos. 

Some authors have indicated that concentrations of certain amino acids in the egg are not sufficient to 

fully support embryonic development [2,3]. Furthermore, because of limited carbohydrate storage in 

the eggs, amino acids are important substrates for glycogen synthesis, which may limit their 

availability for protein synthesis [4]. It has been demonstrated that one possibility to supply embryos 

with extra nutrients and energy could be in ovo nutrition [5,6]. Recently, it has been shown that in ovo 

administration of L-glutamine to chicken embryos increased mRNA and protein level of vascular 

endothelial growth factor (VEGF-A) [7], which is responsible for endothelial cell proliferation and 

stimulates vasculogenesis and angiogenesis [8], and affects pectoral muscles morphology [7].  

L-glutamine is a key amino acid involved in protein and carbohydrate metabolism. This 

multifunctional amino acid is a unique provider of amine groups for synthesis of other endogenous 

amino acids and it is a precursor of proline, which is necessary for formation of connective tissue. 

Glutamine is also a source of energy, via α-ketoglutarate participation in the Krebs cycle, being an 

alternative to glucose fuel for rapidly proliferating cells [9]. Furthermore, it is also involved in 

decreasing excess ammonia from amino acid catabolism, and is also a source of arginine, necessary for 

uric acid synthesis [10]. Thus, during energy deficiency, L-glutamine can be a consistent source of 

energy and/or support amino acid synthesis when synthesis of endogenous amino acids is not sufficient 

for very fast rate of cell proliferation. 

Growth and development of muscles are mainly programmed during embryogenesis. The total 

number of fibers in the pectoral muscle is determined in the prenatal and early post-hatch periods, and 

not only VEGF-A but also fibroblast growth factor 2 (FGF2) and differentiation factor (MyoD1) are 

involved in myogenesis. FGF2 is involved in the regulation of muscle growth by stimulation of 

myoblast and satellite cell proliferation and inhibition of their differentiation. Higher expression of 

FGF2 during hyperplasia increases the number of the muscle fibers [11]. Opposite to FGF2, MyoD1 

activates the process of muscle cell differentiation and inhibits proliferation. Furthermore, expression 

of myogenic factors increases when the number of myofibers is almost stable, reaching the highest 

expression on day three in the post-hatched chick [12]. 

Nutrient supplementation in ovo is more efficient when a compound is attached to nanoparticles 

(silver or gold), which deliver it inside the body tissues and cells [3,7,13]. L-glutamine, when 

administered to the chicken embryo as a bio-complex of L-glutamine attached to silver nanoparticles, 
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influenced expression of MyoD1 and also enlarged the pectoral muscles in 20-day-old chicken 

embryos [7]. However, gold and silver are heavy metals, which may be stored within muscles, 

possibly having toxic effects later in life.  

Nanoparticles of diamond, being an allotrope form of carbon with sp
3
 bonds, are highly 

biocompatible, have an extremely large surface area, high adsorption capacity [14], are easily taken up 

by cells [15], and are not toxic [14,16,17]. Moreover, they may produce bio-complexes with organic 

molecules like amino acids by self-organization [18]; hence the bio-complexes can be prepared by 

simple and fast procedures.  

We hypothesized that diamond nanoparticles can affect expression of genes related to embryonic 

muscle development. Furthermore, these effects can be fortified by administration of bio-complexes of 

L-glutamine with diamond nanoparticles when glutamine is transported and distributed by 

nanoparticles, and released into muscle tissue. Thus, the objective of the investigation was to evaluate 

the effects of diamond nanoparticles, glutamine, and bio-complexes of glutamine conjugated with 

diamond nanoparticles on the expression of VEGF-A, FGF2, and MyoD1. 

2. Results  

In ovo administration of nanoparticles of diamond (ND), L-glutamine (Gln), and the bio-complex of 

Gln with ND (Gln/ND), evaluated at day 20 of embryogenesis, did not influence the weight of the 

body, heart, liver, spleen, or pectoral muscle (Table 1). Comparison with the Hamburger-Hamilton 

normal stages of chicken embryo development [19] showed that all embryos had developed normally. 

