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Abstract

Single-cell RNA-sequencing (scRNA-seq) is being used extensively to measure the mRNA expression of individual cells from
deconstructed tissues, organs and even entire organisms to generate cell atlas references, leading to discoveries of novel cell types and
deeper insight into biological trajectories. These massive datasets are usually collected from many samples using different scRNA-
seq technology platforms, including the popular SMART-Seq2 (SS2) and 10X platforms. Inherent heterogeneities between platforms,
tissues and other batch effects make scRNA-seq data difficult to compare and integrate, especially in large-scale cell atlas efforts; yet,
accurate integration is essential for gaining deeper insights into cell biology. We present FIRM, a re-scaling algorithm which accounts
for the effects of cell type compositions, and achieve accurate integration of scRNA-seq datasets across multiple tissue types, platforms
and experimental batches. Compared with existing state-of-the-art integration methods, FIRM provides accurate mixing of shared
cell type identities and superior preservation of original structure without overcorrection, generating robust integrated datasets for
downstream exploration and analysis. FIRM is also a facile way to transfer cell type labels and annotations from one dataset to another,
making it a reliable and versatile tool for scRNA-seq analysis, especially for cell atlas data integration.
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Introduction
The advent of single-cell RNA-sequencing (scRNA-seq)
technology has enabled discovery of new cell types
[1], understanding of dynamic biological processes [2,
3] and spatial reconstruction of tissues [4]. Ongoing
advancement in scRNA-seq technology has led to vast
improvements in the scale and cost of the experi-
ments [5–8], providing unprecedented opportunities for
biological insight. Prominent examples include recent
efforts to generate cell atlases for whole organisms,
including human [9–11], mouse [12–15] and mouse lemur
[16]. These projects have generated scRNA-seq datasets
encompassing a comprehensive set of tissues from
the organism of interest, and to ensure both technical
sensitivity and scale in cell numbers profiled, many
of these atlases employ multiple different single-cell
profiling technology platforms, including SMART-seq2
(SS2) and 10X Chromium (10X). Integrating datasets from
different tissue types, samples and experiments, and

from different platforms, not only enables the transfer
of cell-type labels and annotations from one dataset to
another but also makes the atlases more comprehensive
and cohesive, which benefits downstream biological
analyses. However, complex technical variations and
heterogeneities that exist between datasets make
integration challenging.

Existing methods have been designed for the inte-
gration of scRNA-seq datasets across different samples,
experiments, species or types of measurement, but they
do not account for the integration of datasets across
multiple platforms. Specifically, SS2 and 10X are two
frequently used scRNA-seq platforms with their unique
strengths and weaknesses. SS2 is a plate-based full-
length approach with high transcriptome coverage per
cell and greater sensitivity [17], whereas the microfluidic
droplet-based method, 10X, generally has lower coverage
per cell and a higher dropout rate [18]. But 10X is
able to profile hundreds of thousands of cells per
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study with low per cell costs [8], which enables more
reliable detection of rare cell types, and the inclusion
of unique molecular identifiers (UMIs) in 10X allows
the removal of amplification bias and in turn enables
more accurate transcript abundance quantification [19].
Harmonizing datasets across multiple platforms for
integrative analysis can take advantage of the strengths
of each technology and achieve higher accuracy, better
comparison across datasets and studies, and higher
statistical power for downstream analysis. Furthermore,
integration enables use of 10X for discovering new
cell types, while taking advantage of the depth and
sensitivity of SS2 to investigate details such as transcript
isoforms, splicing [20–22] and allelic expression [21, 23].
This is particularly important for large-scale cell atlas
projects, which are intended to serve as robust and
comprehensive reference datasets for future mining. Due
to technical variations and characteristic differences
in SS2 and 10X datasets, not accounting for platform-
specific characteristics during integration can lead
to inaccuracies under different scenarios: sometimes
resulting in poor alignment of cells from the same
cell type; other times mixing cells from different cell
types inappropriately, giving rise to overcorrection.
An ideal method requires identification of the main
technical variation for integration and designing a
specific approach to address it.

Through comprehensive data exploration, we found
that the differences in depth of expression profiles
are the main technical variation between SS2 and 10X
datasets and the heterogeneity in cell type composition
accounts for the main problem preventing accurate inte-
gration. Datasets with different cell type compositions
have different directions of maximum variance chosen
by principal component analysis (PCA) and perform
differently after standard preprocessing procedures
including normalization and scaling. We have developed
a flexible algorithm, FIRM, to specifically account for
this composition effect, thereby harmonizing datasets
across multiple tissue types, platforms and experimental
batches. Authors of other methods such as Mutual
Nearest Neighbor (MNN) [24] and Scanorama [25] have
also observed the influence of cell type composition on
integration and tried to reduce this effect by modifying
the underlying expression data to align cells with high
similarity. However, using this approach, overcorrection
can occur, where close but not identical cell types may
be merged into the same cluster inappropriately, and
this is especially common in atlas projects when there
are often dataset-specific cell types. In contrast, FIRM
applies a re-scaling procedure based on subsampling for
both datasets in a unified workflow. Overcorrection can
be avoided with this approach and the original structure
for each dataset can be largely preserved, generating a
reliable input for downstream analysis. We applied FIRM
to integrate numerous scRNA-seq datasets generated
using different platforms and sample types. Compared
with existing state-of-the-art methods, FIRM not only

demonstrates superior integration accuracy but also
effectively avoids overcorrection in all tested datasets.

