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Mass spectrometric analysis of
TRPM6 and TRPM7 from small
intestine of omeprazole-
induced hypomagnesemic rats

Nattida Kampuang and Narongrit Thongon*

Division of Physiology, Department of Medical Sciences, Faculty of Allied Health Sciences, Burapha
University, Chonburi, Thailand
Disruption of small intestinal Mg2+ absorption has been reported as the

underlying mechanism of proton pump inhibitor-induced hypomagnesemia

(PPIH); hence, this study evaluated the expression, localization,

phosphorylation, and oxidation of transient receptor potential melastatin 6

(TRPM6) and TRPM7 in the small intestine of rats subjected to PPIH. The

expression and localization of cyclin M4 (CNNM4) was also analyzed. We

show that, compared to control rats, membrane expression of the TRPM6/7

heterodimer and TRPM7wasmarkedly lower in the duodenum and the jejunum

of PPIH rats; in contrast, expression of membrane TRPM6 and CNNM4 was

higher in these organs. Mass spectrometric analysis of TRPM6 demonstrated

hyper-phosphorylation, especially T1851, and hyper-oxidation at M1755, both

of which can suppress its channel permeability. Further, hypo-phosphorylation

of S141 and the dimerization motif domain of TRPM6 in PPIH rats might be

involved in lower TRPM6/7 heterodimer expression. Hypo-phosphorylation,

especially at S138 and S1360 in TRPM7 from PPIH rats disrupted stability of

TRPM7 at the cell membrane; hyper-oxidation of TRPM7 was also observed.

These results help explain the mechanism underlying the disruption of small

intestinal Mg2+ absorption in PPIH.

KEYWORDS

hypomagnesemia, oxidation, phosphorylation, proton pump inhibitors, small
intestine, TRPM6, TRPM7
Introduction

Proton pump inhibitors (PPIs) use is associated with an increased risk of gastric and

colorectal cancer (1). A previous large population-based cohort study reported that the

use of PPIs was associated with a 45% increased risk of gastric cancer compared with the

use of histamine-2 receptor antagonists (1). The risk of cancer increased with cumulative

duration of PPIs administration (1). Prolong use of PPIs also induced hypomagnesemia
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and systemic Mg2+ deficiency (2, 3). Mg2+ deficiency impairs

DNA repair mechanisms (3), which then increase digestive

cancer risk (4, 5). Dysregulation of gastrointestinal Mg2+

channels is proposed as the regulatory factors of digestive

cancer cell fates and oncogenic signaling pathways (4).

Therefore, PPIs induced risk of gastrointestinal cancer

probably due, at least in part, to dysregulation of Mg2+ channel.

PPI-induced hypomagnesemia (PPIH) has been described in

humans (2), C57BL/J6 mice (6), and Sprague–Dawley rats (7, 8),

and we have previously reported that, compared to control

animals, prolonged omeprazole injection can markedly

suppress small intestinal Mg2+ absorption in a rat model of

PPIH (7, 8) with up to 81.86%, 70.59%, and 69.45% reduction in

absorption at the duodenum, the jejunum, and the ileum,

respectively (7). Notably, even though this reduction led to

significantly higher expression of transient receptor potential

melastatin 6 (TRPM6) and cyclin M4 (CNNM4) in the entire

intestinal tract of the PPIH rats (7), Mg2+ absorption was not

restored in these PPIH rats, and the mechanisms remain unclear.

Two common single nucleotide polymorphisms in TRPM6 gene

have been reported in PPIH patients (9), and it is possible that

TRPM6 protein dysfunction or mutation occurred in the

intestine of our PPIH rat model. Moreover, expression and

localization patterns of TRPM7 in small intestine during PPIH

remain unknown.

It has been previously proposed that the small intestine

absorbs Mg2+ solely through an un-regulated paracellular

pathway because the TRPM6 gene was not detected in the

murine small intestine (3, 10); however, we have previously

demonstrated that the duodenum, the jejunum, and the ileum

absorb Mg2+ through both transcellular and paracellular

mechanisms (7, 8). Further, TRPM6 is markedly expressed in

duodenal, jejunal, and ileal tissues in rats (7) and humans (11),

and a recent study has reported that fibroblast growth factor-23

and parathyroid hormone systemically and directly regulate

both transcellular Mg2+ absorption and membrane TRPM6

expression in the duodenum and the jejunum (12).

TRPM6 and TRPM7 are bifunctional proteins and consist of

a cation channel segment that is covalently linked to an a-type
protein kinase domain. TRPM6 shows tissue-specific expression

in the intestine and in the renal tubules (13), and plays a crucial

role in intestinal and renal epithelial Mg2+ transport (14).

Mutations in Trpm6 lead to lower Mg2+ absorption despite

hypomagnesemia, along with secondary hypocalcemia (HSH)

(11, 15), and physiological intracellular Mg·ATP and Mg2+ levels

are potent negative feedback inhibitors of TRPM6 channel

permeability (14–17). In contrast, TRPM7 has a ubiquitous

expression (13, 18), plays a role in the regulation of cellular

Mg2+ (19), and its activity is also inhibited by intracellular Mg2+

and Mg·ATP (18–20). Contrary to the above, one previous study

has suggested that native TRPM6 primarily functions as a

subunit of heteromeric TRPM6/7 channels (21), which show

low sensitivity to intracellular Mg2+ and Mg·ATP (17, 22); thus,
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continuous epithelial Mg2+ absorption can occur through the

TRPM6/7 channel, regardless of intracellular Mg2+ and Mg·ATP

concentrations. Mutations at S141 in TRPM6 disrupts both

localization and function of the membrane TRPM6/7

heterodimer (23) and are implicated in lower Mg2+ absorption

in HSH. However, TRPM6/7 heterodimer expression in the cell

membrane of the small intestine in PPIH has not

been characterized.

Phosphorylation of TRPM6 regulates its channel

permeability and a-kinase activity, and mutations in the

phosphorylation site at S1754 diminishes TRPM6 a-kinase
activity (24). Further, phosphorylation at S1252 induces

TRPM6 permeability (25), and autophosphorylation of T1851

residue mediates TRPM6 channel suppression by intracellular

free Mg2+ and activated C-kinase 1 (RACK1) (16). Mutations at

the S138 residue in TRPM7 disrupt its membrane localization

(23), while phosphorylation of S1360 residues in TRPM7

facilitate its membrane stability (26). It is known that oxidative

stress induces oxidation of the M1755 residue in TRPM6, which

then suppresses channel permeability (27). Nevertheless,

phosphorylation patterns and oxidation status of TRPM6 and

TRPM7 in the small intestine of a rat model of PPIH have not

been clearly established.

Given the above unknowns, this study aimed to assess the

expression and localization of TRPM6, TRPM7, and CNNM4 in

the small intestine of a rat model of PPIH, along with the

membrane expression of the heteromeric TRPM 6/7 channel.