Furthermore, macroscopic evaluation of embryos did not show any genetic or other defects in  

all embryos.  

Table 1. Average weight of chicken embryos, organs, and pectoral muscles in the control 

group and groups treated with nanoparticles of diamond (ND), L-glutamine (Gln), and  

bio-complex of Gln with ND (Gln/ND), n = 40/group.  

 Groups ANOVA 

Control ND Gln Gln/ND SEM p-Value 

Embryo [% e.w.] 78.7 77.0 76.2 76.4 4.183 NS 

Heart [% b.w.] 0.46 0.42 0.47 0.44 0.032 NS 

Liver [% b.w.] 1.42 1.42 1.36 1.40 0.181 NS 

Spleen [% b.w.] 4.03 3.81 3.37 3.81 0.674 NS 

Muscle [% b.w.] 0.84 0.97 0.80 0.88 0.011 NS 

e.w. = egg weight; b.w. = body weight; NS = non-significant, p < 0.05. 

Biochemical indices measured in the blood serum of chicken embryos were not significantly 

different, except the concentration of triglycerides, which was lower in the ND and Gln/ND groups 

compared to the control group (Table 2).  
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Table 2. Biochemical indices in the blood serum of 20-day-old chicken embryos in the 

control group and groups treated with nanoparticles of diamond (ND), L-glutamine (Gln), 

and bio-complex of Gln with ND (Gln/ND), n = 40/group.  

 Groups ANOVA 

Control ND Gln Gln/ND SEM p-Value 

Magnesium [mmol/L] 0.87 0.87 0.91 0.88 0.043 NS 

Calcium [mmol/L] 2.25 2.15 2.13 2.14 0.178 NS 

Phosphate [mmol/L] 1.31 1.29 1.42 1.40 0.082 NS 

Triglycerides [mmol/L] 1.04 A 0.65 B 0.83 AB 0.76 B 0.072 0.01 

Cholesterol [mmol/L] 11.23 9.35 10.48 9.28 1.554 NS 

Glucose [mmol/L] 14.9 14.5 13.5 14.0 0.651 NS 

Alkaline phosphatase [U/L] 6125 7078 7023 6917 970.74 NS 

Aspartate aminotransferase [U/L] 179 153 126 151 22.91 NS 

Alanine aminotransferase [U/L] 3.67 3.33 2.00 3.33 1.001 NS 

Lactate dehydrogenase [U/L] 1778 1564 1360 1612  346.64 NS 

NS = non-significant; A, B, AB—within rows, means bearing different superscripts differ significantly at p < 0.05. 

The oxygen consumption at day 10 of incubation was significantly higher in the Gln/ND group 

compared to the control and Gln groups (Table 3).  

Table 3. Oxygen consumption (O2) in the control group and groups treated with 

nanoparticles of diamond (ND), L-glutamine (Gln), and bio-complex of Gln with ND 

(Gln/ND), n = 40/group.  

 Groups ANOVA 

Control ND Gln Gln/ND SEM p-Value 

O2 [mL/h]       

10 ED 2.91 A 3.81 AB 3.02 A 4.21 B 0.473 0.02 

13 ED 10.9 10.3 10.3 11.8 1.132 NS 

16 ED 25.9 25.1 25.9 23.1 2.044 NS 

19 ED 32.8 31.4 31.5 30.4 2.491 NS 

NS = non-significant; ED = embryonic day; A, B, AB—within rows, means bearing different superscripts differ 

significantly at p < 0.05. 

