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Kallistatin was identified in human plasma as a tissue kallikrein-binding protein and a serine proteinase inhibitor. Kallistatin exerts
pleiotropic effects on angiogenesis, oxidative stress, inflammation, apoptosis, fibrosis, and tumor growth. Kallistatin levels are
markedly reduced in patients with coronary artery disease, sepsis, diabetic retinopathy, inflammatory bowel disease, pneumonia,
and cancer. Moreover, plasma kallistatin levels are positively associated with leukocyte telomere length in young African
Americans, indicating the involvement of kallistatin in aging. In addition, kallistatin treatment promotes vascular repair by
increasing the migration and function of endothelial progenitor cells (EPCs). Kallistatin via its heparin-binding site antagonizes
TNF-α-induced senescence and superoxide formation, while kallistatin’s active site is essential for inhibiting miR-34a synthesis,
thus elevating sirtuin 1 (SIRT1)/eNOS synthesis in EPCs. Kallistatin inhibits oxidative stress-induced cellular senescence by
upregulating Let-7g synthesis, leading to modulate Let-7g-mediated miR-34a-SIRT1-eNOS signaling pathway in human
endothelial cells. Exogenous kallistatin administration attenuates vascular injury and senescence in association with increased
SIRT1 and eNOS levels and reduced miR-34a synthesis and NADPH oxidase activity, as well as TNF-α and ICAM-1 expression
in the aortas of streptozotocin- (STZ-) induced diabetic mice. Conversely, endothelial-specific depletion of kallistatin aggravates
vascular senescence, oxidative stress, and inflammation, with further reduction of Let-7g, SIRT1, and eNOS and elevation of
miR-34a in mouse lung endothelial cells. Furthermore, systemic depletion of kallistatin exacerbates aortic injury, senescence,
NADPH oxidase activity, and inflammatory gene expression in STZ-induced diabetic mice. These findings indicate that
endogenous kallistatin displays a novel role in protection against vascular injury and senescence by inhibiting oxidative stress
and inflammation.

1. Introduction

Aging is a major risk factor for the development of many dis-
eases, including cardiovascular disease, stroke, and cancer [1–
3]. Endothelial aging is associated with increased oxidative
stress and inflammation and decreased endothelial nitric oxide
synthase (eNOS) activity and nitric oxide (NO) production [4,
5]. Excessive oxidative stress and chronic inflammation are
common causes of endothelial dysfunction in vascular disease
and aging [4]. Oxidative stress impairs the mobility and func-
tion of endothelial progenitor cells (EPCs) and enhances cellu-
lar senescence [6]. EPCs play an integral role in vascular repair
by the replenishment of damaged or senescent endothelial cells
[7]. Circulating EPC number and function are markedly
reduced in the aging population [8–11]. Kallistatin in human

plasma has been identified as a tissue kallikrein inhibitor and
a unique serine proteinase inhibitor [12–16]. Kallistatin exerts
multifactorial activities, including vasodilation and inhibition
of oxidative stress, inflammation, fibrosis, and apoptosis, pri-
marily by increasing eNOS levels and NO formation [17–22].
Moreover, kallistatin administration increases circulating
EPC number and reduces aortic oxidative stress, whereas kal-
listatin depletion augments endothelial cell loss, diminishes cir-
culating EPC levels, and exacerbates renal and cardiovascular
oxidative stress, inflammation, and organ remodeling in hyper-
tensive rats [23, 24]. Kallistatin protein treatment enhances the
migration and function of cultured human EPCs [23]. Further-
more, plasma kallistatin levels are positively associated with
leukocyte telomere length in young African Americans [25].
Telomere length is critically related to vascular cell senescence,
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and NO prevents telomere shortening by stimulating telome-
rase activity [26, 27]. Therefore, kallistatin via NO formation
may protect against vascular injury, senescence, and aging
through its antioxidant and anti-inflammatory actions.