Materials and methods
Datasets
We adopted scRNA-seq datasets from three cell atlas
projects as the benchmark datasets in this study. We used
44 779 cells profiled using SS2 from 20 organs and 54 865
cells profiled using 10X from 12 mouse organs in Tabula
Muris [12], 12 329 cells profiled using SS2 from 20 organs
and tissues in 3 individuals and 231 752 cells profiled
using 10X from 25 organs and tissues in 4 individuals
from Tabula Microcebus [16], and 3987 cells profiled
using SS2 and 9744 cells profiled using 10X for Patient
1 from Human Lung Atlas [26]. For specific information
of the datasets, please see the ‘Data availability’ section.

Key problem
We found that differences in cell type composition is a
major factor preventing accurate integration of scRNA-
seq data generated by different technology platforms. To
specifically investigate the influence of cell type compo-
sition on integration outcomes, we consider a toy exam-
ple with two scenarios using hypothetical datasets in
which cells from the same type have similar expression
patterns across different platforms. In the first scenario,
the cell type proportions are consistent across different
platforms (SS2: cell type 1/cell type 2 = 50%/50%, 10x:
cell type 1/cell type 2 = 50%/50%); in the second sce-
nario, the cell type proportions are different (SS2: cell
type 1/cell type 2 = 50%/50%, 10x: cell type 1/cell type
2 = 80%/20%). We scaled the expression value for each
gene to unit variance for each dataset, which is the
standard preprocessing procedure applied to prevent the
dominance of highly expressed genes and is also nec-
essary to reduce the difference in sequencing depth for
dataset integration across platforms. In the first scenario,
cells belonging to the same cell type have similar gene
expression levels after scaling and are well mixed across
platforms (Figure 1A). However, in the second scenario,
the scaled expression values in SS2 and 10X datasets for
cells of the same type show large differences, resulting
in poor integration of these two datasets (Figure 1B). This
demonstrates that when cell-type composition is skewed
between the two datasets being integrated, it impacts
the integration outcome and can result in inaccurate cell
merging.

To verify our hypothesis using real scRNA-seq datasets,
we extracted the basal cells and stromal cells from the
Tabula Muris [12] mouse mammary gland scRNA-seq
data that was generated using SS2 and 10X, in which their
relative proportions across platforms are vastly different
(SS2: basal cells/stromal cells = 75%/25%; 10X: basal cell-
s/stromal cells = 35%/65%). After data preprocessing, the
expression levels for the same cell type marker (stromal
cells: Vim and Fn1; basal cells: Krt5 and Krt14) across plat-
forms are different in expression modes and dispersions
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Figure 1. Illustration of the influence of cell type composition for scRNA-seq datasets integration based on hypothetical datasets (A and B) and real
datasets (C and D). A and B, Gene expressions for cells in SS2 dataset, 10X dataset and integrated dataset after scaling to unit variance for each gene.
Each row represents one gene and each column represents one cell. The color gradient shows the gene expression levels in the cells. (A) In the first
scenario, the cell type compositions in the hypothetical datasets are the same across datasets (SS2: 50% cell type 1 and 50% cell type 2; 10X: 50% cell
type 1 and 50% cell type 2). (B) In the second scenario, the cell type compositions are different across datasets (SS2: 50% cell type 1 and 50% cell type
2; 10X: 80% cell type 1 and 20% cell type 2). (C and D) Illustration of the key problem for integration based on the mammary gland scRNA-seq datasets
generated by SS2 and 10X from Tabula Muris, withholding only the basal cells and stromal cells. (C) Marker expressions for basal cells and stromal cells
in SS2 dataset and 10X dataset after scaling to unit variance for each gene, where the cell type compositions are different across datasets (SS2: 75%
basal cells and 25% stromal cells; 10X: 35% basal cells and 50% stromal cells). (D) Uniform manifold approximation and projection (UMAP) visualization
and mixing metric for the integrated dataset with different cell type composition by subsampling basal cells in SS2 dataset.

(Figure 1C). We then integrated the dataset by concate-
nating the scaled SS2 and 10X expression data matrices,
and in visualizing the outcome we found that basal cells

across platforms did not correctly merge into one single
cluster (Figure 1D, left top panel). In order to confirm
whether this poor alignment is caused by the difference
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in cell type proportions, we performed subsampling to
gradually reduce the proportion of basal cells in SS2
dataset from 75 to 35%, to match that of the 10X dataset.
Then, we integrated the 10X dataset with these subsets of
SS2 dataset, and evaluated the performance. In addition
to the UMAP [27] plot for visualization (see discussions
of the variability of UMAP in Supplementary Document
and Supplementary Figures 1 and 2, see Supplementary
Data available online at https://academic.oup.com/bib),
we also calculated the mixing metric (Supplementary
Document) to measure how well the datasets mixed
after integration, where a lower score typically indicates
better mixing performance. We indeed observed that
more consistent cell type proportions gave rise to better
alignments (Figure 1D). Therefore, we concluded that the
effects of heterogeneity in cell type composition between
SS2 and 10X datasets account for one of the main tech-
nical variation preventing accurate integration of scRNA-
seq data across platforms.