Results of expression of VEGF-A, FGF2, and MyoD1 genes normalized to the β-actin (ACTB) gene 

on the mRNA level indicated that experimental treatments influenced mRNA synthesis within chicken 

embryo muscles (Table 4). VEGF-A expression was significantly higher in the Gln group than in the 

control and ND groups. Administration of ND to the embryos significantly increased expression of 

FGF2 compared to the control group. Moreover, the bio-complex Gln/ND elevated FGF2 expression 

almost twofold, compared to the control group. When MyoD1 was examined, the level of expression 

was significantly highest in embryos treated with Gln/ND but also significantly higher in ND than in 

the control group. The FGF2:MyoD1 ratio was the highest in the Gln group and the lowest in the 

Gln/ND group. At the protein level, expression of FGF2 was in line with the mRNA results, being 

significantly higher for ND and Gln/ND compared to Gln and the control groups. However, there were 

no significant differences for VEGF-A protein synthesis between measured groups (Table 4). 
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Table 4. Gene expression in the breast muscle tissue of chicken embryos in the control 

group and groups treated with nanoparticles of diamond (ND), L-glutamine (Gln), and  

bio-complex of Gln with ND (Gln/ND) at the mRNA and protein level. All results (mRNA 

and protein) were normalized to ACTB, n = 40/group.  

 Groups ANOVA 

Control ND Gln Gln/ND SEM p-Value 

mRNA level:       

VEGF-A/ACTB 1.24 A 1.17 A 1.61 B 1.38 AB 0.19 0.02 

FGF2/ACTB 0.74 A 0.90 B 0.85 AB 1.50 C 0.08 0.00 

MyoD1/ACTB 0.68 A 1.19 B 0.62 A 2.31 C 0.23 0.00 

FGF2:MyoD1 ratio 1:0.92 1:1.32 1:0.73 1:1.54   

protein level:       

VEGF-A/ACTB 1.24 1.17 1.03 0.05 0.15 NS 

FGF2/ACTB 0.73 A 0.87 B 0.75 A 0.93 B 0.06 0.00 

NS = non-significant; A, B, AB, C—within rows, means bearing different superscripts differ significantly at p < 0.05. 

3. Discussion 

In the present study experimental solutions were injected into the eggs at day one of incubation and 

their effects were measured 19 days later. Thus, we assumed that ND and Gln could cross the inner 

membrane and pass into the developing embryos. This assumption was based on our previous 

investigations showing that nanoparticles of diamond, platinum, silver, gold and bio-complexes of 

nanoparticles with amino acids and ATP, when injected at the beginning of incubation, are affecting 

molecular responses and muscle development measured at the end of embryogenesis [3,7,13,20–23].  

The results showed that the hydrocolloid of diamond nanoparticles administered at a concentration 

of 50 mg/L did not negatively affect chicken embryo growth and development. Furthermore, 

biochemical indices, measured in the blood serum, did not point to any negative changes within the 

organism. This result is in agreement with other in vitro and in vivo investigations of diamond 

nanoparticles [17,24–26]. However, negative effects of nanoparticles may occur later in the postnatal 

period, which could be a subject for further research. Embryo growth and development was also not 

affected by the administration of L-glutamine as well as L-glutamine conjugated with ND. Glutamine is 

a body component and, used at a low level, should be non-toxic [27].  

Although ND, Gln, and Gln/ND did not negatively influence health and growth, there were some 

effects on the metabolic rate, measured as oxygen consumption, at the beginning of incubation. O2 

consumption at day 10 of incubation significantly increased in embryos administered Gln/ND. The 

level of carbohydrate in the egg is very low (2%–3%) and during the first period of embryogenesis, the 

main energy source is protein [28]. Amino acids may be involved in oxygen-dependent catabolism, 

and moreover, the key compound providing the Krebs cycle with intermediates is L-glutamic acid, 

being a precursor of α-ketoglutarate. Thus, it might be suspected that the increased availability of  

L-glutamine within cell stimulates Krebs cycle turnover and in consequence increases O2 consumption. 

However, in the present experiment, only glutamine attached to diamond nanoparticles significantly 

increased O2 consumption of embryos. It has been shown that small nanoparticles of diamond, less 

than 50 nm, might penetrate cell membranes and enter inside the cells [29]. Consequently, we could 
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hypothesize that small (1–3 nm) diamond nanoparticles that are resistant to biodegradation might 

deliver L-glutamine inside the cells and even into the mitochondria where the Krebs cycle takes place.  