2. Reduced Kallistatin Levels in Vascular
Disease and Metabolic Disorders

Kallistatin is mainly synthesized in the liver and distributed in
blood vessels and organs relevant to cardiovascular function
[14, 28–30]. Human kallistatin gene transcripts and protein
can be detected in the plasma, liver, heart, lung, kidney, pros-
tate gland, and aorta [14, 28, 29]. Kallistatin is localized in
endothelial and smooth muscle cells of large, medium, and
small blood vessels [30]. Kallistatin levels are reduced in a vari-
ety of human diseases, such as coronary artery disease, sepsis,
severe pneumonia, and active pulmonary tuberculosis, as well
as colon, prostate, and liver cancer [29, 31–35]. Moreover,
reduced plasma kallistatin levels are associated with elevated
obesity and cardiometabolic risk in apparently healthy African
Americans [36]. Likewise, kallistatin levels are lower in vitre-
ous fluids from patients with diabetic retinopathy and in the
retinas of streptozotocin- (STZ-) induced diabetic rats [37,
38]. However, elevated serum kallistatin has been observed
in patients with diabetic vascular complications [39].
Moreover, plasma kallistatin levels are markedly reduced in
animal models of hypertension, STZ-induced diabetes
mellitus, lipopolysaccharide- (LPS-) induced endotoxemia,
renal injury, and hepatocellular carcinoma [15, 18, 29, 40–
42]. Circulating kallistatin levels are negatively associated
with elevated thiobarbituric acid reactive substance (TBARS,
an indicator of oxidative stress) in diabetic rats [43]. In
addition, kallistatin levels are reduced in animal models and
humans with inflammatory disorders [29, 33, 44]. These
combined findings indicate that kallistatin levels are reduced
under excess oxidative stress and inflammation, implicating
the involvement of kallistatin in vascular damage and
metabolic disorders.

3. Kallistatin as an Effective Antioxidant and
Anti-Inflammatory Agent

Oxidative stress is the main cause of endothelial injury and
vascular disease states, and inflammation is known to increase

with aging [45, 46]. Kallistatin administration attenuates
hypertension and organ damage in conjunction with increased
eNOS and NO levels and reduced oxidative stress and inflam-
mation in animal models [18, 19, 22, 23]. Kallistatin adminis-
tration markedly reduces inflammatory responses in animal
models of arthritis, hypertension, myocardial ischemia, and
septic shock [17, 19, 21, 22, 47, 48]. Moreover, kallistatin over-
expression protects against diabetic retinopathy in db/dbmice
by multiple mechanisms, including antioxidant, anti-inflam-
matory, antifibrotic, and blood pressure-lowering effects [49].
NO has antioxidant properties by inhibiting NADPH oxidase
activity [50]. Kallistatin, via NO formation, reduces H2O2- or
angiotensin II-induced NADPH oxidase activity and reactive
oxygen species (ROS) formation in cultured endothelial cells,
renal tubular cells, and cardiomyocytes [18, 22, 47]. Kallistatin
inhibits vascular inflammation and apoptosis by stimulating
eNOS synthesis and activation and NO formation [22, 51],
as well as by preventing TNF-α- and high-mobility group
box protein 1- (HMGB1-) mediated inflammatory gene
expression [17, 21]. Thus, kallistatin appears to be a unique
antioxidant and anti-inflammatory agent.

4. Kallistatin Reduces Senescence in EPCs and
Endothelial Cells

EPCs are a subset of mononuclear cells derived from the bone
marrow that have the ability to differentiate into mature endo-
thelial cells [52]. Reduced EPC number is associated with
defective proliferation and mobility as well as accelerated apo-
ptosis and senescence [53]. Kallistatin depletion by neutraliz-
ing antibody injection augments glomerular endothelial cell
loss and diminishes circulating EPC numbers [23, 24]. Excess
oxidative stress or inflammation impairs the mobility and
function of EPCs and increases cellular senescence [54, 55].
Indeed, recombinant human kallistatin treatment significantly
inhibits TNF-α-induced EPC senescence by blocking oxidative
stress and reducing the senescent markers plasminogen activa-
tor inhibitor (PAI)-1, microRNA- (miR-) 21, and p16INK4a,
while increasing telomerase activity [56]. The miR-34a-
sirtuin 1 (SIRT1) axis is a key pathway in the aging process
[57]. Kallistatin via its active site inhibits prosenescent miR-
34a expression and antagonizes miR-34a-mediated inhibition
of the antioxidant enzymes SIRT1 and eNOS in EPCs [56].
As a deacetylase, SIRT1 stimulates antioxidant enzymes
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Figure 1: Kallistatin treatment on TNF-α and ICAM-1 synthesis in the aorta of STZ-induced diabetic mice. Values are expressed as mean
± SEM. n = 3. ∗P < 0 05 vs. the control group.
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including eNOS, catalase, and superoxide dismutase (SOD),
and eNOS through NO production stimulates SIRT1 enzy-
matic activity and inhibits NADPH oxidase activity [58, 59],
leading to the attenuation of oxidative stress. Similarly, kallis-
tatin exerts salutary effects in the setting of H2O2-induced
endothelial senescence, oxidative stress, and inflammation, as
indicated by reduced p16INK4a, PAI-1, and miR-34a synthesis,
NADPH oxidase activity/expression, vascular cell adhesion
molecule- (VCAM-) 1 and intercellular adhesion molecule-
(ICAM-) 1 expression, and increased telomerase activity in