Additionally, mass spectrometric analysis was used to identify

phosphorylation and oxidation in TRPM6 and TRPM7 in

this model.
Methods

Animals and protein samples

This study was performed in parallel with our previous study

and used samples from the same experimental Male Sprague-

Dawley rats (7). All experiments were performed following

relevant guidelines and regulations, including the ARRIVE

guidelines (http://www.ARRIVEguidelines.org), and approved

by the Ethics Committee on Animal Experiments, Burapha

University, Thailand (IACUC 017/2562). Animals were

randomly divided into 3 groups i.e., control, and 12-wk and

24-wk omeprazole injection. Control and 24-wk omeprazole-

treated groups were administered subcutaneous sham or

omeprazole (20 mg/kg: Ocid® IV; Zydus Cadila, India)

injections daily for 24 weeks. The 12-wk-omeprazole-treated

group was administered subcutaneous sham injections daily for

12 weeks, followed by subcutaneous omeprazole injection for the

next 12 weeks. We have previously established that 12-wk and

24-wk omeprazole injections suppressed plasma Mg2+
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concentration and induced hypomagnesemia by markedly

inhibiting small intestinal Mg2+ absorption (7).

Cells from the duodenum, the jejunum, the ileum, and the

colon of control and PPIH rats were collected by scraping the

mucosal surface with an ice-cold glass slide. Tissue was lysed in

cold Pierce® Ripa Buffer (Thermo Fisher Scientific Inc.,

Rockford, IL, USA) with 10% v/v protease inhibitor cocktail

(Sigma, St. Louis, MO, United States) and Halt™ Phosphatase

Inhibitor Cocktail (Thermo Fisher Scientific Inc.), sonicated, and

centrifuged at 12,000 g for 15 min. Total protein was either

subjected to western bolt analysis or separated into cell

membrane and cytosolic fractions using Mem-PER™ Plus

Membrane Protein Extract ion Kit (Thermo Fisher

Scientific Inc.).
Immunoprecipitation

Immunoprecipitation of TRPM6 protein was performed

using a commercially available kit (catalog no. ab206996;

Abcam, Cambridge, UK). In brief, membrane protein samples

were incubated with 1:500 anti-TRPM6 antibody (catalog no.

PA5-77326; Thermo Fisher Scientific Inc.) overnight at 4°C on a

rotary mixer. The antigen-antibody (Ag-Ab) complex was

subsequently incubated with Protein A/G Sepharose® beads

for 1 hour at 4°C. The Ag-Ab-beads complex was collected by

centrifugation at 2000g for 2 min at 4°C and washed thrice inWash

Buffer by centrifugation at 2000g for 2 min at 4°C. After elution

with a Glycine-Tris elution buffer, the immunoprecipitated-

TRPM6 (IP-TRPM6) protein was stored at -80°C till Western

blot analysis. For mass spectrometric analysis, the IP-TRPM6

protein complex was further concentrated using Vivaspin®

20 centrifugal concentrator (Sartorius Stedim Biotech GmbH,

Goettingen, Germany).
Western blot analysis

Total, membrane, cytosolic, or IP-TRPM6 protein samples

were resuspended in SDS-PAGE sample buffer containing

dithiothreitol (DTT) and heated for 5 min at 95°C. Samples

were loaded, separated on SDS-PAGE gel, and electrotransferred

onto a nitrocellulose membrane. The membrane was probed

with primary antibodies (1:1000 dilution) against TRPM6

(catalog no. PA5-77326; Thermo Fisher Scientific Inc.),

TRPM7 (catalog no. ab729; Abcam), CNNM4 (catalog no. SC-

68437; Santa Cruz Biotechnology, Santa Cruz, CA, USA), or b-
actin (catalog no. ab8226; Abcam, Cambridge, UK). The

membrane was subsequently incubated with 1:5000 HRP-

conjugated secondary antibodies as needed (catalog no. ab6721

or ab97110; Abcam, catalog no. AP124P; EMD Millipore), the

protein bands visualized by Thermo Scientific SuperSignal®

West Pico Substrate (Thermo Fisher Scientific Inc.), and
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images captured on a ChemiDoc™ Touch Imaging System

(Bio-Rad, Hercules, CA, USA). Densitometric analysis was

performed using ImageJ for Mac Os X (28).
In-solution protein digestion

For each sample, 20 mg protein was reduced with 100 mM

DTT in 100 mMTEA buffer at room temperature for 30 min and

alkylated with 100 mM iodoacetamide in 100 mM TEAB at

room temperature for 30 min in the dark. Samples were reduced

again with 100 mMDTT in 100 mM TEAB at room temperature

for 15 min and subsequently digested with Sequencing Grade

Modified Trypsin (Promega, Madison, WI, USA) for 16 hours at

37°C. Samples were dried in a CentriVap DNA Concentrator

(Labconco Co., Kansas City, Missouri, USA) and resuspended in

0.1% formic acid (FA; Thermo Fisher Scientific Inc.) for Nano-

LC-MS/MS.
Nanoscale liquid chromatography-
tandem mass spectrometry

TRPM6 and TRPM7 proteins were analyzed on a Nano-LC-

MS/MS system that included a Nano-liquid chromatograph

(Dionex Ultimate 3000, RSLCnano System, Thermo Fisher

Scientific Inc.) and a CaptiveSpray source/Quadrupole ion trap

mass spectrometer (Model Q-ToF Com-pact II, Bruker,

Hamburg, Germany). Peptides were enriched by the Nano

trap column and separated on a PepMap100 C18 LC column.

Peptides were eluted at a flow rate of 300 nL/min at 60°C under a

linear gradient of 2%–95% Solvent B over a 90 min run of mobile

phase A. Mobile phase A consisted of water/FA (99.9:0.1, v/v)

while solvent B was composed of acetonitrile/water/FA

(80:19.92:0.08, v/v). Mass spectral data from the 300 to 2,200

m/z range were collected in the positive ionization mode with

acquisition rate set at 6 Hz. Auto MSN CID fragmentation

experiments were performed at low (4 Hz) and high (16 Hz)

mass spectral rates for the top 2 most intense precursor ions

using 3 sec dynamic exclusion. Peptide sequences were matched

on the UniProtKB database (https://www.uniprot.org/help/

uniprotkb) using the MASCOT (v 2.3) searching engine

(Matrix Science Ltd., London, UK). Exponentially modified

protein abundance index (emPAI) was used to determine

protein abundance in each LC-MS/MS experimental sample

(29), while phosphorylation and oxidation of TRPM6 and

TRPM7 were determined by MS/MS fragmentation analysis.
Statistical analysis

Results were expressed as means ± SE. Two sets of data were

compared using the unpaired Student’s t-test. One-way analysis
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of variance (ANOVA) with Dunnett’s posttest was used for the

comparison of multiple sets of data. All data were analyzed by

GraphPad Prism (GraphPad Software Inc., San Diego,

CA, USA).
Results

Higher membrane TRPM6 expression in
small intestine of PPIH rats

In accordance with our previous results (7), both 12-wk and

24-wk omeprazole injection markedly induced total TRPM6

expression in the duodenum, the jejunum, the ileum, and the

colon (Figure 1A). Compared to controls, membrane TRPM6

expression was significantly higher in the duodenum and the

jejunum of 12-wk (Figure 2A) and 24-wk omeprazole-injected

rats (Figure 2C). In contrast, cytosolic TRPM6 was significantly

lower in the duodenum and the jejunum of 12-wk (Figure 2B)

and 24-wk omeprazole-injected rats (Figure 2D), indicating an

increase in TRPM6 insertion in the plasma membrane of the

cells in the duodenum and jejunum of PPIH rats.
Decrease in membrane TRPM7
expression in small intestine of PPIH rats