Considering measurements at a molecular level, the expression of VEGF-A at the mRNA level was 

significantly higher in the Gln group than in the control and ND groups, suggesting pro-angiogenic 

activities of glutamine [7]. However, when the bio-complex of Gln/ND was applied, the level of 

VEGF-A was not different from the control and ND groups, suggesting that ND may suppress Gln  

up-regulation of VEGF-A as previously demonstrated by Grodzik et al. [30]. These observations were 

not verified at the protein level probably because of the different half-life of mRNA (depending on the 

oxygen saturation: 4–8 h) [31] and protein VEGF (33.7 ± 13.7 min) [32].  

Interesting results were observed regarding FGF2 and MyoD1 gene expression. Gln did not 

increase expression of FGF2 and MyoD1 at the mRNA level. In contrast, ND significantly stimulated 

expression of FGF2 and MyoD1 compared to the control group. Studies of other authors revealed the 

acute responses to ND by increasing the expression of genes responding to oxidative stress and  

down-regulating expression of genes responding to toxic and genotoxic substances [33]. Furthermore, 

the activity of ND probably is non-specific and may result from bonding and transporting of signal 

molecules within the cell or by modifying the local environment. According to Kong et al. [34,35], 

diamond nanoparticles show affinity for protein adsorption, yielding very stable complexes of ND and 

protein, which may change protein signaling.  

Although, ND significantly increased mRNA level of FGF2 and MyoD1 compared to the control 

group, the effect of the bio-complex of Gln/ND was twofold higher than in the control group but also 

in the ND group, indicating strong abilities of Gln/ND to up-regulate the gene expression. 

Development of new myocytes depends on a balance between proliferation and differentiation [36]. 

Signaling of FGF2 is observed from early phases of embryogenesis, mainly being involved in cell 

proliferation [37–39]. However, the mechanism of increasing the muscle cell number is down-regulated 

at the end of embryogenesis, but is still active [40], even to a small degree after hatching [41]. 

Myogenic regulatory factors (including MyoD1) in the embryo muscle are responsible for 

determination and differentiation of cells, synthesis of myogenin, and suppressing cell proliferation. A 

high level of proliferation is characteristic for early embryogenesis, and, after reaching a certain 

number of cells, the process is slowed down and differentiation is initiated [42,43]. Results from the 

present experiment demonstrated that both “opposite” genes (FGF2 and MyoD1) were strongly 

activated by Gln/ND treatment, indicating the embryos genetic potential could be utilized to a higher 

extent, hence the embryos were able to elevate expression of mRNA (FGF2, MyoD1) and protein 

(FGF-2) when enriched with L-glutamine delivered by diamond nanoparticles. Moreover, the 

proportion of mRNA expression of FGF2 to MyoD1 was 1:0.92 in the control group, while in the 

Gln/ND group was 1:1.54. These results, although only based on expression of two genes, suggest that 

after application of Gln/ND, at the end of embryogenesis differentiation dominates over proliferation. 

It may be supposed that, at day 20, the pectoral muscle cells were not only activated but also better 

organized and more mature after administration of Gln/ND.  
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4. Experimental Section 

4.1. Experimental Design 

Broiler chicken eggs from 37-week-old Ross X Ross 308 hens were obtained from a commercial 

hatchery and stored in a refrigerator (10 °C) for 1–3 days before being placed in an incubator. The 

eggs were randomly divided into four groups (4 × 40 eggs): without injection (Control), injected with 

hydrocolloid of diamond nanoparticles (ND), injected with hydrocolloid of L-glutamine (Gln), injected 

with hydrocolloid of diamond nanoparticles with L-glutamine (Gln/ND). At day 1 of incubation, the 

eggs were weighed (60 ± 1.36 g) and injected according to the above treatment descriptions. The eggs 

were injected into the air sac with 0.3 mL of solution using sterile 27-gauge, 20-mm needles. 

Immediately after the injection, the hole was sealed with sterile tape and the eggs were placed in to the 

incubator. The eggs were incubated for 20 days under standard conditions (temperature 37.8 °C, 

humidity 55%, turned once per hour during the first 18 days, at a temperature of 37 °C and humidity 

60% from day 19).  