endothelial cells [60]. Moreover, kallistatin via upregulating
the endoprotective miRNA Let-7g coordinates Let-7g-
modulated miR-34a-SIRT1-eNOS pathway and achieves
antisenescent, antioxidant, and anti-inflammatory actions
in endothelial cells [60]. Activation of SIRT1-eNOS signal-
ing results in increased catalase and NO levels, thus sup-
pressing oxidative vascular damage [60]. These combined
studies reveal the mechanisms of kallistatin in protection
against vascular injury by reducing cellular senescence in
EPCs and endothelial cells.
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Figure 2: Systemic depletion of kallistatin exacerbates aortic senescence. (a) Kallistatin depletion identified by genotyping with the expression
of loxp, wild-type (WT) and deletion (del) alleles. (b)Western blot analysis of mouse kallistatin expression in the kidney ofWTmice and KS−/
− mice. (c) Representative images and quantitative analysis of β-gal staining of aorta sections from WT, KS−/− mice with or without STZ
treatment. (d, e) PAI-1 and P16INK4a mRNA levels in mouse aorta. Values are expressed as mean± SEM. n = 3. ∗P < 0 05 vs. the WT
group, #P < 0 05 vs. the WT+ STZ group.
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5. Kallistatin Treatment Attenuates Vascular
Injury and Senescence in Animal Models

As age advances, the alteration of vascular structure and func-
tion is intensified, such as endothelial senescence/rarefaction
and increased oxidative stress and inflammation [61]. High
blood glucose-induced vascular complications are manifested
in diabetes [62]. The STZ-induced diabetic mouse is a popular
model for studying vascular injury and aging [63, 64]. Kallista-
tin protein treatment inhibits aortic senescence and superoxide
formation in association with reduced miR-34a synthesis and
increased SIRT1 and eNOS expression in STZ-induced
diabetic mice [56]. Moreover, kallistatin administration
significantly inhibits inflammatory gene expression, such as
TNF-α and ICAM-1, in the aorta of STZ-induced diabetic
mice (Figure 1), indicating the beneficial effect of kallistatin in
diabetes-associated vascular senescence, oxidative stress, and
inflammation. In addition to diabetes, kallistatin gene delivery
suppresses aortic superoxide formation and glomerular
capillary loss in salt-induced hypertensive rats [22]. Likewise,
kallistatin treatment attenuates cardiac dysfunction,
apoptosis, and inflammation in conjunction with decreased
oxidative stress and increased eNOS and NO levels in animal
models of hypertension and myocardial infarction and

ischemia-reperfusion injury [18, 19, 22, 47, 65]. Furthermore,
kallistatin gene delivery inhibits vascular leakage in mice
provoked by C5a and prevents arthritis-induced
inflammation in rats [21]. Importantly, kallistatin is capable
of improving oxidative stress-induced survival/aging at the
organismal level in Caenorhabditis elegans by regulating the
miR-34a-SIRT1 pathway [56]. Thus, as a potent antioxidant
and anti-inflammatory agent, kallistatin could have a
significant impact on vascular injury and senescence.

6. Endothelial-Specific Depletion of Kallistatin
Exacerbates Cellular Senescence, Oxidative
Stress, and Inflammation in Mouse
Endothelial Cells