As depicted in Figure 1B, total TRPM7 had significantly

increased in the duodenum, the jejunum, the ileum, and the

colon of 12-wk and 24-wk omeprazole-injected rats compared to

controls. While membrane TRPM7 in the duodenum and the

jejunum of 12-wk (Figure 3A) and 24-wk omeprazole-injected

rats (Figure 3C) had significantly decreased compared to

controls, cytosolic TRPM7 expression had significantly

increased in the duodenum and the jejunum of omeprazole-

treated rats (Figures 3B, D). These results suggest that

internalization of the plasma membrane TRPM7 probably

occurred in the duodenum and the jejunum of PPIH rats.
Reduction in membrane TRPM6/7
heterodimer in the small intestine of
PPIH rats

To analyze the expression of the TRPM6/7 heterodimer,

immunoprecipitation of TRPM6 (IP-TRPM6) from the

membrane protein fraction was performed. Next, 40 µg of IP-

TRPM6 protein from each group was used for western blot

analysis. As demonstrated in Figure 4, membrane TRPM6

expression from the IP-TRPM6 sample was significantly

higher in the duodenum and the jejunum of PPIH rats

compared to controls. Western blot membranes were

subsequently re-probed with TRPM7 antibody and the results
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showed that, compared to control rats, TRPM7 expression was

significantly lower in IP-TRPM6 samples from the duodenum

and the jejunum of omeprazole-injected rats (Figure 4). These

results indicate lower presence of the membrane TRPM6/7

heterodimer in the duodenum and the jejunum of PPIH rats.

Higher membrane CNNM4 expression in the small intestine

of PPIH rats

As shown in Figure 1C, total CNNM4 significantly increased

in duodenum, jejunum, ileum, and colon of omeprazole-injected

rats compared to controls. Similarly, membrane CNNM4 was

significantly higher in the duodenum and the jejunum of 12-wk

(Figure 5A) and 24-wk omeprazole-treated rats (Figure 5C),

compared to control animals. Contrastingly, cytosolic CNNM4

expression had significantly decreased in the duodenum and the

jejunum of these hypomagnesemic rats (Figures 5B, D).
TRPM6 and TRPM7 protein sequence in
duodenum and jejunum of PPIH rats

As our results showed an increase in membrane TRPM6

expression but a reduction in membrane TRPM6/7 heterodimer

presence in duodenum and jejunum of PPIH rats, along with

marked suppression of Mg2+ absorption (7), we further analyzed

the protein sequence of plasma membrane-bound TRPM6 and

TRPM7 in IP-TRPM6 protein samples using Nano-LC-MS/MS.

The emPAI values for IP-TRPM6 from the duodenum and the

jejunum of control and omeprazole-treated groups were 0.11 and

0.12, respectively, which indicated that comparable protein

quantities had been analyzed by the Nano-LC-MS/MS. TRPM6

protein sequence from the duodenum and the jejunum of control,

12-wk, and 24-wk omeprazole-injected rats showed 98%–100%

identity to the human TRPM6 (UniProtKB: Q9BX84), mouse

TRPM6 (UniProtKB: Q8CIR4), and a rat non-specific serine/

threonine protein kinase, which had probably been translated

from the Trpm6 gene (UniProtKB: F1M7G0) (Supplement

Table 1). We also analyzed the protein sequence of TRPM7

from the heteromeric TRPM6/7 complex in IP-TRPM6 protein

samples from duodenum and jejunum of control and omeprazole

(12-wk and 24-wk) treated rats and found that protein sequence

had 100% identity to rat TRPM7 (UniProtKB: Q925B3), 99%–

100% identity to mouse TRPM7 (UniProtKB; Q923J1), and 99%–

100% identity to human TRPM7 (UniProtKB; Q96QT4)

sequences (Supplement Table 2). These results confirm the

presence of membrane TRPM6, TRPM7, and TRPM6/7

heterodimer in the small intestine.
Phosphorylation of TRPM6 and TRPM7

Next, MS/MS fragmentation analysis was used to identify

phosphorylated residues throughout the full length of the

TRPM6 and the TRPM7 protein sequence. Previous studies
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FIGURE 1

Total TRPM6 (A), TRPM7 (B), and CNNM4 (C) expression in duodenum, jejunum, ileum, and colon of control or omeprazole treated rats. ome;
omeprazole. *P < 0.05, **P < 0.01, ***P < 0.001. (n = 6).
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FIGURE 2

Membrane TRPM6 (A) and cytosolic TRPM6 (B) expression in duodenum, jejunum, ileum, and colon of control or 12 wk omeprazole-treated
rats. Membrane TRPM6 (C) and cytosolic TRPM6 (D) expression in duodenum, jejunum, ileum, and colon of control or 24 wk omeprazole-
treated rats. The upper relative expression graph; the protein expression in jejunum, ileum, and colon was relatively compared to that of in the
duodenum. The lower relative expression graph; the protein expression in duodenum, jejunum, ileum, and colon of omeprazole-treated groups
was relatively compared its corresponding segment of control group. Duo, duodenum; Jeju, jejunum; Ile, ileum; Co, colon; ome, omeprazole.
*P < 0.05, **P < 0.01, ***P < 0.001. (n = 6).
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FIGURE 3

Membrane TRPM7 (A) and cytosolic TRPM7 (B) expression in duodenum, jejunum, ileum, and colon of control or 12 wk omeprazole-treated
rats. Membrane TRPM7 (C) and cytosolic TRPM7 (D) expression in duodenum, jejunum, ileum, and colon of control or 24 wk omeprazole-
treated rats. The upper relative expression graph; the protein expression in jejunum, ileum, and colon was relatively compared to that of in the
duodenum. The lower relative expression graph; the protein expression in duodenum, jejunum, ileum, and colon of omeprazole-treated groups
was relatively compared its corresponding segment of control group. Duo, duodenum; Jeju, jejunum; Ile, ileum; Co, colon; ome, omeprazole.
*P < 0.05, **P < 0.01, ***P < 0.001. (n = 6).
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have reported that the S141 residue of TRPM6 regulates the

localization and function of membrane TRPM6/7 heterodimer

(23), and we detected phosphorylation of the S141 residue in

TRPM6 in the duodenum and the jejunum of control rats

(Table 1). Contrastingly, phospho-S141 was not present in

either duodenal or jejunal TRPM6 from PPIH rats, and these

observations explain lower membrane expression of the

TRPM6/7 heterodimer in the small intestine of our PPIH

rat model.

