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AbstractAU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:
Bursting is one of the fundamental rhythms that excitable cells can generate either in

response to incoming stimuli or intrinsically. It has been a topic of intense research in

computational biology for several decades. The classification of bursting oscillations in excit-

able systems has been the subject of active research since the early 1980s and is still ongo-

ing. As a by-product, it establishes analytical and numerical foundations for studying

complex temporal behaviors in multiple timescale models of cellular activity. In this review,

we first present the seminal works of Rinzel and Izhikevich in classifying bursting patterns of

excitable systems. We recall a complementary mathematical classification approach by

Bertram and colleagues, and then by Golubitsky and colleagues, which, together with the

Rinzel-Izhikevich proposals, provide the state-of-the-art foundations to these classifications.

Beyond classical approaches, we review a recent bursting example that falls outside the

previous classification systems. Generalizing this example leads us to propose an extended

classification, which requires the analysis of both fast and slow subsystems of an underlying

slow-fast model and allows the dissection of a larger class of bursters. Namely, we provide a

general framework for bursting systems with both subthreshold and superthreshold oscilla-

tions. A new class of bursters with at least 2 slow variables is then added, which we denote

folded-node bursters, to convey the idea that the bursts are initiated or annihilated via a

folded-node singularity. Key to this mechanism are so-called canard or duck orbits, organiz-

ing the underpinning excitability structure. We describe the 2 main families of folded-node

bursters, depending upon the phase (active/spiking or silent/nonspiking) of the bursting

cycle during which folded-node dynamics occurs. We classify both families and give exam-

ples of minimal systems displaying these novel bursting patterns. Finally, we provide a bio-

physical example by reinterpreting a generic conductance-based episodic burster as a

folded-node burster, showing that the associated framework can explain its subthreshold

oscillations over a larger parameter region than the fast subsystem approach.
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Author summary

Bursting is ubiquitous in cellular excitable rhythms and comes in a plethora of patterns,

both experimentally recorded and reproduced through models. As these different patterns

may reflect different coding or information properties, it is therefore crucial to develop

modeling frameworks that can both capture them and understand their characteristics. In

this review, we propose a comprehensive account of the main bursting classification sys-

tems that have been developed over the past 40 years, together with recent developments

allowing us to extend these classifications. Based upon bifurcation theory and heavily reli-

ant on timescale separation, these schemes take full advantage of the fast subsystem analy-

sis, obtained when slow variables are frozen and considered as bifurcation parameters.

We complement this classical view by showing that nontrivial slow subsystem may also

encode key informations important to classify bursting rhythms, due to the presence of

so-called folded-node singularities. We provide minimal idealized models as well as one

generic conductance-based example displaying bursting oscillations that require our

extended classification in order to be fully characterized. We also highlight examples of

biological data that could be suitably revisited with the lenses of this extended classifica-

tions and could lead to new models of complex cellular activity.

Introduction

The fascination of experimentalists, physicists, and mathematicians toward spontaneous and

complex oscillations dates back to the early 20th century, particularly through observations of

electrochemical systems [1]. Indeed, how can seemingly “inert subcomponents” assemble into

“life,” in what is currently understood (in biophysics) as open multiscale (far from equilib-

rium) systems with dissipative structures? Van der pol was among the first scientists to exhibit

equations with multiple timescales and a dissipative structure, which display oscillations akin

to those observed in electrochemical systems and that indeed could not be explained by previ-

ous mathematical theories [2–4].

Despite remarkable advances, it is only relatively recently (since the 1980s) that a deeper

understanding of certain types of nonlinear multiscale complex oscillations was made possible

due to the development of a coherent mathematical theory and classification system for so-

called bursting oscillations [5]. These developments have shaped mathematical and computa-

tional neuroscience, enriched experimental neuroscience, and also advanced the understand-

ing of various biological systems. To further stimulate this field, the present review first

provides a comprehensive account of several seminal works [6–9] as well as recent develop-

ments including our work on multiscale systems [10,11]. Finally, it proposes an extended clas-

sification framework, which we envisage will guide future developments of analytical,

numerical, and modeling work on multiscale biological systems.

To contain the complexity of multiscale systems’ characterization, we will focus on the

dynamics emerging from the interplay between the explicit timescales of a system of slow-fast

Ordinary Differential Equations (ODEs) as this is the main framework underpinning the main

bursting classification systems. Thus, we will consider models where the timescale ratio

between fast and slow variables is explicitly given by a small positive parameter ε. This frame-

work can also be applied to systems where timescale separation is not explicit though revealed

through simulations. Such systems naturally emerge in various biological processes, and, to

showcase the proposed framework at the end of this review, we will apply it to a biophysical

neuron model. While this focus on only timescale separation circumvents the wider unre-

solved mathematical barriers in generally describing multiscale systems across spatiotemporal
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scales (e.g., via partial differential equations), it will enable us to obtain a significantly deeper

insight on emergent timescale-induced dynamics. This will later inform these other multiscale

approaches. Moreover, despite the relative apparent simplicity of minimal slow-fast ODEs, the

associated theory is still in development. More importantly, such multi-timescale systems have

already enabled remarkable predictions of complex oscillations, hence their relevance in

computational biology [12–14] and neuroscience [15–17], among many application areas.

Depending on the dimension of fast and slow components, multiple timescale systems can

reproduce key experimentally observed multiscale oscillations, in particular in neural record-

ings: action potentials or spiking behavior [18], bursting [19], mixed-mode oscillations [20]. As

the main system parameters (e.g., an applied current) vary, the type of solution can change

very rapidly and a minute parameter change may lead to a change in solution type upon a fir-

ing threshold crossing. In cases where such multiscale excitable systems can be modeled by

slow-fast equations, then these sudden “explosive” transitions associated with excitability

threshold crossings are organized by special solutions called canards or ducks [13,21,22]. These

descriptors are used interchangeably in the literature, and we shall employ both terms.

Duck solutions have been extensively studied since they were first described in the late

1970s in the context of the van der Pol circuit model [23]. Since then, they have been analyzed

in various theoretical and applied contexts, however most of the time within a rather technical

mathematical framework. In the next few paragraphs, we present the salient features of canard

dynamics in an idealized neural example, the FitzHugh–Nagumo (FHN) spiking model

[24,25]. In other words, we present ducks in a nutshell for the general reader, with the accom-

panying sketch shown in Fig 1; the expert reader may skip the following paragraphs and move

directly to page 8. The well-known FHN model describes the generation of action potentials

(or spikes) as stable periodic solutions (limit cycles), which exist for a wide timescale separa-

tion between the (fast) membrane potential V and the (slow) recovery current w. Depending

on the magnitude of the applied (constant) current I, the system’s long-term dynamics is either

a stable equilibrium (rest state, shown in panel (a)) or a stable limit cycle (repetitive spiking

state, shown in panel (b)). The transition between these 2 neural regimes is rather abrupt in

terms of I-values. This prompts the following fundamental question: “How does one under-
stand the very sudden emergence within a small change in I from a stable equilibrium (panel (a))
to a strongly attracting limit cycle (panel (b)) whose trajectory corresponds to sharp/fast transi-
tions from one branch to the other of the V-nullcline?” A 1-parameter family of duck solutions

provide a continuous change in solution amplitude over a very small range of I values near IT,

the value of I for which the equilibrium is at the lower “knee” (fold point) of the V-nullcline

and the system is near Threshold. On top of existing for an extremely narrow range of I-values,

the essence of ducks is that a portion of the trajectory lies along the repulsive branch of the V-

nullcline, in the area of the firing threshold. Certain duck solutions stay close to the threshold

and then jump down back to baseline (in red in panel (c)), while others jump up and cross

threshold while emitting an action potential (in purple in panel (c)). At the end of this transi-

tory regime, a fully developed repetitive spiking solution exists (in blue in panel (b)) and such

solution will remain for a large interval of I-values greater than IT. This main feature of duck

solutions, staying close to the repulsive branch of the V-nullcline, hence underlies a common

type of threshold behavior in excitable systems of class 2 such as the Hodgkin–Huxley model

[18,30]. Furthermore, duck dynamics can be seen in transient responses as well, as part of

more complex neural activity (e.g., bursting), where they organize transient passages from sub-

threshold oscillations to (one or more) spikes. Crucially, duck solutions pass close to special

points located at a knee of the V-nullcline (see panel (c) where canard cycles pass near the

lower knee), linking continuously a zone of dynamical attraction (to the left of the lower knee)

to a zone of dynamical repulsion (to the right of the lower knee). In 2D (spiking) models, such

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009752 February 24, 2022 3 / 32

https://doi.org/10.1371/journal.pcbi.1009752


a point is called a canard point, whereas it is called a folded singularity in higher-dimensional

models.

Bursting oscillations are ubiquitous in the context of neuronal systems (see Fig 2). In partic-

ular, bursting models appeared in the context of classical single-neuron electrophysiological

measurements, where the neuron’s voltage time series displays a bursting oscillation either in

response to a brief input stimulus or, in absence of any stimuli, in an endogenous manner.

These oscillations are defined as having a periodic succession (sometimes irregular) of 2 dis-

tinct epochs of activity. One epoch features slow and low-amplitude activity, and it is typically

referred to as the quiescent (or silent) phase. The other epoch features fast and high-amplitude

activations (i.e., several action potentials or spikes), and it is classically termed active or burst
phase as shown on several experimental examples in Fig 2.

From the standpoint of multiple timescale models, bursting oscillations require at least 3

dimensions with 2 fast and 1 slow variables, where the 2D fast subsystem (obtained by freezing

the slow mode and considering it as constant) is bistable within an interval of values of the

slow variable (as a parameter) and sustains both stationary and periodic behavior. The quies-

cent phase corresponds to a slow drift of the solution near a branch of (typically) stationary

Fig 1. Ducks at the transition from rest to spikes in the FitzHugh–Nagumo model. The dynamics are represented in the phase plane (upper panels)

and as illustrative time courses (lower panels). When increasing the applied current I, the system’s dynamics transitions from a stable equilibrium (rest

state, black dot in (a)), which is excitable, to a strongly attracting limit cycle (repetitive spiking state, in blue in (b)). The excitable structure in panel (a)

is further illustrated with 2 trajectories whose initial conditions are at the stable equilibrium (rest state) and with a step current of slightly different

amplitude: One trajectory (in red) stays below threshold, while the other one (in purple) crosses threshold, fires an action potential, and then returns

back to the rest state. The transition from (a) to (b) is continuous but confined to a very small range of I values around IT. At I* IT, special solutions

called ducks emerge (c), which stay close to the unstable part of the V-nullcline, shown as a cubic curve whose attracting branches (resp. repulsive

branch) are displayed as solid (resp. dashed) black lines. Two ducks shown in red stay below threshold and correspond to subthreshold oscillations,

while one (in purple) crosses threshold and corresponds to a near-threshold spiking solution. Also shown in the top row is the w linear nullcline and the

equilibrium point (filled circled when stable, open circle when unstable) at the intersection between the 2 nullclines. Single (double) arrows represent

fast (slow) flow. Notice that the purple trajectory in panel (c) has the shape of a leftward-directed duck’s profile; see top-right inset. The bottom row

shows the time courses of the membrane potential V for all trajectories displayed on the top row, keeping the same colors; for panel (c), only the time

series of the largest red cycle and of the purple one are shown. Equations and parameter values are given in S1 Text.

https://doi.org/10.1371/journal.pcbi.1009752.g001
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attractors of the fast subsystem (rest states), and the burst phase to a slow drift with fast oscil-

latory motion of the solution near a branch of stable limit cycles of the fast subsystem. There

can be many ways for a system to produce such alternation between quiescence and burst

phases, which motivated scientists early on to develop classification strategies.