At day 20 of incubation, the development status of chicken embryos was compared with the 

development stages described by Hamburger and Hamilton [19]. Then, the embryos were weighed 

together with the yolk sack, decapitated, and blood samples from the carotid artery were taken and 

collected in Eppendorf tubes (Eppendorf AG, Hamburg, Germany). The samples were incubated at 

room temperature until clotting and then centrifuged for 10 min (14,500 × g). The resulting blood 

serum samples were stored at −30 °C until further analysis. The liver, heart, spleen, and breast muscle 

were collected and weighed. Samples of the breast muscle for mRNA expression analysis were 

collected in RNAlater
®
 ribonucleic acid (RNA) stabilization solution (Applied Biosystems/Ambion, 

Austin, TX, USA), while the samples for protein analysis were frozen at −80 °C.  

4.2. Solutions 

Diamond nanoparticles were obtained from Skyspring Nanomaterials (Houston, TX, USA). They 

were produced by the detonation method with size ranging from 3 to 4 nm. The ND were dispersed in 

ultra-pure water using sonication at a concentration of 100 mg/L. Pure L-glutamine (Merck, Darmstadt, 

Germany) was dissolved in ultra-pure water at a concentration of 100 mg/L. A solution of ND 

conjugated with L-glutamine was prepared by mixed stock solutions using sonication for 30 min at 30 °C 

in an ultrasonic bath. Concentration of L-glutamine, diamond nanoparticles, and Gln/ND complex in 

the solutions injected into the eggs was 50 mg/L. Zeta potential of hydrocolloids was examined with a 

Zetasizer Nano-ZS90 (Malvern Instruments Ltd., Malvern, UK) according to the Wierzbicki  

method [40]: the zeta potential for ND was −39.3 mV, Gln −10.4 mV, and Gln/ND −38.9 mV. The 

zeta potential of Gln/ND indicates a stable solution. The shape and bio-complex formation between 

experimental materials were visualized using a JEM-2000EX transmission electron microscope (JEOL 

Ltd., Tokyo, Japan) at 200 kV (Figure 1). The picture shows that after mixing solutions of ND and Gln 

the process of self-organization occurred and the bio-complex of Gln/ND was well established.  

  



Int. J. Mol. Sci. 2013, 14 23040 

 

Figure 1. Transmission electron microscopic images of nanoparticles of diamond (ND),  

L-glutamine (Gln), and bio-complex of Gln with ND (Gln/ND). 

 

4.3. Oxygen Consumption  

The oxygen consumption was measured at days 10, 13, 16, and 19 of incubation, as previously 

described [3]. The consumption of O2 was measured according to the paramagnetic principle in an 

open-air-circuit respiration unit (Micro-Oxymax calorimeter, Columbus Instruments, Columbus, OH, 

USA), equipped with four respiration chambers with a volume of 2000 cm
3
 each. Six eggs from each 

treatment were placed in each respiration chambers and measured for 3 h from 9:00 to 12:00, followed 

by another six eggs from the same treatment measured from 13:00 to 16:00. The temperature and 

relative humidity were kept similar to that in the incubator. After each measurement, the eggs were put 

back into the incubator. The measurements were standardized to a 50 g egg mass in order to account 

for differences in weight during each measurement. 

4.4. Biochemical Indices in the Blood Serum of Chicken 

Blood serum concentrations of magnesium, calcium, phosphorus, triglycerides, cholesterol in  

very-low-density lipoprotein, and glucose, and the activity of alkaline phosphatase, aspartate 

aminotransferase, alanine aminotransferase, and lactate dehydrogenase were measured by dry 

chemistry methods using Vitros DT 60 II equipment (Johnson & Johnson, New Brunswick, NJ, USA). 