Phosphorylation of the S1252 residue in TRPM6 induces

channel permeability (25) and phospho-S1252 was detected in

TRPM6 from the duodenum and the jejunum of control rats, but

not PPIH rats. Further, T1851 autophosphorylation mediates

suppression of TRPM6 channel activity by intracellular free Mg2+

and activated C-kinase 1 (RACK1) (16), and we observed phospho-

T1851 in TRPM6 from the duodenum and the jejunum of PPIH

rats, but not controls (Table 1). Notably, these results can, at least in

part, explain why TRPM6 overexpression failed to increase small

intestinal Mg2+ absorption in the PPIH rat model (7).

Hyper-phosphorylation of the N-terminus, channel, and a-
kinase domain of TRPM6 was detected in PPIH rats (Table 1),

while hypo-phosphorylation was discovered in the dimerization

motif domain of TRPM6 from PPIH rats. However, the effect of

hypo- and hyper-phosphorylation on TRPM6 and its membrane

localization and channel permeability, require further study.
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MS/MS fragmentation analysis of large- and intermediate-size

TRPM6 peptide fragments could not identify the presence of

S1821 or T1822 residues in duodenal TRPM6 from PPIH rats;

however, both residues were present in duodenal samples from

control animals. Further, S1821 and T1822 could be detected in

a small duodenal TRPM6 peptide fragment in PPIH rats, but its

% peak was lower than that of control duodenal TRPM6.

Nevertheless, the role of S1821 and T1822 on TRPM6

membrane expression and function require further study.

A previous study has reported that S138 in TRPM7 can

modulate its membrane localization (23), and that the S1360

residue in TRPM7 can affect its stability on the plasma

membrane (26). In the duodenum and the jejunum of control

rats, phospho-S138 and phospho-S1360 residues were detected

in TRPM7 (Table 2). Neither phospho-S138 nor phospho-S1360

were identified in duodenal or jejunal TRPM7 from PPIH rats,

and these results can account for the lower expression of

membrane TRPM7 and TRPM6/7 heterodimer in the small

intestine of our PPIH model. Hypo-phosphorylation of

TRPM7 in the small intestine in PPIH rats was also seen

(Table 2), and we detected a less phosphorylated residue of

TRPM7 that had been phosphorylated by the a-kinase domain

of TRPM6 (yellow highlight; Table 2).
Hyper-oxidation of TRPM6 and TRPM7

MS/MS fragmentation analysis also revealed methionine

oxidation throughout the full length of the TRPM6 (Table 3)

and the TRPM7 (Table 4) protein sequences. We also identified

hyper-oxidation of TRPM6 and TRPM7 protein in the small

intestine of PPIH rats compared to control rats. A previous study

has reported that oxidation of the M1755 residue leads to the

suppression of TRPM6 channel activity (27), but as seen in

Table 3, M1755 oxidation (bolded) was present in both duodenal

and jejunal TRPM6 in PPIH rats, but not in control rats. These

results can, at least in part, explain why TRPM6 overexpression

fails to increase small intestinal Mg2+ absorption (7).

Importantly, our results suggest that prolonged omeprazole

treatment increases oxidative stress in the small intestine.
Discussion

We have previously demonstrated that prolonged

omeprazole administration (12 and 24 wks) induced

hypomagnesemia and Mg2+-store depletion by suppressing

intestinal Mg2+ absorption, mainly in the duodenum and the

jejunum of PPIH rats (7). In continuation, here, we show that

the expression of the membrane TRPM6/7 heterodimer and that

of membrane TRPM7 was markedly lower in the duodenum and

the jejunum of PPIH rats, but that membrane TRPM6

expression was higher. Mass spectrometric analysis
FIGURE 4

Membrane TRPM6 and TRPM7 expression from
immunoprecipitated (IP)-TRPM6 sample from duodenal and ileal
tissues of control or omeprazole-treated rats. Duo, duodenum;
Jeju, jejunum. **P < 0.01, ***P < 0.001. (n = 6).
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A B

DC

FIGURE 5

Membrane CNMM4 (A) and cytosolic CNMM4 (B) expression in duodenum, jejunum, ileum, and colon of control or 12 wk omeprazole-treated
rats. Membrane CNMM4 (C) and cytosolic CNMM4 (D) expression in duodenum, jejunum, ileum, and colon of control or 24 wk omeprazole-
treated rats. The upper relative expression graph; the protein expression in jejunum, ileum, and colon was relatively compared to that of in the
duodenum. The lower relative expression graph; the protein expression in duodenum, jejunum, ileum, and colon of omeprazole-treated groups
was relatively compared its corresponding segment of control group. Duo, duodenum; Jeju, jejunum; Ile, ileum; Co, colon; ome, omeprazole.
*P < 0.05, **P < 0.01, ***P < 0.001. (n = 6).
Frontiers in Oncology frontiersin.org09
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TABLE 1 Phosphorylated residue of TRPM6 protein from duodenum and jejunum of control or omeprazole-treated rats.

Duodenal TRPM6 protein Jejunal TRPM6 protein

l 12-wk omeprazole 24-wk omeprazole

8, S82,
0, T92,
S160,
T204,
T240,
S282,
T354,
Y462,
Y529,
Y545,
S561,
, S596,
S662,
, S705,
, S721,
, T759,
Y835,

T28, S32, S33, Y66,
S67, T69, S71, S78,
T87, T88, S90, Y116,
T150, S160, T181,
S184, S193, S195,
S196, Y228, T230,
S236, T239, S274,
S282, S362, T380,
S386, S407, Y431,
T471, Y479, T488,
T501, T506, Y519,
T530, S551, S552,
S558, S561, T562,
T570, Y574, S590,
T635, Y645, S662,
Y668, S669, T693,
T706, S743, Y782,
Y783, S784, S790,
S791, S794, S796,
T828, Y849, Y858

S15, T28, S32, S67,
T69, S71, S78, T88,
T97, T106, Y116,
T150, S153, S160,
T176, S195, S196,
S198, T204, Y228,
T240, S243, Y259,
Y272, S282, S302,
T319, T329, T354,
S407, S409, T486,
S504, Y506, T509,
Y519, Y525, Y530,
Y538, S551, S579,
S585, S590, S596,
S601, T602, Y608,
Y645, Y668, S669,
T693, T696, Y697,
S703, S705, S743,
S790, Y800, S820,
T828, Y832, Y835,
Y845, T857, T859