In the present work, we will review state-of-the-art classification systems for bursting

dynamics, their limitations, and then propose an extended classification framework. Our

extended classification rests on the fact that all existing bursting classification schemes are

solely based upon the knowledge of the fast subsystem without using the information con-

tained in the slow subsystem, obtained when the fast modes have decayed and the associated

(fast) variables are slaved to follow the slow variables’ evolution on a limiting phase-space

region of slow motion referred to as critical manifold [32,33]. One can take advantage of the

slow subsystem in order to characterize and classify bursting patterns. Our strategy for doing

so relies upon a certain type of canard dynamics, namely that generated by a certain type of

folded singularity called folded node. In this way, one can extend entire classes of 3D burster to

4D systems, with still 2 fast variables but 1 more slow variable. This second slow variable cre-

ates a folded node, near which solutions perform small-amplitude subthreshold oscillations

[10], hence enriching the quiescent dynamics of the resulting 4D burster. What is more, the

slow subsystem is essential to fully characterize this new type of bursting oscillations with a

folded node.

Slow-fast dynamics near a folded node provide a key mechanism to induce another type of

complex oscillations, namely folded-node-induced mixed-mode oscillations [10,34]. Hence, the

Fig 2. Example of electrophysiological recordings of bursting oscillations in 4 types of neurons: (a) parabolic-type bursting from the CeN neuron

from the melibe (a sea slug) [26]; (b) square-wave-type bursting from a human β-cell [27]; (c) elliptic-type bursting from a dorsal-root-ganglia

(DRG) neuron of a rat [28]; (d) pseudo-plateau-type bursting from a pituitary cell of a rat [29] (“Copyright 2011 Society for Neuroscience”). In

each case, we highlight with colors the 2 main phases of bursting oscillations: silent (quiescent) and active (burst). Figures adapted with permission.

https://doi.org/10.1371/journal.pcbi.1009752.g002
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new bursting patterns proposed here are a combination of fold-initiated bursting oscillations

(definition given in the next section) and mixed-mode oscillations (MMOs), for which isolated

examples were constructed in our previous work [35,36], and which we shall generalize and

classify in the present work. This extended framework is well suited to revisit a number of bio-

logical datasets where the mechanisms underpinning bursting activity may have not been fully

unraveled; see Fig 3 for an example of such data extracted from [31].

This new class of bursting, which we will henceforth denote as folded-node bursting, should

not be confused with the recent work on so-called “pseudo-plateau bursting”. Initially thought

of as a bursting scenario [37], the “pseudo-plateau bursting” case was subsequently shown, in

various biophysical models of pituitary cells as well as idealized systems, to be better under-

stood as a MMO mechanism [38,39]. Indeed, the small-amplitude oscillations generated by its

folded node were first thought to correspond to a bursting phase. However, since the “pseudo-

plateau bursting” involves minimally 2 slow and 1 fast variable, then it does not fall under the

bursting definition that demands the fast subsystem to possess 2 fast variables. Hence, these

other scenarios (including “pseudo-plateau bursting”) are in stark contrast with the novel

folded-node bursting concept presented and classified in the present work, which is the super-

position of MMO dynamics and bursting dynamics, with minimally 2 slow and 2 fast

variables.

Noteworthy, key to our extended classification are both the fast and slow subsystems. What

is more, canards are central to the slow subsystem analysis and, hence, to the classification. In

contrast, in the previous classification systems, which only consider the fast subsystem, canards

are not useful to the classification. However, they are important to determine certain features

of the dynamics, e.g., spike-adding transitions [35,43], which will be fully described in the con-

text of system (1), or torus canards [44], whose definition and description will be given in the

section on cyclic folded-node bursting. Note that parabolic bursters [42] require 2 fast and 2

slow variables and possess folded-saddle singularities [45], which makes them different from

folded-node bursters.

Although a great deal of our discussions will be in the context of neuronal dynamics, the

mathematical framework intends to capture complex slow-fast oscillations beyond the scope

of neuroscientific applications (in chemical reactions, genetic switches, material transitions,

etc.). Moreover, we will focus on the minimal deterministic mathematical setting for bursting

oscillations. This minimal setting will inform more complex scenarios involving multidimen-

sional systems with multiple timescales.

Fig 3. Electrophysiological recordings of the lateral thalamic nuclei neuron in cat from [31] show complex bursting oscillations. Colored boxes

highlight the active (burst) and silent (quiescent) phases of the bursting oscillations. The quiescent phase comprises 1 oscillation formed by a slow rise

toward bursting threshold and a faster descent toward baseline. This complex bursting pattern is well captured by the “Folded-node/Homoclinic”

bursting scenario proposed here. Figure adapted with permission.

https://doi.org/10.1371/journal.pcbi.1009752.g003
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The rest of this article is organized as follows. We will first review existing classification

frameworks for bursting oscillations. Subsequently, we will first introduce the key idea of our

novel bursting classification based upon the concept of folded-node bursting dynamics. This

will be followed by showcasing several new examples of folded-node bursting idealized models,

first in the case of classical folded node and then in the case of what we will term cyclic folded

node. We will explain how to construct such bursting dynamics with simple idealized models;

for simplicity, however, we will close with a biologically plausible conductance-based model of

episodic bursting from [46], showing that the folded-node bursting scenario is applicable and

robust to large parameter changes. Finally, in the Conclusions section, we will propose a num-

ber of perspectives and future modeling directions worth exploring.

State-of-the-art classification of bursting patterns

Rinzel’s classification (mid-1980s). Historically, the second author of the present work

opened the door toward mathematically understanding bursting oscillations. His seminal

work on a mathematical analysis and classification of bursting oscillatory patterns was first

published within 2 companion manuscripts [6,41]. The fundamental insight behind Rinzel’s

classification is based on so-called slow-fast dissection and, in particular, on describing the

bifurcation structure of the fast subsystem where the slow variables are frozen. Subsequently,

the time trajectory of the full system (i.e., for small ε> 0) is superimposed on top of the bifur-

cation structure of the fast subsystem. This is the essence of slow-fast dissection, which reveals

that the quiescent phase of the bursting cycle corresponds to trajectory segments where the

solution slowly tracks families of stable equilibria, or low-amplitude (subthreshold) limit

cycles, of the fast subsystem. Conversely, the burst phase of the full system’s cycle corresponds

to trajectory segments where the solution slowly tracks families of limit cycles of the fast sub-

system. Crucially, the transitions between these 2 main phases of bursting cycles occur near

bifurcation points of the fast subsystem. With this approach, Rinzel proposed 3 classes of

bursting dynamics based on both the bifurcation structure of the fast subsystem and the salient

features of the main fast variable’s time profile (in the neuronal context, this is typically the

neuronal membrane potential). These features include spike frequency during the burst,

dynamics during the silent phase (oscillatory or not), shape of the burst (on a plateau com-

pared to the silent phase or, on the contrary, with undershoots). These 3 features led Rinzel to

name 3 classes: square-wave bursting, observed in a number of recordings and models of pan-

creatic beta-cells [47] among other [48]; elliptic bursting, observed in various neural recordings

and models of sensory neurons [15,49]; and parabolic bursting, initially observed in the Aplysia

R15 neuron [42] and ever since in various neural models [50]. We show an example of each

class in Fig 4.

Izhikevich’s classification (ca. 2000). Eugene Izhikevich generalized Rinzel’s approach

by considering that a bursting pattern is entirely characterized by a pair of bifurcations (b1, b2)

of the fast subsystem. One bifurcation, say b1, explains the transition from quiescence to burst,

and the other, b2, marks the inverse transition, from burst to quiescence. Due to the well-estab-

lished bifurcation theory and indeed knowledge of classes of bifurcation, this led to a system-

atic identification of at least 120 bursting patterns [7]. An example of a bursting model that is

not within the Rinzel classification is depicted in Fig 5. In this example, the bursting pattern

has a transition from quiescence to burst via a homoclinic bifurcation (involving a small

homoclinic connection ending a family of small-amplitude limit cycles), and, equally, the tran-

sition from burst to quiescence is via homoclinic bifurcation (involving a large homoclinic

connection ending a family of large-amplitude limit cycles). In many ways, Izhikevich’s work

serves as a key source of reference for classification of complex slow-fast oscillations. This is
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particularly the case in neuroscience since some of the assembled examples were motivated by

existing conductance-based neuronal models and demonstrated how complex neuronal oscil-

lations could be achieved by adding 1 slow equation to a spiking model. Indeed, a dedicated

book toward neuroscience was later published, where the derived models where also put into

context with neurophysiological processes [51]. The result of this deeply insightful work is a

quasi-complete classification of bursting patterns in terms of pairs of codimension-one bifur-

cations of the fast subsystem.