Overview of FIRM method
FIRM harmonizes datasets while accounting for the dif-
ference in cell type composition. Here we use the inte-
gration of one SS2 and one 10X dataset to illustrate the
alignment workflow of FIRM. FIRM takes two scRNA-
seq expression matrices as the input, and performs the
following steps (see Supplementary Figure 3, see Supple-
mentary Data available online at https://academic.oup.
com/bib, for a graphical illustration): (i) for each dataset,
we conduct pre-processing procedure which includes
normalization, scaling and feature selection; (ii) then, we
perform dimension reduction for each dataset using PCA
and cluster cells based on the obtained low-dimensional
representations; (iii) in order to align clusters in 10X
dataset with clusters in SS2 dataset representing the
same cell types, we check the alignment via subsam-
pling to avoid overcorrection; (iv) for each pair of aligned
clusters, we subsample the cells within the cluster to
ensure that cell-type proportions are the same in SS2
and 10X datasets, and then based on these subsampled
cells, we calculate the standard deviation to perform
re-scaling on each of the full datasets; (v) finally, we
merge the scaled data to obtain the integrated dataset.
In our cluster alignment procedure, we used the clusters
in the 10X dataset as anchors to query clusters in the
SS2 dataset. For more general integration scenarios with
two datasets, we treat the one with more cells as the
anchor dataset. More technical details are presented in
the following sections.

Data preprocessing
For all scRNA-seq datasets, we performed normaliza-
tion, scaling and feature selection. More specifically, for
each dataset, we used the gene expression matrix X,
where Xij is the number of reads (for SS2) or unique
molecular identified (UMI, for 10X) for gene i that are
detected in cell j, and employed the log-normalization
which is the default normalization method in Seurat

[28]. Then, we scaled the expression values for each gene
across all cells in each dataset so that each gene has
unit variance. For each dataset, we implemented the
‘FindVariableFeatures’ function in Seurat to select top
4000 highly variable genes. For integrative analysis of
two datasets across platforms, we selected genes that are
highly variable in both datasets.

Cell clustering for each dataset
We first performed PCA for each dataset, where the
scaled data with the highly variable genes is used. The
number of PCs is a hyperparameter (see ‘Hyperparam-
eters in the algorithm’ for more details). Then for each
dataset, we clustered cells based on their PC scores using
the clustering approach in Seurat by the ‘FindClusters’
function. The resolution parameter which is used to
control the number of clusters is tuned in FIRM for better
integration (see ‘Resolution in clustering’ step).

Cluster alignment via subsampling
Next, the cell clusters that represent the same cell types
across the two datasets need to be aligned. The align-
ment was checked via subsampling to avoid overcorrec-
tion. First, we concatenated the scaled SS2 and 10X data
and performed PCA on the combined data to obtain the
low-dimensional representations for each cell. Next, we
attempt to align each 10X cluster with an SS2 cluster in
the following steps.

(1) For 10X cluster a, we considered SS2 cluster b, which
is among the five nearest SS2 clusters to 10X cluster
a. We calculated the distance between their centers: ‖
Za· − Zb·‖2, where Za· = 1

na

∑na
i=1 Za,i, Zb· = 1

nb

∑nb
i′=1 Zb,i′ are

the centers of 10X cluster a and SS2 cluster b, Za,i, Zb,i′
are the low-dimensional representations for cell i from
10X cluster a and cell i′ from SS2 cluster b, and na, nb are
the numbers of cells in 10X cluster a and SS2 cluster b,
respectively.

(2) We then calculated the 75% quantile among all
distances from the cells in SS2 cluster b to their cluster
center: Q0.75

(
‖ Zb,1−Zb·‖2, ‖ Zb,2−Zb·‖2, . . . , ‖ Zb,nb

−Zb·‖2
)
.

We check if the following criterion holds:

‖ Za· − Zb·‖2

< Q0.75

(
‖ Zb,1 − Zb·‖2, ‖ Zb,2 − Zb·‖2, . . . , ‖ Zb,nb

− Zb·‖2
)

.

(3) We considered the nearest SS2 cluster, among the
five nearest SS2 clusters to 10X cluster a, that also satis-
fied the criterion in step (2) to be aligned with 10X cluster
a.

However, because of the difference in its abundances
in 10X and SS2 data, even the same cell type may not be
aligned after steps (1–3) described above. To address this
issue, for the 10X clusters which had not been aligned, we
further performed subsampling to adjust the proportions
of the 10X and SS2 clusters being considered and checked
the alignment. For example, when we consider the 10X
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cluster a and the SS2 cluster b, if the proportion of 10X
cluster a in 10X dataset is larger than the proportion of
SS2 cluster b in SS2 dataset, i.e. #of cells in 10X cluster a

#of cells in 10X dataset >
#of cells in SS2 cluster b
#of cells in SS2 dataset , we subsampled the cells in 10X

cluster a to obtain a subset, so that the proportion
of 10X cluster a in this subset was the same with
the proportion of SS2 cluster b in SS2 dataset, i.e.
#of cells in 10X cluster a in the subset

#of cells in 10X subset = #of cells in SS2 cluster b
#of cells in SS2 dataset . We

then calculated the standard deviation of each gene
across cells in this subset based on the original scaled
expression values, i.e. sj = sd(Yij), i ∈ 10X subset, where
Yij is the scaled data after the preprocessing procedure
described in the ‘Data preprocessing’ step. We performed
re-scaling for cells in the whole 10X dataset using this

standard deviation, i.e.
Yij
sj

, i ∈ 10X dataset. Based on the

re-scaled data, we checked the alignment again using
steps (1–3) described above. If one SS2 cluster is aligned
with more than one 10X clusters, we merged the 10X
clusters which are aligned with the same SS2 cluster and
then considered them as a whole.