T881,
T935,
Y1026

Y878, T881, T899,
Y909, T913, T915,
T936, S990, 1006,

S1008, S1035, S1043,
Y1053

T881, S893, T899,
T936, S951, T974,

S1000, S1006, Y1018,
Y1022, S1038, T1046,

Y1053

, S1080,
, Y1091,
S1109

Y1073, S1078, T1094,
S1109

Y1073, 1078, S1080,
T1094, S1109

, Y1157, Y1137, Y1157 Y1137, S1168

, T1181,
, S1200,
221

S1200, S1203, S1206,
S1215, T1221

S1200, S1203, S1206,
S1215

, S1244,
, Y1276,
, S1325,
Y1341,
399

S1226, S1244, S1254,
Y1276, T1311, S1325,
S1329, S1339, Y1341,
S1349, S1357, S1368,

S1399, T1426

S1244, Y1275, S1277,
S1280, S1281, T1311,
T1322, S1324, S1325,
S1357, S1368, T1391,

S1395, T1426
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control 12-wk omeprazole 24-wk omeprazole contro

N-terminus S12, S67, S78, Y80,
T87, T88, S90, T92,
T94, S141, T169,
T170, T176, T181,
Y228, S243, S246,
S274, S282, S302,
T380, S386, T398,
S407, Y431, S445,
Y462, Y479, T481,
T509, T530, S552,
S558, Y574, S586,
S596, T602, Y608,
T635, S662, Y668,
Y697, S705, T706,
S743, S750, T756,
S820, Y845, T859,

S869

S12, S32, T94, Y111,
Y116, S153, T169,
T170, T176, T181,
S184, T204, Y228,
T230, S236, T239,
Y259, S274, S282,
T354, S362, T380,
S407, S409, Y431,
S445, T471, Y506,
T509, Y519, Y525,
Y529, T530, Y545,
S551, S552, S558,
Y574, S586, S590,
T602, Y645, S655,
Y668, S669, S705,
T706, S713, S743,
T759, S769, S774,
S784, S789, S790,
S791, S794, S796,
S820, Y845, S869

S12, S15, S28, S32,
S33, T40, S67, S71,
S82, T87, T88, S90,
T92, T94, T97, Y111,
T118, S141, T150,
S153, S160, T170,
T176, S198, T204,
T239, T255, S274,
T306, T329, S358,
T380, S386, T398,
T404, S445, Y462,
Y479, T481, T488,
S504, Y506, T509,
Y538, Y542, S551,
T562, T570, Y574,
S662, Y668, S669,
T693, S705, T723,
T725, T730, S743,
Y783, S784, S794,
S796, Y800, T828,
Y845, T846, T859

S15, Y31, S7
T87, T88, S9
T94, S141,
T169, S198
Y228, T239,
S243, S246,
S312, T329,
S386, T404,
Y479, S527,
Y538, Y542
S552, S558
T562, S586
S601, S655
T693, S703
T706, S713
T730, T756
S774, S790,

Y845

Channels Y878, 915, T936,
Y966, T974, S990,
Y1026, S1035,

S876, T881, S893,
S907, T913, T915,
Y966, T968, T974,
Y979, S1008, Y1026,

Y1053

S876, Y878, T881,
S893, T899, S907,
T913, T915, S922,
T936, T968, T974,

S1034, T1046, Y1053

S876, Y878,
S893, T913,
Y941, Y966,

TRP Y1073, S1078, Y1086,
Y1089, T1094, Y1095,

S1109

Y1073, S1078, S1080,
Y1091, Y1095

Y1073, S1078, S1080,
Y1086, Y1089,

Y1073, S1078
Y1086, Y1089
T1094, 1095

C-terminus Y1137, S1139, Y1157
S1168

S1139, Y1157, S1168 S1139, S1168 Y1137, S1139
S1168

Coiled coil T1176, S1177, T1181,
Y1184, S1195, S1200,
S1203, S1206, T1221

T1176, T1181, T1184,
S1226

T1176, T1181, S1216
S1225

T1176, S1177
Y1184, S1195

S1206, T1

T1231, S1252, S1281,
S1285, T1322, S1324,
S1329, S1349, S1357,
T1375, T1391, S1395,

S1399

T1231, S1244, T1245,
S1254, Y1273, S1277,
S1281, T1311, S1332,
S1339, Y1341, S1368,

T1375

T1231, T1240, S1244,
T1311, T1322, S1329,
S1332, Y1341, S1349,
S1357, T1368, S1404

S1226, T1230
T1245, S1252
S1285, T1322
S1329, S1332

S1365, S1
,

,
,

,

,

,
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TABLE 1 Continued

Duodenal TRPM6 protein Jejunal TRPM6 protein

-wk omeprazole control 12-wk omeprazole 24-wk omeprazole

1435, S1437, S1458,
S1484, S1485, S1487,
S1497, S1498, S1513,
1524, Y1533, S1562,
S1563, S1583, S1605,
1616, S1618, Y1622,
1623, S1630, Y1640,
1660, S1669, S1672,
1676, S1678, T1679,
S1685, S1697, S1702

Y1452, T1463, S1467,
S1498, S1500, S1503,
S1509, Y1533, S1541,
T1577, T1598, S1618,
Y1622, S1623, T1628,
S1630, S1633, Y1640,
S1658, Y1660, S1664,
S1676, S1678, T1679,
S1685, S1689, S1690,
S1702, T1739, 1741

S1428, T1430, T1435,
S1441, T1463, S1467,
T1474, S1478, T1479,
S1482, S1484, S1485,
S1506, S1509, S1510,
S1513, S1539, S1562,
S1563, S1583, T1589,
S1623, S1630, T1635,
T1647, S1664, S1685

S1689, S1690

S1428, T1430, T1435,
S1441, T1463, S1467,
T1474, S1478, T1479,
S1485, S1506, S1509,
S1510, S1513, S1539,
S1563, S1583, S1616,
S1618, Y1622, S1623,
T1628, S1658, Y1660
S1664, S1669, S1672,
S1676, S1678, T1679,
S1685, S1689, S1690

S1711 Y1710, S1711, S1722,
T1724, T1728

Y1710, S1711 Y1710, S1711

Y1741 S1737, T1739, Y1741,
S1746, S1747

S1746, S1747 S1746

S1754, S1757, S1759,
1771, S1787, T1788,
1790, S1805, T1813,
1822, T1843, T1851,
1854, T1855, Y1865,
1874, Y1878, T1880,
1886, Y1914, T1915,

S1935, S1944

S1754, S1756, S1771,
S1787, S1821, T1843,
Y1854, Y1865, T1880,
Y1886, T1911, Y1914

T1915, S1944

S1754, S1756, S1757,
S1759, S1771, S1790,
S1788, S1821, T1822,
T1843, T1851, Y1854,
T1855, T1874, Y1878,
Y1886, Y1914, T1915,