Fig 4. Rinzel classification of bursting patterns. Square-wave bursting, here in the Hindmarsh–Rose model [40]

(panels (a1)-(b1)); elliptic bursting, here in the FitzHugh–Rinzel model [6,41] (panels (a2)-(b2)); parabolic bursting,

here in Plant’s model [42] (panels (a3)-(b3)). In each case, we show a phase-space projection of the bursting solution of

the full system (orange) together with the bifurcation diagram of the fast subsystem (left panel) and the time course of

membrane potential V (orange, right panel). Labels for bifurcations are as follows: Ho for homoclinic, HB for Hopf

bifurcation, LP for saddle-node (limit point) bifurcation of equilibria, and SNP for saddle-node of periodic orbits. (a3)

The critical manifold S0 (green) is the S-shaped (not fully rendered) surface of equilibria of the fast subsystem; this

surface is folded along the fold curve F . Equations and parameter values are given in S1 Text.

https://doi.org/10.1371/journal.pcbi.1009752.g004
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Bertram and colleagues’s/Golubitsky and colleagues’s classification (mid-1990). An

alternative approach to classification was proposed by Bertram and colleagues in 1995 [8] and

extended mathematically by Golubitsky and colleagues in 2001 [9] using a singularity theory

viewpoint. The fundamental idea consists in identifying a codimension-k bifurcation point

(k� 2) in the fast subsystem and subsequently considering the slow variables of the bursting

system as the unfolding parameters of this high codimension bifurcation point. The bursting is

then obtained via a path made by the slow variables in the unfolding of that point (i.e., within a

multidimensional parameter space). The minimum codimension, whose unfolding allows to

create a given bursting pattern, defines the class of the associated bursting patterns provided a

notion of path equivalence is properly defined. Specifically, 2 paths are equivalent if one can

pass from one to the other via a diffeomorphism and a reparameterization. Recently, a review

and a showcase demonstrating the construction of bursting oscillations via this approach,

including cases for higher codimension bifurcation points was proposed in [54].

It is worth noting that the Rinzel–Izhikevich approach and the Bertram–Golubitsky

approach both focus on the fast subsystem only. Moreover, a way to see a link between the 2

approaches is that the 2 bifurcation points (b1, b2) of the fast subsystem (as characterized by

Izhikevich’s approach) belong to bifurcation curves in a 2-parameter plane, which coalesce at a

codimension-two bifurcation point that characterizes this particular bursting pattern from the

singularity theory viewpoint. This implies that, in principle, the Rinzel–Izhikevich and the Ber-

tram–Golubitsky approaches both lead to the same number of bursting oscillation cases.

Finally, one can consider more complicated slow paths in the fast subsystem’s parameter

space, which may induce more than 2 crossings of bifurcation curves; see, e.g., [55]. However,

this will likely not increase the number of possible bursting patterns captured.

The bursting patterns covered by these 3 existing classification schemes have not been

exhausted yet, even though a large number (way above 100) have already been reported and

analyzed in previous works. We have identified a few more cases, which we believe have not

been considered before and which are presented in idealized models in an earlier version of

Fig 5. Small homoclinic/big homoclinic bursting, corresponding to Fig 88 of [7]; shown is a new simulation with

the same parameter values (available in [7]). Panel (a) shows the slow-fast dissection in the (u, V) phase plane; the

inset shows a zoom corresponding to the dashed rectangle, which better reveals the shape of the bursting cycle while

the main plot better highlights the fast subsystem bifurcation structure. Labels HB, LP, and Ho refer to Hopf

bifurcation, saddle-node bifurcation (fold or “limit point”), and homoclinic bifurcation of the fast subsystem,

respectively. Panel (b) shows the V-time series of this bursting solution. Izhikevich’s classification allowed to

characterize bursting patterns beyond square-wave, elliptic and parabolic, and already opened the door toward

explaining more complex biological data. In particular, one can mention pathological brain activity related to, e.g.,

epileptic seizure [52] or spreading depolarization [16,53]. According to Izhikevich’s classification, bursting oscillations

where the burst initiates via a fold bifurcation of the fast subsystem are termed fold-initiated bursting. In the present

work, we will propose an extended classification based upon fold-initiated bursting cases.

https://doi.org/10.1371/journal.pcbi.1009752.g005

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009752 February 24, 2022 9 / 32

https://doi.org/10.1371/journal.pcbi.1009752.g005
https://doi.org/10.1371/journal.pcbi.1009752


the present work [56]. In particular, we show scenarios where the burst phase ends due to a

transcritical or a pitchfork bifurcation of limit cycles of the fast subsystem. We also propose

the concept of isola bursting, where the burst starts and ends through fold-of-cycles bifurca-

tions lying on an isola of limit cycles. Finally, we propose 1 example (among many) of bursting

pattern with 2 slow variables where the burst initiates through a family of transcritical bifurca-

tion of equilibria.

As a side note, we mention hybrid models like integrate-and-fire models, including both

ODEs and reset maps, which are able to produce bursting oscillations as well as canard-

induced spike-adding phenomena; see, e.g., [57–61]. To the best of our knowledge, there is no

classification of bursting patterns in these models, which might involve additional mechanism

due to the nonsmooth nature of the equations. However, bursting patterns in fully discrete

neural models, i.e., maps, have been classified in [62] using the classical fast subsystem

approach.

Extended classification: Folded-node bursting

Going beyond the state-of-the-art. There are bursting oscillations beyond the Rinzel–

Izhikevich and Bertram–Golubitsky classification approaches and which cannot be explained

by invoking these classical results. We propose an extended classification system that captures

a larger class of bursters beyond state-of-the-art approaches.

Indeed, some electrophysiological recordings of bursting dynamics resist the state-of-the-

art classification system. A case in point is depicted in Fig 3, where the bursting oscillation has

2 phases but the quiescent phase is peculiar: It rises twice per period close to a threshold, how-

ever the first time the neuron does not transit to the active phase and instead descends back to

its baseline activity, while the second time only the active phase emerges.

These observations suggest that there is an underlying complex mechanism for the quies-

cent phase of the oscillations and therefore point toward a bursting classification framework

that has to also incorporate the analysis of the slow subsystem, which is in stark contrast to

state-of-the-art approaches. Further motivating this view is our earlier study [35], in which we

constructed what seems to be the first example of a slow-fast bursting model whereby the burst

initiation could not be explained by the fast subsystem of the underlying model; we con-

structed another example in [36]. However, therein, we did not attempt to derive an improved

bursting classification framework and it is what we are now proposing.

We will show in subsequent sections how to construct a variety of these new cases of burst-

ing oscillations. To further motivate and guide the reader throughout this manuscript, we first

delineate the main mechanisms underpinning our extended classification framework. The

idea is sketched in Fig 6 and can be summarized in its simplest form as follows.

If one considers any 3D fold-initiated burster and appends to it a second slow variable that

organizes (as a bifurcation parameter in the original burster) a spike-adding transition, then

one obtains a new bursting system with 2 slow and 2 fast variables, for which the bursting pat-

tern can only be fully characterized by using both slow and fast subsystems. Indeed, due to the

added second slow variable, the novel burster possesses subthreshold oscillations, which are

due to the presence of a folded-node singularity defined in the slow subsystem (ε = 0) and

associated canard solutions, which persist for small enough ε> 0.

How this type of bursting effectively extends the previous classifications is summarized in

Fig 7. Crucially, the folded node due to the second slow variable is not a bifurcation of the fast

subsystem even though it lies on a curve of saddle-node (fold) bifurcations of the fast subsys-

tem (see Fig 7 panel (d3)). Such unexpected and nontrivial emergent mathematical objects

allow trajectories of the slow subsystem to visit both the attracting (S0
a) and repelling (S0

r ) parts
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of the critical manifold. In the full system (for small ε> 0), the perturbed versions of these

manifolds—attracting Sε
a and repelling Sε

r slow manifolds [32,33]—twist and intersect multiple

times (see Fig 7 panels (b2)-(c2)), thereby causing trajectories to nontrivially and robustly

oscillate during the quiescent phase of the bursting system.

In essence, a folded node appears when the slow dynamics at ε = 0 change direction along a

fold curve. In the full system, the transition from quiescent to active phase is caused by a repul-

sion of the trajectory away from the unstable sheet of the critical manifold; this phenomenon is

mediated by folded-node canards. In this particular example, the fast oscillations of the active

phase are due to a nearby Hopf bifurcation in the fast subsystem (not shown). The return back

to quiescence is then caused by a family of homoclinic bifurcations (labeled Ho2 in panels

(b1), (d1), (b2), (c2)) of the fast subsystem.

The key insight is that the fast subsystem is blind to what is causing these small-amplitude

oscillations during the quiescent phase, and thus it is unable to classify the initiation of these

oscillations based upon the bifurcations of fast subsystem only. This point is illustrated by the

Rinzel–Izhikevich slow-fast dissection and projection of the trajectory of the full system onto

the bifurcation diagram of the fast subsystem (see Fig 7 panels (b2)-(c2)).

Note that by employing the Rinzel–Izhikevich classification system, the bursting dynamics

would be explained by 2 bifurcations of the fast subsystem, namely the fold bifurcation LP2

and the homoclinic bifurcation Ho2. In particular, a fold bifurcation (LP2) does not explain an

oscillation. Moreover, a similar argument applies to the Golubitsky approach (see Fig 7 panel

(d2)). This panel displays curves of codimension-one bifurcation points of the fast subsystem,

which meet at codimension-two, e.g., a Bogdanov–Takens (BT) (within a 2D parameter

Fig 6. Folded-node bursting in a nutshell. The top row shows the essentials of folded-node bursting: (a) A fold-initiated bursting system (f1, f2, s1) (f1,2

are fast and s1 is slow) with (b) an added slow variable s2 creating a folded node and corresponding to the main parameter of the 3D burster organizing

spike-adding transitions gives (c) a 2 slow variables/2 fast variables folded-node burster. The bottom row is an extension of the top panel (b) and shows

the essentials of folded-node dynamics (whose typical time course is shown in the top panel (b)): A canard point (ε = 0) in the (f1, f2, s1) bursting system

with s2 as parameter (left panel) becomes a folded node (black dot, center panel, ε = 0) when the slow dynamics put on s2 is evolving, for ε = 0 along the

attracting and repelling parts S0
a;r of the critical manifold; for small ε> 0, this folded node creates small-amplitude oscillations nearby, organized by

attracting and repelling slow manifold Sε
a;r (perturbations of S0

a;r) and responsible for the quiescent oscillations of the folded-node burster in the resulting

4D system. See S1 Text for a glossary of labels and technical terms.

https://doi.org/10.1371/journal.pcbi.1009752.g006
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space). It can then be shown that it is impossible to construct a path for the slow dynamics

(within this 2D parameter space), in particular along the homoclinic and saddle-node curves

(since these characterize the bursting in the fast subsystem), which could explain folded-node-

initiated quiescent phase oscillations.