Re-scaling via subsampling and generation of
integrated data
To calculate the scaling factor for effective re-scaling, we
performed subsampling for cells in the aligned SS2 and
10X clusters to obtain the SS2 subset and the 10X subset
which contain the same types of cells and have the
same cell-type proportions as well. Based on each of the
subsampled datasets, we computed the standard devi-
ations for each gene across cells on the original scaled
expression values, i.e. sSS2 j = sd(Yij), i ∈ SS2 subset, and
s10X j = sd(Yij), i ∈ 10X subset, where Yij is the scaled
data after the preprocessing procedure described in the
‘Data preprocessing’ step. We used the calculated stan-
dard deviations to re-scale the gene expression values

for cells in the whole SS2 and 10X datasets. i.e.
Yij

sSS2 j
, i ∈

SS2 dataset and
Yij

s10X j
, i ∈ 10X dataset. We concatenated

the re-scaled data directly to obtain the integrated data.

Resolution in clustering
Cluster alignment is the key for effective integration. To
obtain the best pair of resolution parameters for clus-
tering, the default option is to search through pairs in
the range of [0.1, 2] × [0.1, 2]. Users can also set other
customized ranges. For each pair of resolution parame-
ters, we aligned clusters between datasets and generated
the integrated data following the (iii–v) steps described
in the ‘Overview of FIRM method’ section. Based on the
integrated datasets generated using every pair of resolu-
tion parameter, we calculated the corresponding mixing
metric. As our method does not suffer from overcorrec-
tion, smaller mixing metric indicates better integration.
Therefore, we chose the pair of resolution parameters
that yields the smallest mixing metric and output the
corresponding integrated data. This procedure is fully
automatic and naturally allows parallelization.

Hyperparameters in the algorithm
The number of PCs is the only hyperparameter that needs
to be specified in the FIRM algorithm. The number of PCs
is chosen according to its relationship with the variance
explained, and needs to be the same for datasets in inte-
grative analysis. For the scRNA-seq datasets analyzed in
this paper, we chose the number of PCs as the larger num-
ber in the original analyses that were performed sepa-
rately on SS2 and 10X datasets [12, 16, 26]. We found that
the performance of FIRM is insensitive to the number of
PCs (Supplementary Figures 4 and 5, see Supplementary
Data available online at https://academic.oup.com/bib).

The resolution parameters for clustering are tuned
automatically in the FIRM algorithm as described in the
‘Resolution in clustering’ step. Other parameters in the
algorithm are all fixed. Other parameters in the algo-
rithm are all fixed. For example, the number of near-
est neighbors in the clustering method was set as 20,
which is the default value in the ‘FindNeighbors’ func-
tion in Seurat. FIRM is also insensitive to this parame-
ter (Supplementary Figures 6 and 7, see Supplementary
Data available online at https://academic.oup.com/bib).

Baseline model
We considered the special case without the re-scaling
procedure to be the baseline model. We directly concate-
nated the scaled expression matrix for the overlapped
highly variable genes after data processing to obtain the
integrated dataset. If the mixing metric of the integrated
dataset after re-scaling does not decrease, we chose the
baseline model.

Label transfer and match scores
The integration of datasets enables efficient label trans-
fer between datasets. Suppose we want to use the anno-
tations for cells in the 10X dataset to annotate cells in
the SS2 dataset. For each SS2 cell, we found its 10 nearest
10X cells in the integrated dataset and summarized the
cell types they belong to. We chose the cell type with the
highest frequency to annotate the SS2 cell.

In case that some cell types do not exist in the 10X
dataset, we defined the match score to measure whether
the cell in SS2 is present in 10X data. For each SS2 cell, we
divided its averaged distance to its 10 nearest neighbors
in the SS2 dataset by that in the 10X dataset. Lower score
means less likely to be present in 10X data.

Integration of multiple datasets
When we have more than two datasets, e.g. three
datasets to be integrated, our strategy is to first integrate
two of them and then integrate the result with the third
one. Since datasets are harmonized after integration,
the integrated data can be considered as one dataset.
Regarding the order of integration, we suggest integrating
datasets with high similarity first. This is because it is
likely that more clusters are aligned, which will lead
to better calculation of the scaling factor and better
utilization of the shared information across datasets.
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To measure the similarity between datasets, we compute
the number of overlapped highly variable genes between
two datasets and choose the pair with more overlapped
highly variable genes to integrate first.