4.5. Gene Expression at the mRNA Level 

Gene expression at the mRNA level was measured using the quantitative polymerase chain reaction 

method (qPCR). The tissue dissected from the breast muscle was homogenized in TRIzol
®

 Reagent 

(Life Technologies, Naerun, Denmark), and total RNA was extracted according to the manufacturer’s 

instructions. The RNA samples were purified using the SV Total RNA Isolation System (Promega 
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Corporation, Madison, WI, USA) and quantified using a NanoDrop ND 1000 spectrophotometer 

(Thermo Fisher Scientific, Waltham, MA, USA). Using reverse transcriptase with oligo (dT) 

(Promega) and random primers (TAG Copenhagen A/S, Copenhagen, Denmark), 2 mg of total RNA 

was reverse transcribed, after which real-time PCR was performed with complementary DNA and 

gene-specific primer pairs (TAG, Copenhagen A/S, Copenhagen, Denmark) mixed with 

LightCycler
®

480 SYBR Green I Master mix (Roche Applied Science, Penzberg, Germany) in a 

LightCycler
®

 480 real-time PCR system (Roche Applied Science, Penzberg, Germany). The following 

primers were used: FGF2 (forward: GGC ACT GAA ATG TGC AAC AG, reverse: TCC AGG TCC 

AGT TTT TGG TC), VEGF-A (forward: TGA GGG CCT AGA ATG TGT CC, reverse: TCT TTT 

GAC CCT TCC CCT TT), MyoD1 (forward: CGG CGG CTC AGC AAG GTC AAC, reverse: CGG 

CCC GCT GTA CTC CAT CAT G), and ACTB (forward: GTC CAC CTT CCA GCA GAT GT, 

reverse: ATA AAG CCA TGC CAA TCT CG). For each complementary DNA, the reaction was 

performed in triplicate. For analyses, relative quantification was applied with ACTB used as the 

housekeeping gene. Although, the 2Δ method has been applied, it was possible to use mixed pool of all 

the samples as a so-called calibrator/positive control, that value was exactly 1. 

4.6. Gene Expression at the Protein Level  

Frozen breast muscle tissue samples were homogenized on ice using RIPA lysis and extraction 

buffer (Thermo Fisher Scientific, Rockford, IL, USA) and a Polytron
®

 PT 2100 homogenizer 

(Kinematica AG, Lucerne, Switzerland). Homogenates were left on ice for 30 min and were 

subsequently centrifuged for 20 min (4 °C, 12,500 rpm). The supernatant was collected in chilled 

Eppendorf PCR tubes (Eppendorf AG). Supernatant samples were divided into two equal portions. 

One was used to evaluate the total protein concentration (Total Protein Kit, Micro Lowry, Peterson’s 

Modification; Sigma-Aldrich, St. Louis, MO, USA). The second portion was used to perform the 

enzyme-linked immunosorbent test, using an Enzymelinked Immunosorbent Assay Kit (for chicken 

FGF2, VEGF-A, and ACTB; Uscn Life Science Inc., Wuhan, China). Reagents and plates were 

prepared accordingly to the manufacturer’s standard procedure and incubated for 25 min under 

standard conditions. The degree of absorption was measured in a microplate reader Infinite
®
 M200 

PRO (Tecan Deutschland GmbH, Crailsheim, Germany) at a wavelength of 450 nm. All samples were 

measured in duplicate. 

4.7. Statistical Methods  

Analysis of the data was carried out using one-way analysis of variance (ANOVA) procedure of 

SAS 9.2 (SAS Windows, 2002–2008, version 9.2, SAS Institute Inc., Cary, NC, USA). The  

Tukey-Kramer honestly significant difference test was used to test separation of the means at a 

significance level of p < 0.05. The results are presented as means and standard errors for each variable. 

5. Conclusions 

We demonstrated that administration of ND, Gln, and Gln/ND at a concentration of 50 mg/L had no 

negative effects on embryo development. Expression of genes related to proliferation (FGF2) and 
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differentiation (MyoD1) was up-regulated by ND and especially Gln/ND. Furthermore, the ratio 

between FGF2 and MyoD1 was highest in the Gln/ND group, suggesting that at the end of 

embryogenesis, Gln/ND enhanced both proliferation and differentiation of pectoral muscle cells and 

that differentiation dominated over proliferation. These preliminary results suggest that the bio-complex 

of glutamine and diamond nanoparticles may accelerate growth and maturation of muscle cells.  
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