Fig 7. Extended classification. (Top part) Main idea of the Rinzel/Izhikevich, Bertram/Golubitsky and colleagues and folded-node bursting

classifications. ((ai)-(di), i = 1,2,3) Exemplary “folded-node/homoclinic” bursting, presented in the full 4D system and in its 2D fast and slow

subsystems (resp.), showing that both subsystems are required to fully understand this bursting profile; all equations are given in the left column

(a1)-(a3). Top row (b1)-(d1), full system bursting solution in 2 different 3D phase-space projections: 2 slow/1 fast in (b1)-(c1) and 1 slow/2 fast in

(d1), also showing the critical manifold (fast subsystem’s set of equilibria, in green), the fast subsystem’s limit cycles envelope (blue), as well as

relevant bifurcations. In (c1), the trajectory is zoomed near its small oscillations, which follow attracting (red) and repelling (blue) slow manifolds

Sε
a;r , perturbations of the attracting and repelling parts S0

a;r of the critical manifold, and pass near the folded node (dot). Middle row (b2)-(d2), fast

subsystem information: the bifurcation diagram with respect to 1 slow variable (s1) in (b2), which we can assume persists as such for a small

interval of values of the other slow variable (s2); this allows to superimpose the projection of the full system bursting orbit (c2), as done in the Rinzel/

Izhikevich classification, and to compute loci of bifurcation points of this diagram in the 2-parameter plane (s1, p), as done in the Bertram/

Golubitsky and colleagues classification. However, both approaches classify this bursting pattern as fold/homoclinic (square-wave), hence failing to

capture the reason for its small oscillations during quiescence, which can only be unraveled by studying the slow subsystem’s information in the

bottom row (b3)-(c3) and find the existence of a folded node in the slow singular limit; details on labels in S1 Text.

https://doi.org/10.1371/journal.pcbi.1009752.g007
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It turns out that among all possible folded singularities, only folded nodes (and in limiting

cases, so-called folded saddle-nodes) can generate such robust small-amplitude oscillations in

the full system, and this is due to the twisting of nearby attracting and repelling slow manifolds.

This leads us to a novel bursting classification system (see Fig 7 top panel in blue for the new

framework). We believe that these insights will fuel subsequent developments in higher-

dimensional multiscale systems.

This underlying folded-node signature leads us to name the resulting new classes of burst-

ing models, folded-node bursters. Three fundamental cases are envisaged. The first case is

bursters characterized by small-amplitude oscillations that occur during the quiescence phase,

in which case we will refer to the classical folded-node bursting scenario. The second case

involves slow-amplitude modulation of the burst, which we will denote as the cyclic folded-
node bursting scenario. We use the term cyclic folded node since it corresponds to having a

folded singularity on a line of cyclic fold bifurcations of the fast subsystem, whereas the classi-

cal folded node corresponds to having a folded singularity on a line of (stationary) fold bifurca-

tions of the fast subsystem). The third case combines classical folded-node and cyclic folded-
node. These classes of bursting patterns involve both the fast subsystem and the slow subsystem

of the model, unlike traditional bursters. A second key aspect of these new classes is the central

role played by canards, namely, spike-adding canard cycles involved in the classical folded-

node bursting case, and torus canards in the cyclic folded-node bursting case. In the following

subsections, we describe in details these 2 scenarios.

Classical folded-node bursting case. Here we propose several bursting oscillations medi-

ated by a classical folded node (fully described in Figs 8, 9 and 10) and the modeling steps of

underlying idealized models are given. To guide the reader toward a modeling strategy of

these systems, we first recall key concepts and mechanisms.

A necessary preliminary step: Spike-adding canard explosion. First, recall that canards
are nontrivial trajectories that emerge due to timescale separation and unexpectedly, these tra-

jectories contain segments that follow both an attracting slow manifold and a repelling slow

manifold, which are perturbations of attracting and repelling branches of the fast nullcline,

respectively; see Fig 1(c). This phenomenon has been thoroughly studied in planar systems

(i.e., with 1 slow variable and 1 fast variable) [23,63–65], as well as in 3D systems with 2 slow

variables [10,66,67].

In applications, canards can be associated to complex (bio)physical mechanisms, e.g., in

neuroscience, it provides the best approximation to the excitability threshold in certain single-

neuron models. This observation was first made by Izhikevich [51], who showed that canards

organize the transition to the spiking regime of type II neurons. This was later analyzed in

more details in [21,22,68].

Another important mechanism is the so-called spike-adding canard explosion. This canard

phenomenon arises in bursting oscillations and can be described as a sequence of canard

explosions, which organize the transition from subthreshold oscillations to bursting solutions

with more and more spikes per bursts. This phenomenon was first described and analyzed (in

the case of chaotic dynamics regime) in [69] in the context of square-wave bursting. This was

revisited more recently in [70] from the computational standpoint of saddle-type slow mani-

folds and further described in [71] in a modeling context to explain transient spikes; see also

[72,73]. These analyzes were later refined (from a canard standpoint) in [35], and the canard-

mediated spike-adding dynamics was fully analyzed in [45] in the context of parabolic bursters

(with 2 slow variables), revealing the central role of folded-saddle canards.

Noteworthy, bursting oscillations that possess a spike-adding mechanism correspond to a

limiting (borderline) case that already hints at the importance of possibly including the analy-

sis of the slow flow (flow of the slow subsystem; see below) in a bursting classification
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framework. That is, spike-adding requires a turning point of the slow flow (canard point),

whereby each new added spike (within the bursting phase) is born via a slow (delayed) passage

through this turning point. Crucially, the fast subsystem is blind to the underlying canard tra-

jectories occurring near the turning point (well defined as such only in the slow flow) and

instead only sees a fold bifurcation. Therefore, the state-of-the-art bursting classification sys-

tems does not capture this aspect. Nevertheless, we refrain from declaring this phenomenon as

a new bursting mechanism because a spike-adding canard explosion gives rise to canard cycles

that exist only within exponentially thin parameter regions. Hence, the robust dynamics is the

fold-initiated bursting dynamics, and the fast subsystem analysis still prevail in order to classify

it.

In contrast, if we consider a fold-initiated bursting scenario undergoing spike-adding

canard explosion and if we further add a slow dynamics for the parameter that displays the

Fig 8. Folded-node/Homoclinic bursting. Panels (a-b) show the spike-adding transition in system (1): (a) in the (z, x)

plane where we show several limit cycles for β-values exponentially close to −1.656996 superimposed onto the fast

subsystem bifurcation diagram; (b) bifurcation diagram of the associated 3D bursting system (1) with respect to

parameter β, showing the sharp rise of the amplitude of the limit cycle branch (orange), corresponding to spike-adding

transitions. Panels (c-d) show a folded-node/homoclinic bursting orbit in the extended 4D system (6): (c) in the (β, z,

x) space (single/double arrows indicate slow/fast motion); (d) time course of the fast variable x. The bottom panels

show a comparison between this folded-node bursting orbit from (6) and experimental data from [31]. Equations and

parameter values are given in S1 Text.

https://doi.org/10.1371/journal.pcbi.1009752.g008
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spike-adding canard explosion (i.e., a second slow variable in the extended model), then we

obtain a folded-node bursting system. This has a similar effect to the case in classical (van der

Pol type) systems where the canard phenomenon becomes robust if one adds a second slow

variable, which has the effect of creating a folded singularity in the resulting 2D slow flow and

allows for multiple canard trajectories to exist. The idea here is similar, but with 2 fast vari-

ables, allowing for bursting dynamics in conjunction with folded-node dynamics.

A first example of this scenario was termed mixed-mode bursting oscillations in [35], but we

prefer to denote it more generally folded-node bursting. Indeed, folded-node bursting is a new

form of bursting pattern with 2 slow variables where the silent phase contains small-amplitude

(subthreshold) oscillations due to the presence of a folded node in the slow subsystem. This

folded node is responsible for the presence of a funnel region in the full system and trajectories

entering this funnel make a number of rotations (which can be controlled by adjusting param-

eters) before they leave it and start to burst. Hence, the passage through the folded-node funnel

organizes the transition from quiescence to burst and it can only be understood by suitably

analyzing the slow subsystem. We subsequently describe a strategy for constructing folded-

node bursting systems.

Construction of minimal folded-node bursting systems. As a starting point, we consider

the prototypical fold-initiated burster of Hindmarsh–Rose type [40]. By this, we mean a 3D

slow-fast system with 2 fast variables and 1 slow and a cubic-shaped family of equilibria in the

fast subsystem, namely the critical manifold S0. We can write the following set of differential

Fig 9. Folded-node/Hopf bursting. Panels (a-b) show the spike-adding transition in system (1): (a) in the (z, x) plane

where we show several limit cycles for β-values exponentially close to −1.391279 superimposed onto the fast subsystem

bifurcation diagram; (b) bifurcation diagram of the associated 3D bursting system (1) with respect to parameter β,

showing the sharp rise of the amplitude of the limit cycle branch (orange), corresponding to spike-adding transitions.

Panels (c-d) show a folded-node/Hopf bursting orbit in the extended 4D system (6): (c) in the (β, z, x) space (single/

double arrows indicate slow/fast motion); (d) time course of the fast variable x. Equations and parameter values are

given in S1 Text.

https://doi.org/10.1371/journal.pcbi.1009752.g009
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equations (using the so-called fast time τ) to describe the dynamics of such a system:

x0 ¼ y � f ðxÞ þ az;

y0 ¼ Gðx; y; zÞ;

z0 ¼ εðaxþ gb � dzÞ;

ð1Þ

where f is a cubic polynomial function, G is (at least) quadratic in x; moreover, 0< ε� 1 is a

small parameter and (a, α, β, γ, δ) are potential bifurcation parameters; why we use a product

of 2 parameters in the z equation will become clear below. As we shall see in the example of Fig

10, one can also obtain all fold-initiated scenarios by using an unfolding of a codimension-3

degenerate BT bifurcation; see [74] for details.

A few assumptions are required in order for system (1) to display fold-initiated bursting.

First of all, we assume that f and G are adequately chosen so that the fast subsystem has a

cubic-shaped family of equilibria that depends on z as a parameter (for the fast subsystem).