Results
FIRM provides accurate mixing of shared cell
type identities and preserves local structure for
each dataset
We examined the performance for the integration of
SS2 and 10X scRNA-seq datasets generated from the
same tissue type where most cell type identities are
shared across platforms. We applied FIRM to numerous
paired SS2 and 10X scRNA-seq datasets and compared
with existing state-of-the-art methods, including Seurat
[28], Harmony [29], BBKNN [30], BUSseq [31], LIGER [32],
Scanorama [25], MNN [24], scVI [33] and ZINB-WaVE [34].
The datasets include 13 pairs of SS2 and 10X scRNA-seq
datasets from Tabula Muris [12], 25 pairs from Tabula
Microcebus [16] and one pair in Human Lung Cell Atlas
[26]. The integration performance is evaluated by four
metrics: mixing metric, local structure metric, average
silhouette width (ASW) and adjusted rand index (ARI)
(Supplementary Document).

For all datasets tested, FIRM outperforms or is compa-
rable to all other bench-marked methods for integration
of SS2 and 10X datasets with relatively low mixing metric,
and high local structure metric, including ARI and ASW
(Figure 2 and Supplementary Figures 8–38, see Supple-
mentary Data available online at https://academic.oup.
com/bib). FIRM not only provides accurate mixing of
shared cell type identities but also achieves superior
preservation of the local structure for each dataset,
which is one of the greatest advantages of FIRM
over other methods. This is because FIRM harmo-
nizes datasets through a re-scaling procedure with-
out smoothing the expression of similar cell types
across datasets towards each other, so that the relative
expression patterns across cells within each dataset
can be largely preserved. For almost all (35 out of
39) the integrated datasets, FIRM achieved the high-
est local structure metric compared with all other
methods (Supplementary Figure 38, see Supplementary
Data available online at https://academic.oup.com/bib),
indicating minimal distortion of the between-cell-type
relationships within each dataset, thus providing more
credible integrated data for downstream analysis. For
other benchmarked methods, different situations arose
indicating non-ideal integration, including poor mixing
of shared cell types, inappropriate mixing of different
cell types and weak preservation of the original dataset
structure.

Specifically, scVI and ZINB-WaVE are the two methods
with the highest mixing metric, and this inadequate mix-
ing of cell types can be seen in UMAP plots even by visual
inspection (Figure 2, Supplementary Figures 8–38 and
Supplementary Table, see Supplementary Data available

online at https://academic.oup.com/bib). BBKNN, BUSseq
and Scanorama are also shown to have poor mixing per-
formance in some cases (Supplementary Table; BBKNN:
Figure 2, Supplementary Figures 9, 10, 20, 24 and 37;
BUSseq: Supplementary Figures 9, 12, 23, 24, 28 and 37;
Scanorama: Supplementary Figures 14, 24 and 34, see
Supplementary Data available online at https://academic.
oup.com/bib).

LIGER overcorrected the datasets for some cases
resulting in inappropriate mixing of different cell
types, which is reflected by low ARIs. For example,
LIGER incorrectly merged the B cells, macrophages
and T cells in the Tabula Muris mammary gland
dataset (Figure 2; other examples are shown in Sup-
plementary Table and Supplementary Figures 30, 33, 36
and 37, see Supplementary Data available online
at https://academic.oup.com/bib). Harmony also has
the phenomenon of overcorrection for some cases
(Supplementary Table and Supplementary Figures 8, 20
and 34, see Supplementary Data available online at
https://academic.oup.com/bib).

For the preservation of original structure for each
dataset, BUSseq was shown to have low local structure
metrics (Supplementary Figures 8–37, see Supplemen-
tary Data available online at https://academic.oup.com/
bib), and is prone to separate the same type of cells, or
different types of cells with a gradual transition, into
discrete clusters. A few examples include the separation
of the mesenchymal cells in the Tabula Muris trachea
dataset (Supplementary Figure 15, see Supplementary
Data available online at https://academic.oup.com/bib);
the pachytene spermatocytes, round spermatids, elon-
gating spermatids and elongated spermatids in the
Tabula Microcebus testes dataset from lemur 4
(Supplementary Figure 35, see Supplementary Data
available online at https://academic.oup.com/bib); other
examples are shown in Supplementary Table and
Supplementary Figures 13, 16, 20 and 27 (see Supple-
mentary Data available online at https://academic.oup.
com/bib). MNN is prone to separate cells into small
clusters and showed low ARIs (Supplementary Table
and Supplementary Figures 16–19 and 32, see Supple-
mentary Data available online at https://academic.oup.
com/bib). Harmony also suffers from inappropriate
separation (Supplementary Table and
Supplementary Figures 15, 16, 18, 21, 29 and 31, see Sup-
plementary Data available online at https://academic.
oup.com/bib). BBKNN is weak in separation of different
cell types resulting in the lowest ARI in most cases (32
out of 39), including the mammary gland data in Tabula
Muris (Figure 2).