Endothelial-specific kallistatin knockout (KSendo−/−) mice
were generated by Cre-loxp recombination for exploring
the role of endogenous kallistatin in diabetes-associated
endothelial senescence, oxidative stress, and inflammation
[60]. Mouse lung endothelial cells were isolated from 8-
week-old KSendo−/− and wild-type (WT) mice with CD31
immunoselection and cultured as described [66]. Kallistatin
deficiency in mouse lung endothelial cells displayed
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Figure 3: Systemic depletion of kallistatin exacerbates aortic oxidative stress and inflammation. (a) Representative images of superoxide
formation in aortas from WT, KS−/− mice with or without STZ treatment, as indicated by red fluorescence dye DHE. Collagen fibers
displayed green autofluorescence in the aorta. (b) NADPH oxidase in mouse aorta. (c) Representative western blot of SIRT1 and eNOS
expression in mouse aorta. (d&e) Inflammatory gene expression of TNF-α and ICAM-1 in mouse aorta. Values are expressed as mean
± SEM. n = 3. ∗P < 0 05 vs. WT group, #P < 0 05 vs. WT+ STZ group.
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aggravated senescence, oxidative stress, and inflammation, as
evidenced by increases in senescence-associated (SA) β-gal
activity, PAI-1/p16INK4a synthesis, superoxide formation,
and expression of the inflammatory genes ICAM-1,
VCAM-1, and interleukin- (IL-) 6 [60]. Kallistatin deficiency
in endothelial cells exacerbated oxidative stress-induced
senescence, superoxide formation, NADPH oxidase activity,
and inflammatory gene expression in endothelial cells, indi-
cating a protective role of endogenous kallistatin in main-
taining endothelial viability and function. Moreover,
endothelial-specific depletion of kallistatin elevated senes-
cence inducer miR-34a but reduced Let-7g and antioxidant
genes, including SIRT1, eNOS, and catalase [60]. These find-
ings support the notion that endogenous kallistatin acts as a
protective molecule in endothelial senescence by inhibiting
oxidative stress and inflammation.

7. Systemic Depletion of Kallistatin Aggregates
Vascular Injury, Senescence, Oxidative Stress,
and Inflammation in Diabetic Mice

Kallistatin depletion by neutralizing antibody injection
aggravates aortic oxidative stress, capillary loss, and car-
diovascular and renal remodeling, accompanied by ele-
vated oxidative stress and inflammation in hypertensive
rats [23, 24]. To further investigate the role of endogenous
kallistatin in vascular injury and senescence, we generated
systemic deficiency of kallistatin (KS−/−) mice by Cre-loxp
recombination technology [60]. Briefly, female homozy-
gous floxed KSfl/fl mice were crossed with male CAGCre+

mice for two generations to obtain CAGCre+KSfl/fl mice.

Tamoxifen was injected in these mice to induce Cre recombi-
nase activity. The genotyping result showed that only KS−/−

mice were positive for deletion allele expression and negative
for loxp and WT allele expression (Figure 2(a)). Kallistatin
depletion was further identified by reduced mouse kallistatin
protein levels in western blot analysis in the kidney of KS−/−

mice, compared withWTmice (Figure 2(b)). In contrast with
kallistatin’s efficacy in aortic senescence and oxidative stress
in STZ-induced diabetic mice [56], systemic depletion of
kallistatin worsened vascular damage and senescence, char-
acterized by aggravated aortic thickening, structural disar-
rangement, elevated SA-β-gal activity, and PAI-1 and
p16INK4a mRNA levels in the aorta of diabetic mice
(Figures 2(c)–2(e)). Kallistatin depletion also worsened aortic
collagen deposition, superoxide formation, and NADPH oxi-
dase activity and elevated inflammatory gene expression,
including TNF-α and ICAM-1 (Figures 3(a)–3(d)). More-
over, levels of the antioxidant proteins SIRT1 and eNOS were
significantly reduced in the aorta of KS−/− mice with STZ-
induced diabetes (Figure 3(e)), in contrast to the stimulatory
effect of kallistatin administration on SIRT1 and eNOS
expression [56]. These combined findings indicate that
endogenous kallistatin is a protective agent against vascular
injury and senescence.

8. Conclusion

These combined studies reveal a novel role of endogenous
kallistatin in protection against vascular injury and senes-
cence. Kallistatin reduces vascular injury and senescence by
promoting the migration and function of EPCs. Exogenous
kallistatin treatment attenuates aortic injury, senescence, oxi-
dative stress, and inflammation in animal models, while kal-
listatin deficiency in endothelial-specific or general knockout
mice exacerbates vascular injury, senescence, oxidative stress,
and inflammation in primarily cultured mouse endothelial
cells and diabetic mice. The signaling pathways by which kal-
listatin inhibits vascular senescence, oxidative stress, and
inflammation in EPCs and endothelial cells are shown in
Figure 4. Kallistatin is an endogenous protein with no cyto-
toxic effects. Therefore, kallistatin could potentially be used
as an effective therapeutic regimen for aging-associated
vascular disease in humans.
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