Therefore, the corresponding bifurcation diagram (of the fast subsystem) in z is S-shaped and

will have fold points. The critical manifold is then given by

S0 ≔ ðx; y; zÞ 2 R3
=Gðx; y; zÞ ¼ 0; z ¼ f ðxÞ � yð Þ=a

� �
: ð2Þ

We also require bistability in the fast subsystem between equilibria and limit cycles, in an

interval of z-values. One bound of this interval correspond to a fold bifurcation and,

Fig 10. Folded-node/fold-of-cycles bursting. Panels (a-b) show the spike-adding transition in system (1): (a) in the (z,

x) plane where we show several limit cycles for β-values exponentially close to 0.320207 superimposed onto the fast

subsystem bifurcation diagram; (b) bifurcation diagram of the associated 3D bursting system (1) with respect to

parameter β, showing the sharp rise of the amplitude of the limit cycle branch (orange), corresponding to spike-adding

transitions. Panels (c-d) show a folded-node/fold-of-cycles bursting orbit in the extended 4D system (6): (c) in the (β,

z, x) space (single/double arrows indicate slow/fast motion); (d) time course of the fast variable x. Equations and

parameter values are given in S1 Text.

https://doi.org/10.1371/journal.pcbi.1009752.g010
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geometrically, to 1 fold point of the cubic family of equilibria S0. The other boundary of the

region of bistability of the fast subsystem will be a bifurcation of limit cycles, and we shall con-

sider 3 main cases, namely, saddle-homoclinic bifurcation (see Fig 8(a)), Hopf bifurcation (see

Fig 9(a)), and fold bifurcation of cycles (see Fig 10(a)); the list is not exhaustive, we chose to

focus on these 3 examplary cases; however, more examples of folded-node bursting scenarios

can be constructed by following the procedure highlighted here and by choosing a different

bifurcation of the fast subsystem ending the burst. Now, considering the linear slow dynamics

of system (1) for the slow variable z, we assume that a variation of one of the 2 parameters α
and β in the full system induces the linear z-nullsurface to cut through the fold point of the

critical manifold S0 for a certain value of this parameter. One can show that this creates a Hopf

bifurcation in the full system, which induces limit cycles to appear. Provided this transversal

cut of the z-nullsurface with the critical manifold takes place, then a spike-adding canard

explosion will emerge, whereby bursting solutions appear from subthreshold (spikeless) peri-

odic solutions along branch of limit cycles undergoing multiple canard explosions; see [35] for

an example of this spike-adding phenomenon in the context of square-wave bursting. In Figs

8, 9 and 10 panels (a), we show the standard slow-fast dissection of 3D fold-initiated bursters

of the type of system (1), with several limit cycles of the 3D bursting system (orange curves)

within the spike-adding regime (with respect to parameter β) are superimposed onto the fast

subsystem bifurcation diagram (which does not depend on the value of β). In panel (b) of each

figure, we show the bifurcation diagram of the 3D burster (1) with respect to parameter β,

where the sharp rise of the (orange) branches of limit cycles (born at the Hopf bifurcation,

labeled HB, and indicated by a black dot) indicates spike-adding canard explosions that orga-

nize the transition from the stationary to the bursting regime.

As explained in the previous section, one salient feature of the spike-adding canard explo-

sion is the presence of a turning point (a canard point) in the slow flow of system (1). To com-

pute this slow flow, we first rescale time in (1) by a factor ε. That is, we rescale the fast time τ
(with x0 = dx/dτ) into the so-called slow time t defined by t = ετ. This brings the system to the

slow-time parametrization

ε _x ¼ y � f ðxÞ þ az;

ε _y ¼ Gðx; y; zÞ;

_z ¼ axþ gb � dz;

ð3Þ

whose ε = 0 limit corresponds to the slow subsystem, also called the reduced system. The slow

subsystem is a differential-algebraic equation (DAE), where the dynamics of z is explicitly pre-

served while x and y are slaved to z by the algebraic constraints that corresponds to the Eq (2)

of the (here 1D) critical manifold S0. The dynamics of x and y can be revealed by differentiating

the algebraic constraint with respect to the slow time t, which gives after rearranging the fol-

lowing 1D dynamical system defined on S0

_x ¼
ðaGy � GzÞðaxþ gb � dzÞ

Gx þ Gyf 0ðxÞ
; ð4Þ

where Gp is the partial derivative of G with respect to p 2 {x, y, z} and f0(x) is the derivative of f
with respect to x. As is typical in slow-fast systems with folded critical manifolds, note that the

denominator of the right-hand side of (4) vanishes at fold points of S0 (defined by the condi-

tion det(J(x,y)) = 0 where J(x,y) is the Jacobian matrix of (3) with respect to the fast variables

(x, y)), which makes generically the dynamics of x explode at the corresponding fold point,

referred to as a jump point. However, if the numerator has a zero of the same order as the

denominator, then there can be a cancellation and the dynamics of x does not explode; in this
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case, the fold point is referred to as a canard point or a turning point. The condition for a

canard point to occur in this system is then given by

zf ¼ ðaxf þ gbÞ=d; ð5Þ

where (xf, zf) is a fold point of S0 and assuming aGy − Gz 6¼ 0 as a nondegeneracy condition.

This indeed gives a transversal crossing of the slow nullsurface with the critical manifold at

one of its fold points. Even though (5) depends on several parameters, it is a codimension-one

condition, therefore by fixing all parameters but one, then the condition can be satisfied by

adjusting the last parameter. We arbitrarily choose to vary β, which will become a second slow

variable in the full 4D folded-node bursting system that we will construct below. Therefore,

the spike-adding transitions leading to bursting in system (1) are obtained as the result of the

slow nullsurface moving though 1 fold point of the critical manifold upon variation of β.

The same dynamics would be obtained by varying a parameter affecting the critical mani-

fold while maintaining the slow nullsurface fixed, in particular if we were to append an addi-

tive parameter I to the x equation of the system. This would mimick the effect of an applied

(external) current in a neuron-type model such as the Hindmarsh–Rose model [40] or the

Morris–Lecar model [69,75]. However, from the pure dynamical viewpoint, varying a parame-

ter in the slow equation results in the same effect and this is the scenario that we chose in order

to construct fold-initiated spike-adding transitions in the original 3D burster and folded-node

bursting in the extended 4D model.

Starting from a fold-initiated bursting scenario with spike-adding canard explosion (con-

trolled via a static variation of parameter β), a folded-node bursting is then obtained by pre-

scribing the dynamics on β by a slow differential equation. That is, we consider the following

extended bursting system

x0 ¼ ðy � f ðxÞ þ azÞ=c;

y0 ¼ Gðx; y; zÞ;

z0 ¼ εðaz þ gb � dxÞ;

b0 ¼ εðm � gyðy � yf Þ
2
� gbðb � bf Þ

2
Þ:

ð6Þ

For suitable choices of the additional parameters μ, γy, yf, γβ and βf, we can obtain folded-

node bursting dynamics in the resulting 4D system (6), of the type dictated by the underlying

bursting in the (x, y, z) system. Then, in panels (c) of Figs 8, 9 and 10, we show the time course

for the x fast variable of the ensuing folded-node/homoclinic, folded-node/Hopf, folded-node/

fold-of-cycles bursting orbits, respectively. We observe, as expected, that the burst part looks

very similar to that of the underlying 3D fold-initiated bursting system; however, the quiescent

part has small-amplitude oscillations due to the second slow variable β that creates a folded

node; see below. The folded-node bursting dynamics is further showcased in panel (d) of Figs

8, 9 and 10, where we show it (orange curve) in the (β, z, x) 3D projection of the 4D phase

space together with the 2D critical manifold S0 of the full system (green S-shaped surface), its 2

fold curves F� and the folded-node point lying on the lower fold curve F � , labeled fn and

indicated by a black dot. The critical manifold S0 and the folded node fn are only obtained

through the slow subsystem (singular slow limit ε = 0) and are key to fully characterize these 3

bursting patterns, which in the classical classification systems would be termed exactly like

their underlying 3D burster. Two additional panels are given in Fig 8 to show how this ideal-

ized folded-node/homoclinic model can reproduce experimental data that do not match any

bursting pattern in the previous classification systems. Note that our idealized model was not

initially designed to explain these data from [31] (also displayed in Fig 3), yet the time profiles
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match remarkably well. The strong similarity between our idealized model and these data sug-

gest that folded-node bursting constructions could potentially inform the design of biophysical

models.

Note that we consider here prototype systems (6) where either G is directly given as a graph

over x, described as, G(x, y, z) = g(x) − y (i.e., Folded-node/homoclinic, in Fig 8, and folded-

node/Hopf cases, in Fig 9), or the level set {G(x, y, z) = 0} is a graph over (x, z), expressed as {y
= g(x, z)} (i.e., Folded-node/fold-of-cycles case, in Fig 10). We claim that all folded-node initi-

ated bursting scenarios can be obtained in either of these 2 ways. In the latter case, our mini-

mal model is inspired by the codimension-3 degenerate Bogdanov–Takens unfolding

introduced in [74] and further applied in the context of bursting in [54].

In practice (for simulation purposes), μ, γy, and γβ will be taken O(ε). Therefore, system (6)

is effectively a 3-timescale dynamical systems with dynamics evolving on O(1), O(ε), and O
(ε2) timescales. For convenience and to ease the folded-node analysis, we will keep the equa-

tions written as in (6) with only ε has an apparent timescale separation parameter.

Introducing the slow time t = ετ brings system (6) into the parametrization

ε _x ¼ ðy � f ðxÞ þ azÞ=c;

ε _y ¼ Gðx; y; zÞ;

_z ¼ az þ gb � dx;
_b ¼ m � gyðy � yf Þ

2
� gbðb � bf Þ

2
;

ð7Þ

whose ε = 0 limit corresponds to the slow subsystem. We will show that, all other parameters

being fixed, the slow subsystem of (7) possesses a folded-node singularity, which creates tran-

sient subthreshold oscillations that initiate the burst when 0< ε� 1, regardless of the values

of other parameters.

However, simulations require that μ γy and γβ be O(ε) in order for these small subthreshold

oscillations to be recurrent, hence entering into a robust periodic bursting attractor, which we

name folded-node bursting. We provide numerical evidence of this point, based on the

strength of the global return mechanism, even though we do not provide a rigorous proof of it.

Applying the same strategy as in the 3D (bursting) case, and projecting onto the (x, β)-

plane (the dimension of the slow flow corresponds to the number of slow variables), we obtain

the following equations for the reduced system (slow subsystem)

_x ¼
ðgzðx; zÞ þ aÞðaz þ gb � dxÞ

f 0ðxÞ � gxðx; zÞ
;

_b ¼ m � gy gðx; zÞ � yf

� �2

� gbðb � bf Þ
2
;

ð8Þ

after substituting for g(x, z) for y from the critical manifold condition. The critical manifold of

system (6) is not normally hyperbolic [32] (loosely speaking, it means that fast subsystem equi-

libria are hyperbolic) everywhere and, hence, the system possesses a (1D here) fold set defined

by

F ≔ fðx; y; zÞ 2 S0; f 0ðxÞ ¼ gxðx; zÞg:

This implies that the slow flow (8) of system (6) is not defined along F . The slow flow can

be extended along F by performing an x-dependent time rescaling, which amounts to multiply

the right-hand side of (6) by a factor f0(x) − gx(x, z), hence yielding the so-called desingularised
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reduced system (DRS)

_x ¼ gzðx; zÞ þ að Þðaz þ gb � dxÞ;

_b ¼ f 0ðxÞ � gxðx; zÞð Þ m � gy gðx; zÞ � yf

� �2

� gbðb � bf Þ
2

� �

;
ð9Þ

with z = z(x) defined by S0, that is, g(x, z) − f(x) + αz = 0. In all cases, we will consider (includ-

ing the general codimension-3 unfolding of a degenerate BT bifurcation from [74]), z can be

written as a function of x on S0. As a consequence of this x-dependent time rescaling, the DRS

(9) is regular everywhere in R2 including on F , along which it has the possibility for equilibria

simply by appearance of the factor f0(x) − gx(x, z) in the β-equation.