T1932, S1944

S1754, S1756, S1757,
S1759, S1771, S1787,
T1788, T1813, S1821,
T1843, T1851, Y1854,
T1855, Y1865, T1874,
Y1878, T1880, Y1886,
Y1914, T1915, S1935,

S1944

1970, S2002, T2011,
S2015

S1970, Y1985, S1986,
T1993, S2002, T2011,

S2015

S1970, Y1985, S1986,
S1992, T1993, S2002,

T2011, S2015

S1970, Y1985, S1986,
S2002, T2011, S2015
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control 12-wk omeprazole 2

S/T rich domain S1438, S1441, S1458,
T1463, S1487, S1498,
S1500, S1503, Y1533,
S1539, S1541, T1577,
T1598, S1603, S1616,
S1618, S1623, T1628,
S1630, S1633, T1635,
T1647, Y1660, S1672,
T1679, S1685, S1689,
S1690, S1697, S1699,
S1702, T1739, Y1741

T1435, S1437, S1467,
T1474, S1478, T1479,
S1498, S1500, T1523,
Y1533, S1539, S1541,
S1562, S1563, T1577,
S1583, T1589, S1605,
Y1622, S1623, T1628,
S1630, S1658, S1664,
S1669, S1678, T1679,
S1685, S1689, S1690,
S1697, S1699, S1702

Dimerization motif Y1710, S1711, S1722,
T1724, T1728, Y1731

Y1710, S1711, T1724
T1728

S1736, S1737, T1739,
Y1741, S1746, S1747

Y1741

a -Kinase domain S1754, S1757, S1821,
T1822, T1843, Y1854,
Y1878, Y1880, T1895,
T1897, S1908, Y1912,
Y1914, T1915, T1932,

S1935

S1754, S1759, S1771,
S1787, S1790, T1813,
T1822, T1843, T1851,
Y1854, T1855, Y1865,
S1868, Y1886, S1908,
Y1912, Y1914, T1915,

S1944

S1986, T1993, T2011 S1970, Y1984, T1992,
S2002, T2011, S2015

The highlighted residues have been previously reported to affect TRPM6 activity.
4

T

S

S
S
Y
S

S
S
T
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TABLE 2 Phosphorylated residue of TRPM7 protein from duodenum and jejunum of control or omeprazole-treated rats.

Duodenal TRPM7 protein Jejunal TRPM7 protein

12-wk omeprazole 24-wk omeprazole

3,
87,
103,
13,
66,
95,
25,
52,
32,
67,
38,
08,
2,
5,
3,
61,
8,
8,
23,
0,

Y18, S23, T55, T60,
S63, S79, T84, S87,
S101, S103, T166,
T167, S193, S196,
T201, T227, S233,
T252, T269, T299,
S307, T318, Y327,
T332, S348, S385,
T414, Y430, S438,
S453, Y478, T480,
T485, Y505, Y518,
Y524, T527, T529,
S539, S547, S554,
T555, S561, T564,
T583, Y587, S648,
Y659, S661, S676,
Y682, S683, Y711,
Y719, S757, Y776,
S788, T795, T807,

S824, S836

Y18, T55, S57, T60,
Y62, S63, T60, Y62,
T115, T173, S193,
S196, T201, T227,
T252, T299, S307,
T318, T332, S348,
T349, T353, S359,
T403, S406, Y430,
S438, S453, T470,
T485, T508, Y518,
Y524, T527, T529,
S539, S547, S553,
S554, T564, S584,
T615, Y620, S648,
Y659, S683, S697,
T737, T739, T795,
S799, T807, S836,

T842

9,
89,
023,
041,
064,

S883, S907, S913,
S927, Y949, Y953,
Y973, S1013, Y1023,
S1029, Y1041, S1060,

T1070, T1073

Y923, T929, S934,
Y953, Y965, Y973,

Y989, S1029, Y1051,
T1064, T1073, Y1080

116, S1107, Y1113, Y1116 S1136

181, S1155, T1163, S1193 S1155

224,
239,

T1200, S1208, Y1220,
S1224, S1227, S1230,

T1245

S1227, T1245, T1248,
T1250

271,
298,
308,
357,

S1258, T1265, S1269,
S1271, S1298, S1299,
S1300, S1308, Y1326,

S1357

S1258, S1299, S1300,
S1349, S1350, S1357
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control 12-wk omeprazole 24-wk omeprazole control

N-terminus S9, T10, T12, Y18,
S22, S23, Y62, S63,
T55, S57, Y62, S79,
T84, S87, T89, S101,
S103, Y104, Y108,
S113, T115, S138,
S193, S196, S233,
S243, Y256, T270,
Y303, T318, Y327,
T332, T349, T353,
S359, T379, S385,
T397, S406, Y430,
S453, S464, T470,
Y505, T508, Y528,
S539, S547, S552,
S554, S561, T564,
T583, Y587, T603,
T615, S648, S683,
T737, T739, S745,
T778, S788, S823,
S824, S836, Y849

T12, T55, S57, Y62,
S63, T84, S87, S101,
S103, Y104, Y108,
S112, Y113, T115,
T173, S193, S195,
S196, T201, T227,
S233, S243, T252,
Y256, T269, Y303,
S307, T318, T332,
T349, T353, S385,
T397, T403, S453,
S464, T470, T480,
T485, T508, Y524,
T529, S552, S554,
S561, T564, S594,
T603, Y620, S661,
S683, S697, T710,
Y711, T778, S783,
S788, T795, S794,

S824 S836

T12, S22, S23, T55,
T58, S63, S79, S87,
S101, S103, Y104,
Y108, S103, T166,
T167, T201, S233,
S243, T269, S307,
T318, Y327, T332,
S348, T349, T403,
S406, T414, Y430,
T480, T523, T528,
S539, S552, S561,
T564, T583, Y587,
S594, T615, Y620,
Y659, S661, S669,
S697, Y711, S719,
T720, S745, Y776,
S783, S788, T795,

S794, S836

S2, Y18, S22, S
S63, S74, S79, S

T89, Y92, S101,
Y108, S112, Y1
T115, S138, T1
T167, T173, S1
S196, T201, Y2
T227, S243, T2
T269, T318, T3
T353, S359, T3
T379, Y430, S4
S453, S464, T5
S539, S547, S5
S553, S554 T5
S561, T564, T5
Y587, S648, S6
S676, S727, S7
T778, S783, S7
T795, S799, S8
S836, Y849, T8