Harmony and Seurat are two popular methods
with relatively better integration performance over
other benchmarked methods. Compared with Harmony,
FIRM shows its superiority in integration by achieving
the lower mixing metric and higher local structure
metric (Supplementary Figure 39, see Supplementary
Data available online at https://academic.oup.com/bib).
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Figure 2. Comparison of integration methods based on the mammary gland scRNA-seq datasets generated by SS2 and 10X from Tabula Muris. (A and
B) UMAP plots of the integrated scRNA-seq dataset colored by platform (A) and by cell type (B) using FIRM, Seurat, BBKNN, BUSseq, LIGER, scVI and
ZINB-WaVE. The red circles highlight the problems of the integration results given by these methods. (C) Metrics for evaluating performance across the
10 methods on four properties: cell mixing across platforms (Mixing metric), the preservation of within-dataset local structure (Local structure metric),
average silhouette width of annotated subpopulations (ASW) and adjusted rand index (ARI). The color (from light to dark) represents the performance
(from the best to the worst). The dashed lines were set at the values for FIRM as reference lines.
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Figure 3. Comparison of integration methods for scRNA-seq datasets from two tissues in Tabula Microcebus (lemur 2) generated by different platforms
(Kidney: SS2, Brain cortex: 10X). For clear illustration, we withheld several cell types in each of the dataset to make the cell types non-overlapped
across datasets. (A and B) UMAP plots of scRNA-seq datasets colored by platform (A) and by cell type (B) after integration using FIRM, Seurat, Harmony,
BBKNN, BUSseq, LIGER, Scanorama and MNN. The labels for cell types in Brain cortex (10X) are colored by red. (C) Metrics for evaluating performance
across the eight methods on four properties: cell mixing across platforms (Mixing metric), the preservation of within-dataset local structure (Local
structure metric), average silhouette width of annotated subpopulations (ASW) and adjusted rand index (ARI). The color (from light to dark) represents
the performance (from the best to the worst). The dashed lines were set at the values for FIRM as reference lines.

Seurat is the method with the closest performance
to FIRM (Supplementary Figure 39, see Supplementary
Data available online at https://academic.oup.com/bib).
Seurat and FIRM have comparable performance in terms
of ASW, but FIRM is superior in terms of ARI. Although
Seurat usually has lower mixing metrics, FIRM does not
show any obvious deficiency for mixing based on the
UMAP plots of the integrated dataset. Considering the
trade-off between the mixing metric and local structure

metric, FIRM’s higher local structure metric suggests that
it is more robust than Seurat in avoiding overcorrection.

FIRM is robust against overcorrection
Cell atlas projects usually consist of scRNA-seq datasets
for a comprehensive set of tissues, often spanning all
the organs of an organism. The composition of cell types
is largely different across tissues, while some cell types
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Figure 4. The FIRM integration for the kidney datasets across individuals and platforms in Tabula Microcebus. We subset the scRNA-seq datasets to
keep the cells belonging to the epithelial compartment. (A and B) UMAP plots colored by cell type (A) and by individual (B) after integration using FIRM.
(C) The expression levels of three marker genes (UPK1A, FOXA1 and UPK3A) for urothelial cells.

such as immune cells, fat cells and cells of the vascu-
lature are shared between multiple tissues or organs;
cross comparison of different cell types and joint analysis
of shared cell types across tissues are both valuable
and informative. As such, it is essential that integration
approaches not only accurately integrate datasets from
multiple experiments or technology platforms, but also
across different tissues.

Other integration methods, such as Seurat, LIGER and
MNN, directly adjust the data matrices so that neighbor-
ing cells across different datasets have similar adjusted
expression profiles, but this process of adjustment is

vulnerable to overcorrection because the cells that are
close in distance across datasets may not always be
biologically similar. Different from other methods that
project reference dataset onto query dataset based
on neighboring cells across datasets, FIRM harmo-
nizes datasets by incorporating scaling factors that
account for differences in cell type compositions
across datasets. As a result, FIRM can avoid overcor-
rection even if there are no shared cell types across
the datasets being integrated, which is particularly
important when integrating across multiple tissue
types.
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Figure 5. Comparison of FIRM, Seurat, Harmony, BBKNN and Scanorama for integration of all SS2 datasets across individuals and tissues in Tabula
Microcebus. (A–C) UMAP plots of scRNA-seq datasets colored by compartment (A), by tissue (B) and by individual (C) after integration using FIRM,
Seurat, Harmony, BBKNN and Scanorama.

To evaluate whether the data integration methods are
prone to overcorrection, we use the benchmark methods
to integrate two datasets that had shared cell types

manually removed, such that they have no cell types
in common: SS2 dataset of kidney, and 10X dataset of
brain cortex of lemur 2 in Tabula Microcebus [16]. We
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Figure 6. The performance of FIRM for integrating the whole SS2 dataset and 10X dataset of the entire organism in Tabula Muris. (A and B) UMAP plots
of scRNA-seq datasets colored by platform (A) and by tissue (B) after integration using FIRM.

applied FIRM, Seurat, Harmony, BBKNN, BUSseq, LIGER,
Scanorama and MNN to integrate these two datasets
(Figure 3); we excluded scVI and ZINB-WaVE from this
assessment as these two methods did not work well
even when there were shared cell types across datasets.
Of all the methods assessed, FIRM and Harmony per-
fectly separated the cell types from each dataset and
achieved high mixing metric. Other methods all suffered
from overcorrection to varying degrees. Severe overcor-
rection was observed in Seurat, BUSseq, LIGER and MNN,
where neurons and T cells were incorrectly mixed. These
other methods also inappropriately clustered different
cell types together, resulting in low ARIs. The advantage
of local structure preservation, one of the key strengths
of the FIRM approach, is especially beneficial for integra-
tion across different tissues.