The equilibrium condition is then that _x ¼ 0 in (9) together with f0(x) − gx(x, z) = 0, which

conveys an idea already seen in the 3D (bursting) case. That is, a singularity of the reduced sys-

tem at a point on F can be resolved if and only if the numerator of the right-hand side of _x in

that system vanishes at this point and the zeros of the 2 algebraic expressions to be of the same

order. Such points are called folded singularities (or folded equilibria), and they are the equiva-

lent of canard points in the cases with (at least) 2 slow variables.

Folded equilibria are equilibria of the DRS (9) and, according to their topological type as

equilibria of the DRS, one can generically define folded nodes, folded saddles, and folded foci.
However, they are not equilibria of the reduced system (8) due to the singular time rescaling

performed to pass from one to the other. Indeed, this time rescaling is chosen so that trajecto-

ries of the DRS have reversed orientation on the repelling sheet of S0 compared to trajectories

of the reduced system (both have the same orientation along the attracting sheet). Hence, in

the case of folded nodes and folded saddles, trajectories starting on the attracting sheet of S0

may cross the folded singularity in finite time and with finite speed, which is not possible with

an equilibrium.

The Jacobian matrix of (9) evaluated at a folded equilibrium has the form

J ¼
ð� dþ az0 ðxÞÞðgzðx; zÞ þ aÞ gðgzðx; zÞ þ aÞ

K2 0

 !

ð10Þ

where

K2 ¼ ðf
0 0ðxÞ � gxxðx; zÞÞ m � gy gðx; zÞ � yf

� �2

� gbðb � bf Þ
2

� �

:

From (10), one can easily write down conditions that enable the emergence of a folded-

node singularity (tr(J) < 0, det J> 0, tr(J)2 − 4 det J> 0) or a folded-saddle singularity (det

J< 0) in the reduced system.

As we will explain below, even though only the folded-node case gives rise to robust burst-

ing patterns, the folded-saddle case is still interesting in the study of 4D bursters with 2 slow

variables. One also can easily verify that our minimal example systems all give rise to a folded-

node case. Indeed, in the folded-node/homoclinic (Fig 8) and folded-node/Hopf (Fig 9) burst-

ing cases, system (6) has the form

x0 ¼ ðy � x3 þ 3x2 þ zÞ=c;

y0 ¼ 1 � 5x2 � y;

z0 ¼ εðaz þ gb � dxÞ;

b0 ¼ ε m � gyðy � yf Þ
2
� gbðb � bf Þ

2
� �

;

ð11Þ
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which hence gives the following DRS’s Jacobian matrix

J1;2 ¼
� d g

K2 0

 !

; ð12Þ

with: K2 ¼ ð� 6xfs � 4Þ m � gy 1 � 5x2
fs � yf

� �2

� gbðb � bf Þ
2

� �

, and xfs = −4/3.

Given the chosen parameter values corresponding to Figs 8 and 9, then we immediately

conclude that we have indeed a folded node. Likewise, in the folded-node/fold of cycles case

illustrated in Fig 10, the slow-fast system corresponding to (6) is

x0 ¼ y;

y0 ¼ � x3 þ A1ðzÞxþ A2ðzÞ � yðA3ðzÞ � xþ x2Þ;

z0 ¼ εðaz þ gb � dxÞ;

b0 ¼ ε m � gyðy � yf Þ
2
� gbðb � bf Þ

2
� �

;

ð13Þ

where Ai = aiz + bi (i = 1,2,3) are linear functions of z. Therefore, we obtain the associated

DRS’s Jacobian matrix

J1;2 ¼
� dþ a

3x2
fs � b1

a1 þ a2

� �

a1xfs þ a2ð Þ gbða1xfs þ a2Þ
2

K2 0

0

B
@

1

C
A; ð14Þ

with: K2 ¼ ð6xfs � a1Þ m � gyy2
f � gbðb � bf Þ

2
� �

and xfs solution to

� 3x2

fs þ a
x3
fs � b1xfs � b2

a1 þ a2

þ b1 ¼ 0:

Substituting the parameter values for their chosen numerical value mentioned in the cap-

tion of Fig 10 allows to conclude that we are indeed dealing with a folded node.

One can obtain the general DRS (9) by applying implicit differentiation to 1 algebraic equa-

tion only (the right-hand side of the _x equation in the original system) and substituting g(x, z)

for y (coming from the second algebraic equation). This gives the same result as the DRS

obtained from both algebraic constraint together. Indeed, in all generality, applying implicit

differentiation to the 2 algebraic equations of the slow subsystem gives

� f 0 ðxÞ 1

� gxðx; zÞ 1

0

@

1

A
_x

_y

 !

¼
� a

gzðx; zÞ

 !

ðaz þ gb � dxÞ

_z ¼ az þ gb � dx;
_b ¼ m � gyðy � yf Þ

2
� gbðb � bf Þ

2
;

ð15Þ

which by Kramer’s rule is equivalent, after posing

J ¼
� f 0ðxÞ 1

� gxðx; zÞ 1

 !

;
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(Jacobian matrix of the original vector field with respect to the fast variables at ε = 0) to

detðJÞ
_x
_y

 !

¼ AdjðJÞ
a
� gzðx; zÞ

 !

ðaz þ gb � dxÞ

_z ¼ az þ gb � dx;
_b ¼ m � gyðy � yf Þ

2
� gbðb � bf Þ

2
;

ð16Þ

where det(J) = gx(x, z) − f0(x) and

AdjðJÞ ¼
1 � 1

gxðx; zÞ � f 0 ðxÞ

� �

;

denote the determinant and the adjugate matrix of J, respectively. The previous system is sin-

gular when det(J) vanishes, which happens on the fold set. It can be desingularized by rescaling

time by a factor det(J), which brings the DRS in its most general form, namely

_x
_y

 !

¼ AdjðJÞ
a
� gzðx; zÞ

 !

ðaz þ gb � dxÞ

_z ¼ detðJÞðaz þ gb � dxÞ
_b ¼ detðJÞðm � gyðy � yf Þ

2
� gbðb � bf Þ

2
Þ:

ð17Þ

After being projected onto the (x, β)-space, system (17) then takes the form

_x ¼ ðaþ gzðx; zÞÞðaz þ gb � dxÞ
_b ¼ ðf 0ðxÞ � gxðx; zÞÞðm � gyðy � yf Þ

2
� gbðb � bf Þ

2
Þ;

ð18Þ

which indeed agrees with (9).

With the above analysis, we can construct in principle any folded-node burster of our lik-

ing. We showcase 3 examples in Figs 8, 9 and 10: folded-node/homoclinic bursting, folded-

node/Hopf bursting, and folded-node/fold-of-cycles bursting, respectively.

Finally, we quickly reflect on why folded-saddle bursting is not robust. The folded-saddle

case is simply a different parameter regime in the slow subsystem; however, the resulting

dynamics is substantially different than that generated by a folded node. In neuron models

with (at least) 2 slow variables, folded saddles and their associated canard solutions play the

role of firing threshold. In particular, in the context of bursting system, they have recently

been shown to organize the spike-adding transition in parabolic bursters [45,76]. Counterintu-

itively, small-amplitude oscillations can also emerge in the vicinity of a folded saddle; see [77]

for a rigorous analysis of this phenomenon and also [11,76] for further related work. However,

there is no funnel near a folded saddle and the canard dynamics is hence not robust, which

applies no matter how many fast variables the system possesses, so in particular in the context

of bursting. This is why, in systems with (at least) 2 fast and 2 slow variables, only the folded-

node case gives rise to a new class of bursting oscillations.

Cyclic folded-node bursting case. In the same spirit as in the classical folded-node case,

one can construct interesting bursting rhythms where the slow oscillations occur on the enve-

lope of the burst and this is due to what we will denote cyclic folded node. Parallel to the con-

struction of a folded-node burster system, one can construct a cyclic-folded-node burster

system by considering a 3D slow-fast system, which possesses torus canard solutions.

Loosely speaking, torus canard corresponds to a canard phenomenon with a fast rotation.

Already mentioned by Izhikevich in [78] in a canonical model, it was later found in a biophysical
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model of Cerebellar Purkinje cell exhibiting fold/fold cycle bursting [44] and subsequently ana-

lyzed with more mathematical details in, e.g., [79,80]. Even though to date not all elements of

torus canard transitions have been mathematically unraveled, one can summarize this phe-

nomenon by emphasizing that its key feature corresponds to a canard explosion within a fast

oscillatory motion. Instead of slowly following a family of equilibria past a fold bifurcation, the

fast-oscillating system slowly follows a family of limit cycles past a cyclic fold bifurcation.

One can draw a parallel between classical canards and torus canards in their role of transi-

tional regime in neuronal dynamics: Classical canards can explain the rapid transition from

rest to the spiking regime, likewise torus canards can explain the rapid transition from the

spiking to the bursting regime. Furthermore, torus canards are also not robust and only exist

within exponentially thin parameter regions.

Thus, the very same idea that leads from canard point to folded singularities can lead from

torus canard to cyclic folded-node canards, when adding a second slow variable. In this way, a

cyclic folded-node can be robust even if the torus canards are not robust. This has been pro-

posed very recently by Vo and colleagues [81,82] via a specific example that links the resulting

dynamics to the amplitude-modulated bursting already mentioned in [44,78]; see also [83–85]

for other examples of amplitude-modulated bursting.