Y863

Channels Y892, T895, Y896,
S913, S921, S927,

T929, S934, Y1023,
S1031, Y1049, Y1051,
S1060, T1064, T1070,
T1073, Y1080, Y1085

Y896, T929, S934,
Y953, Y965, Y989,

Y1002, S1031, Y1049,
Y1051, S1060, T1073,

Y1080, Y1085

S907, S913, Y949,
Y953, S1031, Y1041,
Y1049, S1060, T1064,

T1070, T1073

S913, S921, S9
Y949, Y953, Y9

Y1002, S1013, Y1
S1029, S1031, Y
Y1051, S1060, T1

Y1080, Y108

TRP Y1100, S1107, Y016,
Y1122, S1036, S1040,

S1141

Y1100, S1107, Y1016,
Y1122, S1036, S1040

Y1100, S1107, S1036,
S1040

Y1100, S1107, Y1
S1136, S1140

C-terminus T1154, S1155, T1163,
Y1181, S1191

S1155, T1163, Y1181 T1154, S1155 S1155, T1163, Y1
S1191, S1193

Coiled coil T1200, S1208, S1224,
T1242, T1245, T1248,

T1250

T1200, S1208, Y1220,
S1224, S1227, S1230,

T1245

S1208, Y1220, S1224,
S1230, T1242, T1245

T1200, Y1220, S1
S1227, S1230, S1

T1242, T125

S1255, S1258, T1265,
S1269, S1271, S1292,
T1296, S1298, S1299,
S1300, S1308, S1349,

S1350, S1360

S1255, S1300, Y1326,
S1349, S1350, S1357,

S1385

S1255, S1258, T1265,
S1292, S1357

S1255, S1258, S1
S1292, T1296, S
S1299, S1300, S1
S1349, S1350, S1

S1360
2

S

5
5
8

2
8

6

2

1

5

0

1

https://doi.org/10.3389/fonc.2022.947899
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


TABLE 2 Continued

Duodenal TRPM7 protein Jejunal TRPM7 protein

24-wk omeprazole control 12-wk omeprazole 24-wk omeprazole

S1385, S1386, S1389,
S1390, S1394, S1403,
T1404, S1406, S1409,
T1418, S1445, T1454,
S1455, S1463, T1466,
S1491, T1493, S1495,

S1530, T1534

S1386, S1389, S1390,
S1394, S1395, S1403,
S1406, S1409, S1412,
S1416, T1418, Y1426,
S1445, T1454, S1455,
T1466, T1470, Y1479,
T1485, T1487, S1488,
S1491, T1493, S1495,
S1497, S1501, T1502,
S1505, S1510, T1524,
S1530, T1534, S1540,

T1548

S1386, S1389, S1390,
S1394, S1395, T1398,
S1401, S1403, T1404,
T1418, T1493, S1505,
S1510, T1524, S1530,
T1534, S1540, T1548

S1390, S1394, S1395,
S1406, S1409, S1412,
T1454, T1485, S1488,
T1493, S1495, S1497,
S1501, T1502, T1524

S1553, S1564, S1566 Y1552, S1564, S1566 Y1552, S1564, S1566 Y1552, S1564, S1566

Y1582, S1590 T1580, S1587, S1588,
S1590

S1587, S1588 Y1582, S1588

S1595, S1597, S1598,
T1629, Y1642, S1656,
S1657, Y1659, T1663,
Y1695, S1709, T1740,
T1752, T1756, S1785

S1592, S1598, S1600,
S1612, T1629, S1638,
S1646, S1656, Y1659,
T1663, T1682, S1692,
Y1695, S1709, T1740,
S1749, T1752, Y1753,
Y1755, T1756, S1776,

S1782, S1811

S1598, S1595, S1597
, S1598, T1629, Y1642,
S1656, S1657, Y1659,
T1663, Y1695, S1709,
T1740, T1752, T1756,

S1785

S1598, T1629, S1631,
S1631, S1646, T1663,
Y1695, S1696, S1749,
T1752, T1773, S1776,

S1785

T1827, S1839, T1827, S1839, S1848,
T1849, S1852, S1857

T1827, S1838, S1839,
S1857

T1827, S1838, S1839
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13
control 12-wk omeprazole

S/T rich domain S1386, S1389, S1390,
S1394, S1395, S1403,
T1404, S1406, S1409,
S1412, S1416, T1418,
S1445, S1455, S1463,
T1466, T1470, Y1479,
T1485, T1487, S1488,
S1491, T1493, S1495,
S1497, S1501, T1502,
S1505, S1510, T1524,
S1530, T1534, S1540,

T1548

S1385, S1386, S1389,
S1390, S1395, S1406,
S1409, S1403, T1404,
S1406, S1409, S1412,
T1417, T1418, S1445,
T1454, S1455, S1463,
T1470, T1485, S1510,
S1530, S1540, T1548

Dimerization motif S1553, S1564, S1566 S1553, S1564, S1566

S1587, S1888, S1590 Y1582, S1590

a -Kinase domain S1595, S1597, S1598,
S1600, S1612, T1629,
S1631, Y1642, S1656,
S1657, Y1659, T1663,
S1692, Y1695, Y1696,
S1709, Y1727, T1738,
T1740, S1749, T1756,

S1776, S1785

S1595, S1597, S1598,
S1612, T1629, S1631,
S1638, Y1642, S1656,
S1657, Y1659, T1663,
T1682, Y1695, S1696,
Y1706, S1709, T1721,
S1749, T1752, S1785

Y1826, T1827, S1839,
S1848, T1849, T1855

Y1826, T1827, S1839,
T1849, T1855

The highlighted residues have been previously reported to affect TRPM6 activity.
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TABLE 3 Methionine oxidation in TRPM6 protein from duodenum and jejunum of control or omeprazole-treated rats.

control 12-wk omeprazole 24-wk omeprazole

duodenum M33, M63, M133, M338,
M370, M416, M618, M623,
M625, M648, M657, M732,
M768, M847, M864, M969,
M973, M984, M1020, 1061,
M1076, M1093, M1162,
M1278, M1183, M1434,
M1436, M1575, M1879,

M2020

M1, M33, M63, M133,
M151, M244, M338, M370,
M373, M416, M444, M450,
M618, M623, M625, M648,
M657, M692, M727, M732,
M734, M739, M768, M780,
M847, M969, M984, M1076
M1093, M1162, M1183,
M1190, M1265, M1434,
M1436, M1551, M1575,
M1645, M1719, M1755,
M1879, M1904, M1947,

M2020

M1, M33, M63, M127,
M133, M151, M244, M263,
M350, M373, M416, M444,
M450, M618, M623, M625,
M648, M657, M692, M727,
M732, M734, M739, M768,
M780, M847, M854, M864,

M969, M984, M1020,
M1061, M1076, M1093,
M1183, M1190, M1446,
M1551, M1645, M1719,
M1755, M1775, M1879,

M1904,
M2020,

jejunum M127, M133, M151, M263,
M338, M354, M370, M734,
M739, M780, M864, M969,
M977, M984, M1183, 1190,
M1265, M1278, M1434,
M1436, M1446, M1551,
M1645, M1719, M1766,