FIRM can transfer cell type identity labels across
datasets and provide better clustering
By integrating SS2 and 10X datasets, we can take advan-
tage of the strengths of each technology and improve
data robustness. 10X datasets have higher throughput
and usually more cell types are captured; in the SS2
dataset, some cell types may contain very few cells
and fail to be identified if analyzed alone. Based on the
SS2-10X integrated dataset, we can transfer information
between datasets, such as cell type annotations and iden-
tity labels. One way to effectively label cell populations in
SS2 data is by transferring the manually annotated 10X
cell type identity labels to SS2 cells by detecting nearest
neighbors for each SS2 cell in 10X dataset (Materials

and methods). For example, in the Tabula Microcebus
[16] testes SS2 dataset, we are not able to distinctly
identify spermatogonia as there are only a few of them.
By incorporating information from the 10X dataset, we
identified three spermatogonia in the SS2 dataset that
have marker expression patterns (KIT, SOHLH1, PHOXF1,
ZBTB16) consistent with spermatogonia in the 10X
dataset (Supplementary Figure 40, see Supplementary
Data available online at https://academic.oup.com/bib).
We also noted that some marker genes (OVOL1, SPO11,
TEX101) show clearer patterns in the SS2 dataset
compared with the 10X dataset, indicating the benefit of
detecting low abundance transcripts using SS2. For cases
where the SS2 dataset contains more cell types than 10X
dataset, we designed match scores such that cells with
low scores can be labeled as ‘unknown’ (Materials and
methods).

FIRM can be applied to align more than two datasets,
such as when harmonizing datasets generated from mul-
tiple individuals and platforms for one specific tissue
(Materials and methods). After accurate harmonization
of multiple datasets, performing clustering on the inte-
grated dataset can provide more reliable and consis-
tent cluster labels for each dataset; taking advantage
of the enhanced statistical power of the larger inte-
grated dataset enables identification of rare cell types
that may be missed in separated datasets. For exam-
ple, kidney urothelial cells in the Tabula Microcebus
[16] are extremely rare in all the individual datasets:
none from lemur 1, 4 cells from lemur 2, 4 cells from
lemur 3 and 7 cells from lemur 4. They were not readily
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identifiable when the kidney datasets were individually
annotated. After using FIRM to integrate all the kidney
datasets across individuals and platforms, a small clus-
ter of urothelial cells could then be detected with the
specific markers (UPK1A, FOXA1 and UPK3A) expressed
(Figure 4).

FIRM accurately constructs cell atlases for entire
organisms
FIRM’s greatest strength is its accuracy, which is essential
when creating reference datasets such as cell atlases.
Since different tissue types can naturally vary greatly in
their cell-type composition, unbalanced cell type com-
positions are a common feature of cell atlas datasets. To
address this pain point, FIRM’s algorithm prioritizes the
accuracy of integration for such unbalanced datasets by
the way it calculates alignments between cell clusters
from different datasets. As a demonstration of this, we
applied FIRM to integrate all the SS2 datasets from three
individuals and 20 tissues in the Tabula Microcebus [16]
(Supplementary document). We compared the results
of FIRM with that of four other popular methods for
multiple datasets integration: Seurat, Harmony, BBKNN
and Scanorama (Figure 5). In this study, 29 SS2 datasets
across individuals or tissues, which contain a total of
12,329 cells, were integrated. The integrated visualiza-
tions revealed that FIRM can provide accurate mixing of
the shared cell types across both tissues and individu-
als, while preserving clear separation of various tissue
compartments. For example, the germ cells which only
exist in the testes dataset in this study can be viewed
as a ‘sanity check’. FIRM separated the germ cells from
other types of cells while retaining its gradient structure
from the original dataset. In contrast, Seurat suffered
from severe overcorrection in merging cells from differ-
ent compartments. Overcorrection also occurred when
applying Harmony: a few stromal cells were mixed into
the germ cells; some epithelial cells were mixed into
megakaryocyte-erythroid cells; some hematopoietic cells
were mixed into endothelial cells; and some myeloid
cells were mixed into the lymphoid cells. For BBKNN, the
tissue compartments were close to each other, including
the germ cells. Although Scanorama did not merge germ
cells with other cells, the endothelial cells, epithelial cells
and stromal cells could not be distinguished from one
another in the integrated result. Finally, Seurat faces
difficulties integrating multiple large datasets with very
small datasets, such as those with fewer than 100 cells,
because the numbers of neighbors selected for find-
ing anchors are the same across datasets; therefore, for
small datasets, only a small number of neighbors can
be chosen, which then greatly affects the effectiveness
of integrating other large datasets. The FIRM-integrated
data can contain the harmonized expression for all genes
when taking the expression values for all genes as the
input. However, other methods only make use of a subset
of genes, for example the overlapped genes or highly
variable genes between datasets. Using a subset of genes

for integration means that the integrated result either
only contains this subset of genes or is a low-dimensional
representation, which limits the applicability of down-
stream analyses that require full gene expression pro-
files—including the analysis of differential gene expres-
sion between different clusters. This demonstration illus-
trates FIRM’s capability in performing whole organism
atlas integration with superior accuracy.