In summary, we herein propose a taxonomy of cyclic folded-node bursting patterns, with

several numerical examples, which completes our extension of the previous bursting classifica-

tions. We complement this with a few examples of idealized models displaying cyclic-folded-

node bursting. We consider systems expressed in polar form, in which case the condition for

cyclic folded node and then for cyclic folded-node bursting reduce to (classical) folded-node

conditions on r; see Fig 11. We start with a bursting system written in (r, θ, a) coordinates and

displaying torus-canard dynamics, the type of which depends on the location of the slow nulll-

cline in the original bursting system, assuming for simplicity that this slow nullcline is horizon-

tal of the form {r = β}. Then, we put a slow dynamics on β similar to the one in system (6),

which yields cyclic-folded-node bursting dynamics.

In general, it is possible to reduce the system locally near the cyclic fold bifurcation of the

fast subsystem enabling the computation of normal form coefficients (see [81,82,84,85]) that

effectively characterize the cyclic folded-node. However, the bursting conditions have not

been established in general. Finally, for sake of completeness, we construct a limiting case of a

nontrivial system that displays both classical folded-node bursting and cyclic-folded-node

bursting, as depicted in Fig 12.

Application to conductance-based models

We now provide a biophysical example, namely a conductance-based bursting model, without

explicit timescale separation and which we show can be recast as a folded-node burster. This

model is a so-called episodic burster that was introduced by Bertram and colleagues in [46] to

model beta-cell oscillations, known to produce square-wave type bursting patterns. Noteworthy,

this model contains 4 state variables, 2 being fast—the membrane potential V and the delayed

rectifier potassium current activation n—and 2 slow—activation variables s1, s2 corresponding

to 2 additional potassium currents—as described in [46]. The system’s equations read

_V ¼ � ðICa þ IKdr þ Ileak þ IK1 þ IK2Þ=Cm;

_n ¼ ðn1ðVÞ � nÞ=tnðVÞ;

_s1 ¼ ðs11ðVÞ � s1Þ=ts1
;

_s2 ¼ ðs21ðVÞ � s2Þ=ts2
;

ð19Þ
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where we refer to [46] and the SI of the present article for details on the various ionic currents

and gating functions, as well as for the initial parameter set, taken to be that of Fig 3 from [46],

reproduced in Fig 13 panels (a1)-(a2). The model was reported to exhibit square-wave bursting

dynamics, and also it was noted to sustain a more complicated oscillations with “small wiggles”

in the quiescent phase. To explain this phenomenon, a slow-fast dissection was performed

whereby the fast 3D subsystem was obtained by freezing the slowest of the 2 slow variables, s2

[46]. The conclusion of the authors’ analysis was that the small oscillations occurring during the

quiescent phase can be interpreted as the result of a slow passage through a Hopf bifurcation

taking place in this 3D fast subsystem. However, it turns out that this explanation is valid to

only a certain extent and fails to explain parsimoniously the complete phenomenon. As alluded

Fig 11. Cyclic folded-node bursting cases. We use polar coordinates in order to construct idealized models. The top

panels show the slow-fast dissection for the amplitude variable r of the underlying bursting model, with 3 different

torus canard scenarios (a), (b), and (c). Adding a slow dynamics on a parameter β controlling the slow nullcline then

yields associated cyclic folded-node bursting scenarios for which we show both the slow-fast dissection in the (a, r)

plane and the x time series: (a) initiated by a subcritical Hopf bifurcation; (b) terminated by a fold of cycles; (c)

initiated by a fold of cycles. Equations and parameter values are given in S1 Text.

https://doi.org/10.1371/journal.pcbi.1009752.g011
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by our proposed classification extension, both slow variables of the system suspiciously play a

role in shaping these small wiggles. Following our proposed decomposition, we reveal the pres-

ence of a folded node in the corresponding 2D slow subsystem, which further elucidates the

mechanisms that controls the number of small wiggles depending on system parameters; see

Fig 13(a1) and 13(a2). What is more, when modifying the kinetics of both slow currents, mak-

ing the timescales of the slow variables closer to each other than in the original parameter set,

one can exhibit a different parameter set in which the folded-node scenario still explains the

presence of small wiggles during the quiescent phase of the bursting pattern whereas the Hopf

bifurcation is unable to do so. Indeed, in this scenario, the Hopf point of the 3D fast subsystem

obtained by considering s2 as the only slow variable in the model is now located outside of the

region of subthreshold oscillations. In conclusion, the folded-node scenario is more robust and

parsimonious at explaining this bursting pattern; see Fig 13(b1) and 13(b2).

Conclusions

The mathematical classification of bursting patterns was initiated with seminal papers pub-

lished in the mid-1980s with 3 proposed classes of bursting oscillations [6,19,41]. The key idea

of comparing the fast subsystem’s bifurcation diagram and the full systems’ dynamics may

seem natural with hindsight, but in fact, it was a genuine breakthrough, which shaped the way

bursting oscillations have been modeled and dissected ever since.

The present review details these footsteps, as well as those of the subsequent contributors

on this topic [7–9], hence it was important to gather these results since they form one pillar of

mathematical neuroscience and computational biology, but also have impact in other fields.

We then take a step forward by proposing an extension of the classification scheme, which

allows to cover more types of bursting systems, in particular fold-initiated bursters with 2 slow

variables, namely folded-node bursters. The extended bursting classification crucially focuses

on the dynamics during the silent phase where the termination of the trajectory profile is not

just a simple rise over the fold of the critical manifold but can involve subthreshold

oscillations.

We emphasize the importance of the slow flow (ε = 0) in slow-fast systems with (at least) 2

slow variables, which was somehow previously overlooked in the context of bursting. In such

Fig 12. A folded-node/cyclic folded-node bursting example. The x-times series of the folded-node/cyclic folded-

node bursting solution is shown in panel (a), where the upper envelope of the burst phase has been traced in black in

order to better show the small-amplitude oscillations of this envelope due to the presence of a cyclic folded node; panel

(b) is a zoom of panel (a) near the classical folded node highlighting small-amplitude oscillations throughout the silent

phase. Equations and parameter values are given in S1 Text.

https://doi.org/10.1371/journal.pcbi.1009752.g012
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two-slow-variable bursting systems, the silent phase termination is due to the presence of

folded node. This scenario is known to give rise to canard solutions that organize, upon

parameter variation but also transiently, upon change of initial conditions, the number of sub-

threshold oscillations. This slow cycle-adding phenomenon is indeed entirely due to canards

and it controls the profile of the underlying bursting oscillations. Importantly, it does so in a

robust manner in the sense that such bursting patterns with subthreshold oscillations exist

over order-one ranges of parameter values. Parabolic bursters have 2 slow variables as well;

however, their slow flow possesses a folded saddle and not a folded node [45]. In this context,

it will be interesting to study further the transition between some folded-node bursters like

folded-node homoclinic bursters and parabolic bursters with a multiparameter unfolding of

the transition in both slow and fast singular limits, where folded-saddle-node singularities and

saddle-node homoclinic bifurcations could play key roles, respectively. In summary, we have

reviewed the state-of-the-art bursting classification and enhanced it so as to take into account

both slow and fast subsystems. Indeed, the slow singular limit, where the fast variables are

slaved to the slow ones and the dynamics is constrained to the critical manifold, had not been

taken into account in previous classification schemes. This enables to capture a larger class of

complex oscillations.

Fig 13. A conductance-based episodic bursting example [46]. Left panels: Folded-node bursting orbits shown in the

(s1, s2, V)-space projection together with the 2D critical manifold S0, the lower fold curve F � , the folded-node

singularity fn; we also show the location of the Hopf bifurcation point (HB) of the 3D fast subsystem assuming only s2

as a slow variable. Right panels: V time series. The top panels show a bursting orbit for the original parameter values

from [30], whereas the bottom ones show a similar bursting solution for a different parameter set where only the

kinetics of the 2 slow currents have been modified. In the second parameter set, the HB point moves out of the

subthreshold oscillation region and, hence, the one-slow-variable scenario does not fully explain the bursting pattern,

which is better cast as folded-node bursting. The parameters of the slow currents that we modify to obtain the new set

are as follows: gK1
¼ 18:5; gK2

¼ 20; ts1
¼ 600; ts2

¼ 4000; vs1
¼ � 51; vs2

¼ � 35. All equations and parameter

values are given in S1 Text.

https://doi.org/10.1371/journal.pcbi.1009752.g013
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Where do we go from here? Following this initial framework for folded-node bursting, it

will be important to develop this approach in the context of biophysical excitable cell models

with more than one slow process. To this extent, an interesting question for follow-up work

is to rethink folded-node bursting dynamics from a biophysical modeling viewpoint. In all

our idealized models of folded-node bursting, we have added feedback terms in the second

slow differential equation with both positive and negative coefficients, which tends to indicate

that both positive and negative feedback loops are useful to produce the desired output

behavior.

In this context, we highlight 2 interesting aspects associated with the experimental time

series that we attempted to model with our idealized folded-node bursting model reproduced

in Figs 3 and 8. First, the subthreshold oscillations appear to be following the excitability

threshold, which may be harder to obtain in a 3D model, even though some elliptic bursting

models—e.g., FitzHugh–Rinzel, Morris–Lecar as well as some MMO models—could poten-

tially reproduce this aspect. Note that our example of folded-node bursting has 3 time scales;

this was done for convenience in the construction and may not be absolutely necessary.

Second, the burst phase is located on a plateau (in terms of neuronal membrane potential

values) compared to the quiescent phase, which is reminiscent of a square-wave type bursting.

Indeed, our idealized folded-node bursting model reproduces quite well these data and, in fact,

it can effectively be designated as a folded-node homoclinic bursting model. Three-dimen-

sional elliptic bursting models, or MMO models, would not be able to capture this aspect.

One interesting possibility to find biophysical models with folded-node bursting dynamics

is perhaps via existing models of thalamic bursting, or alternatively to extend these models to

explain the observational data published in [31]. When it comes to biologically plausible mod-

els, where the timescale separation may not be explicit or in standard form, the recent theoreti-

cal work by Wechselberger and colleagues on extending slow-fast theory to systems in so-

called nonstandard form (see, e.g., [86]) may allow to derive new mechanisms and new burst-

ing patterns.

In terms of application to neural dynamics, it is legitimate to ask about neural coding [87–

89] and the implications of folded-node dynamics within a bursting regime. There, one would

want to compare spike-adding to folded-node cycle-adding. The cycle adding can quantize the

slow phase duration, which might have significant effect on silent phase (and therefore on

active phase) durations.

On the other hand, spike-adding has less impact on macroscopic timing and less impact if a

spike is added to a burst of several, say, 6 or more, spikes. A single spike added in a 2- to

4-spike burst might have coding contributions (synaptic transmission) but less so if there are

already more than 6 spikes in a burst. These questions go beyond the scope of the present

paper but are certainly of direct interest for follow-up work.

The question of noise is also a natural one to consider. If small to moderate noise is added

to a folded-node bursting systems, it will likely not affect significantly the burst phase. How-

ever, it is expected that the phase of spiking oscillations during the burst will be affected, but

not the qualitative dynamics. Folded-node dynamics is known to be robust to noise; its time

course is parametrically robust and noise tolerant. The canard phenomenon accounts for sub-

tle dynamic features like cycle-adding; however, the subthreshold oscillations near a folded

node are robust. The noise will affect these subthreshold oscillations by modifying the rotation

sector in which the trajectory falls into from one passage to the the next; however, the oscilla-

tions will remain.

To quantify this variability of the sector of a folded-node burster with noise, one could use

results by Berglund and colleagues [90]. However, here as well the qualitative dynamics and

the key role of the slow subsystem and its folded node will remain. A rigorous understanding
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of the impact of noise on a folded-node bursting model is certainly an interesting question that

goes beyond the scope of the present work.

Finally, the question of bursting dynamics with at least 2 slow variables and more than 2

timescales is also of interest and related to the present work. As aforementioned, in the limit of

folded-saddle-node singularities, small subthreshold oscillations will remain and increase in

number and shape. In the context of slow-fast systems with 2 slow variables, this scenario is

well known to be akin to 3-timescale dynamics [91]. The associated bifurcation structure is

already involved in the 3D setup, with involvement of adding organizing centers such as singu-

lar Hopf bifurcation points [92]. Thus, the folded-saddle-node bursting profiles will be more

rich and complex to fully describe than the folded-node bursting cases presented herein. Yet,

the underlying robust mechanism that gives a bursting pattern and requires the analysis of

both slow and fast subsystem will be similar as the one proposed in the present work. A full

analysis of this limiting case is a very interesting and natural question for future work. Besides,

bursting systems with more than 2 timescales have recently gained further interest in link with

canards [76,93–95], where the additional timescales bring more structure to the system and

allow for further slow-fast analysis. Such approaches would certainly shed further light onto

folded-node bursting dynamics as presented here, and we regard it as a natural and interesting

question for future work.
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fiques. 1990; 72(1):63–91.

67. Wechselberger M. Existence and Bifurcation of Canards inR3 in the Case of a Folded Node. SIAM J

Appl Dyn Syst. 2005; 4(1):101–39.

68. De Maesschalck P, Wechselberger M. Neural excitability and singular bifurcations. J Math Neurosci.

2015; 5(1):16. https://doi.org/10.1186/s13408-015-0029-2 PMID: 26246435

69. Terman D. Chaotic spikes arising from a model of bursting in excitable membranes. SIAM J Appl Math.

1991; 51(5):1418–50.

70. Guckenheimer J, Kuehn C. Computing slow manifolds of saddle type. SIAM J Appl Dyn Syst. 2009; 8

(3):854–79.

71. Nowacki J, Osinga HM, Tsaneva-Atanasova K. Dynamical systems analysis of spike-adding mecha-

nisms in transient bursts. J Math Neurosci. 2012; 2(1):7. https://doi.org/10.1186/2190-8567-2-7 PMID:

22655748

72. Tsaneva-Atanasova K, Osinga HM, Rieß T, Sherman A. Full system bifurcation analysis of endocrine

bursting models. J Theor Biol. 2010; 264(4):1133–46. https://doi.org/10.1016/j.jtbi.2010.03.030 PMID:

20307553

73. Osinga HM, Sherman A, Tsaneva-Atanasova K. Cross-currents between biology and mathematics:

The codimension of pseudo-plateau bursting. Discrete Continuous Dyn Syst Ser A. 2012; 32(8):2853.

https://doi.org/10.3934/dcds.2012.32.2853 PMID: 22984340

74. Dumortier F, Roussarie R, Sotomayor J, Zoladek H. Bifurcations of planar vector fields: nilpotent singu-

larities and Abelian integrals. vol. 1480 of Lecture Notes in Mathematics. Springer-Verlag; 1991.

75. Morris C, Lecar H. Voltage oscillations in the barnacle giant muscle fiber. Biophys J. 1981; 35(1):193–

213. https://doi.org/10.1016/S0006-3495(81)84782-0 PMID: 7260316

76. Desroches M, Kirk V. Spike-adding in a canonical three-time-scale model: superslow explosion and

folded-saddle canards. SIAM J Appl Dyn Syst. 2018; 17(3):1989–2017.

77. Mitry J, Wechselberger M. Folded saddles and faux canards. SIAM J Appl Dyn Syst. 2017; 16(1):546–

96.

78. Izhikevich EM. Synchronization of elliptic bursters. SIAM Rev. 2001; 43(2):315–44.

79. Benes GN, Barry AM, Kaper TJ, Kramer MA, Burke J. An elementary model of torus canards. Chaos:

An Interdisciplinary J Nonlinear Sci. 2011; 21(2):023131. https://doi.org/10.1063/1.3592798 PMID:

21721773

80. Burke J, Desroches M, Barry AM, Kaper TJ, Kramer MA. A showcase of torus canards in neuronal

bursters. J Math Neurosci. 2012; 2(1):3. https://doi.org/10.1186/2190-8567-2-3 PMID: 22657918

81. Vo T. Generic torus canards. Physica D: Nonlinear Phenomena 2017; 356–357:37–64.

82. Vo T, Kramer MA, Kaper TJ. Amplitude-Modulated Bursting: A Novel Class of Bursting Rhythms. Phys

Rev Lett. 2016; 117(26):268101. https://doi.org/10.1103/PhysRevLett.117.268101 PMID: 28059538

83. Han X, Wei M, Bi Q, Kurths J. Obtaining amplitude-modulated bursting by multiple-frequency slow

parametric modulation. Phys Rev E. 2018; 97(1):012202. https://doi.org/10.1103/PhysRevE.97.012202

PMID: 29448416

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009752 February 24, 2022 31 / 32

https://doi.org/10.1371/journal.pcbi.1008503
https://doi.org/10.1371/journal.pcbi.1008503
http://www.ncbi.nlm.nih.gov/pubmed/33347433
https://doi.org/10.1162/neco%5Fa%5F01342
http://www.ncbi.nlm.nih.gov/pubmed/33253029
https://doi.org/10.1152/jn.2000.83.1.588
https://doi.org/10.1152/jn.2000.83.1.588
http://www.ncbi.nlm.nih.gov/pubmed/10634897
https://doi.org/10.1186/s13408-015-0029-2
http://www.ncbi.nlm.nih.gov/pubmed/26246435
https://doi.org/10.1186/2190-8567-2-7
http://www.ncbi.nlm.nih.gov/pubmed/22655748
https://doi.org/10.1016/j.jtbi.2010.03.030
http://www.ncbi.nlm.nih.gov/pubmed/20307553
https://doi.org/10.3934/dcds.2012.32.2853
http://www.ncbi.nlm.nih.gov/pubmed/22984340
https://doi.org/10.1016/S0006-3495%2881%2984782-0
http://www.ncbi.nlm.nih.gov/pubmed/7260316
https://doi.org/10.1063/1.3592798
http://www.ncbi.nlm.nih.gov/pubmed/21721773
https://doi.org/10.1186/2190-8567-2-3
http://www.ncbi.nlm.nih.gov/pubmed/22657918
https://doi.org/10.1103/PhysRevLett.117.268101
http://www.ncbi.nlm.nih.gov/pubmed/28059538
https://doi.org/10.1103/PhysRevE.97.012202
http://www.ncbi.nlm.nih.gov/pubmed/29448416
https://doi.org/10.1371/journal.pcbi.1009752


84. Roberts KL, Rubin JE, Wechselberger M. Averaging, folded singularities, and torus canards: explaining

transitions between bursting and spiking in a coupled neuron model. SIAM J Appl Dyn Syst. 2015; 14

(4):1808–44.

85. Roberts KL. Geometric Singular Perturbation Theory and Averaging: Analysing Torus Canards in Neu-

ral Models. School of Mathematics and Statistics. University of Sydney; 2018.

86. Wechselberger M. Geometric singular perturbation theory beyond the standard form. Springer; 2020.

87. Izhikevich EM. Resonance and selective communication via bursts in neurons having subthreshold

oscillations. Biosystems. 2002; 67(1–3):95–102. https://doi.org/10.1016/s0303-2647(02)00067-9

PMID: 12459288

88. Izhikevich EM, Desai NS, Walcott EC, Hoppensteadt FC. Bursts as a unit of neural information: selec-

tive communication via resonance. Trends Neurosci. 2003; 26(3):161–7. https://doi.org/10.1016/

S0166-2236(03)00034-1 PMID: 12591219

89. Zeldenrust F, Chameau P, Wadman WJ. Spike and burst coding in thalamocortical relay cells. PLoS

Comput Biol. 2018; 14(2):e1005960. https://doi.org/10.1371/journal.pcbi.1005960 PMID: 29432418

90. Berglund N, Gentz B, Kuehn C. Hunting French ducks in a noisy environment. J Differ Equ. 2012; 252

(9):4786–841.

91. Krupa M, Wechselberger M. Local analysis near a folded saddle-node singularity. J Differ Equ. 2010;

248(12):2841–88.

92. Guckenheimer J. Singular Hopf bifurcation in systems with two slow variables. SIAM J Appl Dyn Syst.

2008; 7(4):1355–77.

93. Krupa M, Vidal A, Desroches M, Clément F. Mixed-mode oscillations in a multiple time scale phantom

bursting system. SIAM J Appl Dyn Syst. 2012; 11(4):1458–98.

94. Letson B, Rubin JE, Vo T. Analysis of interacting local oscillation mechanisms in three-timescale sys-

tems. SIAM J Appl Math. 2017; 77(3):1020–46.

95. Nan P, Wang Y, Kirk V, Rubin JE. Understanding and distinguishing three-time-scale oscillations: Case

study in a coupled Morris–Lecar system. SIAM J Appl Dyn Syst. 2015; 14(3):1518–1557.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009752 February 24, 2022 32 / 32

https://doi.org/10.1016/s0303-2647%2802%2900067-9
http://www.ncbi.nlm.nih.gov/pubmed/12459288
https://doi.org/10.1016/S0166-2236%2803%2900034-1
https://doi.org/10.1016/S0166-2236%2803%2900034-1
http://www.ncbi.nlm.nih.gov/pubmed/12591219
https://doi.org/10.1371/journal.pcbi.1005960
http://www.ncbi.nlm.nih.gov/pubmed/29432418
https://doi.org/10.1371/journal.pcbi.1009752