Alternatively, to further improve efficiency for model
organisms such as mouse, where the individual- and
organ-specific effects are often negligible, we can
directly integrate across-technology data while treating
within-technology data as harmonized. As an example,
we integrated the Tabula Muris data [12], a multi-
tissue dataset for Mus musculus, to construct a com-
prehensive atlas. For this case, we considered all the
44 779 cells profiled using SS2 for all tissues as one
dataset, and all the 54 865 cells profiled using 10X
for all tissues as the other dataset. We used FIRM to
directly integrate these two large datasets (Figure 6
and Supplementary Figure 41, see Supplementary Data
available online at https://academic.oup.com/bib). For
the shared cell populations across platforms, FIRM shows
extensive mixing performance. The tissue-specific cells
in that were found only in SS2 data remained correctly
unmixed after integration: for example, microglial cells
in brain myeloid; oligodendrocytes in brain non-myeloid;
cells in large intestine; keratinocyte stem cells in skin.

The FIRM algorithm naturally allows parallelization,
because it gradually changes the number of clus-
ters in SS2 and 10X datasets and searches for the
combination that gives the best cluster alignment
(MATERIALS AND METHODS). Therefore, the compu-
tational time of FIRM can be greatly shortened by
using more CPU cores. We evaluated the computational
time for the SS2-10X integration of Tabula Muris
[12] using FIRM and other benchmarked methods
(Supplementary Figure 42, see Supplementary Data
available online at https://academic.oup.com/bib). The
time of FIRM varies from 20 s to half an hour for different
tissues with the number of cells ranging from 934 to
12 598 using 30 cores. The time taken to integrate 44 779
cells profiled using SS2 with 54 865 cells profiled using
10X for all tissues in Tabula Muris [12] using FIRM took
about 20 min to an hour, varying based on the number
of clusters in the 10X dataset.

Discussion
FIRM is an accurate and effective method for integrating
scRNA-seq datasets across multiple tissue types, exper-
iments and platforms. For downstream analysis to be
biologically meaningful, it is important to minimize tech-
nical variations between datasets such as batch effects
while preserving biological variations of interest. Gen-
erally, it is very difficult to distinguish technical from
biological variation, and overcorrection can occur when
attempting to remove technical variation, resulting in



FIRM | 13

loss of critical biological variations. The best way to avoid
overcorrection is to design methods that target mini-
mization of specific types of confounding variation. FIRM
successfully does so by specifically accounting for the
heterogeneity in cell type composition between datasets
which is a hurdle in efficient data integration. FIRM
not only adjusts for the effect of cell type composi-
tion but also preserve the biological differences; whereas
other existing integration methods that use a general
approach to account for variation between datasets do
so by aligning cells with high similarity, and as such
they are prone to inadvertently removing the biological
differences across individuals as well. In contrast with
existing methods, FIRM requires no assumption about
shared cell populations between datasets and is there-
fore applicable even without prior knowledge about the
dataset composition.

In the FIRM algorithm, we used PCA for dimension
reduction. PCA tries to preserve the global struc-
ture instead of the local structure presented in the
data. Thus, the differences in cell type composition
would influence the PC with the highest variance.
We compared the performance of PCA and kernel
PCA, finding that kernel PCA is quite sensitive to the
parameters in the kernel function and can be time-
consuming (see details in Supplementary Document
and Supplementary Figures 43–50, see Supplementary
Data available online at https://academic.oup.com/bib).
In the FIRM algorithm, the reason why we perform
dimension reduction is to cluster cells and then align
clusters across datasets. PCA is shown to be valid for
clustering, as indicated by relatively high ASW and
ARI, and computational efficiency. The key problem
preventing accurate integration of scRNA-seq datasets
is the difference in cell type composition which cannot
be easily solved by using other dimension reduction
methods such as kernel PCA. Furthermore, the FIRM-
integrated data contains the harmonized expression for
all genes. For downstream analysis, different dimension
reduction methods can be applied on the integrated data,
which broadens the applications of FIRM.

Through analysis of a diverse collection of human,
mouse and mouse lemur datasets, we show that FIRM
outperforms or performs comparably to existing meth-
ods in terms of accuracy of integration and superior
preservation of original structure for each dataset. FIRM
has been adopted as the integration tool in the Tabula
Microcebus atlas data integration [16]. Ultimately, our
data integration tool enables new biological insights and
provides efficiency and utility for large-scale projects.

Key Points

• Differences in cell type composition are a major factor
preventing accurate integration of scRNA-seq data gen-
erated by different technology platforms.

• By accounting for the effects of cell type compositions,
FIRM achieves superior integration accuracy of scRNA-
seq datasets.

• FIRM is widely applicable to scRNA-seq datasets across
multiple tissue types, platforms and experimental
batches.

• FIRM provides accurate mixing of shared cell type identi-
ties and superior preservation of original structure with-
out overcorrection, generating robust integrated datasets
for downstream exploration and analysis.

• FIRM is also a facile way to transfer cell type labels and
annotations from one dataset to another.

Supplementary Data
Supplementary data are available online at https://
academic.oup.com/bib.

Data availability
The datasets in Tabula Muris contains 44 949 cells
profiled using SS2 from 20 organs and 55 656 cells
profiled using 10X from 12 mouse organs, which
are available at http://tabula-muris.ds.czbiohub.org/.
We removed cells without cell type annotations. The
datasets in Tabula Microcebus are available at https://
tabula-microcebus.ds.czbiohub.org/. The Human Lung
Atlas data are available on Synapse (https://www.
synapse.org/#!Synapse:syn21041850). FIRM is available
on GitHub at https://github.com/mingjingsi/FIRM.
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