M1947, M2020

M1, M127, M133, M151,
M244, M263, M350, M370,
M373, M416, M450, M618,
M625, M648, M657, M692,
M727, M732, M734, M847,

M854, M864, M969,
M1076, M1093, M1162,
M1183, M1434, M1446,
M1551, M1575, M1645,
M1719, M1755, M1766,
M1775, M1783, M1879,

M2020

M1, M127, M133, M151,
M244, M263, M338, M350,
M370, M416, M444, M450,
M618, M625, M648, M657,

M692, M727, M734,
M768, M847, M864,
M973, M977, M984,

M1020, M1061, M1076,
M1093, M1162, M1183,
M1265, M1434, M1436,
M1645, M1719, M1755,
M1766, M1783, M1879,
M1904, M1947, M2020
Frontiers in Oncology
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The highlighted residues have been previously reported to affect TRPM6 activity.
TABLE 4 Methionine oxidation in TRPM7 protein from duodenum and jejunum of control or omeprazole-treated rats.

control 12-wk omeprazole 24-wk omeprazole

duodenum M43, M372, M595,
M632, M637, M649,
M706, M742, M746,
M782, M794, M812,
M868, M878, M906
M991, M996, M1000,
M1088, M1020, M1180,
M1207, M1287, M1319,
M1373, M1446, M1528,
M1616, M1720, M1745

M130, M143, M369,
M372, M449, M466,
M575, M591, M595,
M649, M662, M704,
M706, M741, M746,
M773, M782, M812,
M830, M868, M991,
M992, M996, M1000,
M1043, M1180, M1207,
M1287, M1318, M1373,
M1446, M1528, M1561,
M1596, M1616, M1720,

M1745, M1788

M1, M130, M130,
M143, M369, M372,
M449, M465, M466,
M575, M591, M649,
M662, M704, M741,
M753, M773, M782,
M794, M796, M812,
M830, M868, M878,
M991, M992, M1007,
M1043, M1120, M1207,
M1287, M1373, M1393,
M1446, M1528, M1561,
M1596, M1688, M1720,
M1745, M1788, M1891

jejunum M130, M369, M372,
M449, M465, M649,
M662, M704, M706,
M741, M746, M796,
M812, M830, M991,
M996, M1000, M1088,
M1180, M1373, M1446,
M1528, M1561, M1616,
M1688, M1720, M1788

M1, M130, M372
M465, M520, M575,
M591, M595, M649,
M662, M741, M773,
M782, M512, M830,
M878, M992, M1000,
M1043, M1088, M1120,
M1207, M1287, M1318,
M1373, M1393, M1446,
M1528, M1561, M1596,
M1616, M1688, M1720,

M1745, M1788

M1, M43, M130,
M143, M449, M465,
M488, M520, M575,
M591, M595, M632,
M637, M649, M662,
M748, M753, M782,
M794, M796, M812,
M830, M878, M906,
M992, M1000, M1007,
M1043, M1180, M1207,
M1287, M1318, M1373,
M1393, M1561, M1596,
M1616, M1720, M1745,

M1788, M1861
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demonstrated hyper-phosphorylation, especially at S1252 and

T1851, and hyper-oxidation at M1755, both of which suppressed

membrane TRPM6 channel permeability. Additionally, in PPIH

animals, hypo-phosphorylation at S138 and S1360 in TRPM7

disrupted its membrane stability and hyper-oxidation of TRPM7

was observed. These results help explain the mechanism

underlying disruption of transcellular Mg2+ absorption in the

small intestine of PPIH rats. However, we could not assess how

omeprazole suppressed paracellular Mg2+ absorption in small

intestine during PPIH; nevertheless, it is possible that Claudin

(Cldn)-16 and -19, which mediate paracellular Mg2+

reabsorption in renal tubule (30), are involved. However, the

small intestine only expresses Cldn-1, -2, -3, -4, -5, -7, -8, -12,

and -15, but not -16 and -19 (31); thus, processes involving

Cldn-regulated paracellular Mg2+ absorption in the small

intestine remain to be elucidated.

We demonstrate the presence of the TRPM6/7 heterodimer

in the duodenal and jejunal epithelial plasma membrane, and to

the best of our knowledge, this is the first study to do so. The

TRPM6/7 channel allows continuous intestinal Mg2+ absorption

(17, 22), and a reduction in the expression of membrane

TRPM6/7 can lead to lower transcellular Mg2+ absorption (7).

It is known that mutations in S141 in TRPM6 and S138 in

TRPM7 abolish membrane TRPM6/7 heterodimer expression

(23), and we found no phosphorylation at S141 in TRPM6 and at

S138 in TRPM7 from the duodenum and the jejunum of PPIH

rats even though phospho-S141 and phospho-S138 in TRPM6

and TRPM7, respectively, were present in control rats. Further,

the stabil i ty of membrane TRPM7 is regulated by

phosphorylation at S1360 (26) but phospho-S1360 was

detected only in control animals and not in PPIH rats.

Additionally, the dimerization motif domain of TRPM6 from

the duodenum and the jejunum of PPIH rats displayed lower

phosphorylation. Together, these observations, can at least in

part, explain the reduction in membrane TRPM6/7 heterodimer

presence in the small intestine of PPIH rats.

Our results also describe the presence of membrane-bound

and cytosolic TRPM6 expression in the small intestine with

duodenal, jejunal, and ileal membrane TRPM6 expression

markedly increasing in PPIH rats compared to controls.

Hyper-phosphorylation at T1851 in membrane TRPM6 in

PPIH rats was also observed, which is essential for the

inhibitory effect of intracellular Mg2+ and RACK1 on TRPM6

channel activity (16). As RACK1 is extensively expressed

throughout the small intestine (32), membrane TRPM6 in

PPIH rats was prone to inhibition by intracellular Mg2+ and

RACK1, which could have led to a decrease in transcellular Mg2+

absorption (7). We also show that duodenal, jejunal, and ileal

cytosolic TRPM6 expression was clearly lower in PPIH animals

compared to controls, but mechanisms contributing to greater

plasma membrane expression of TRPM6 in the small intestine of

PPIH rats are currently not known. We also show

phosphorylation of various serine, threonine, and tyrosine
Frontiers in Oncology 15
residues in the TRPM6 protein, but the effects of such

phosphorylation on channel activity, membrane expression, or

TRPM6/7 heterodimerization require further study.

Hyper-oxidation of methionine residues in TRPM6 and

TRPM7 was observed in PPIH rats, and it is known that

methionine oxidation depends on pH; specifically, a higher pH

leads to greater oxidation (33). We have previously reported that

omeprazole injection significantly increases luminal pH in the

duodenum, the jejunum, and the ileum (7); thus, it is possible

that hyper-oxidation of methionine in TRPM6 and TRPM7

of PPIH rats is facilitated by the higher luminal pH.

Moreover, prolonged omeprazole administration induced

hypomagnesemia, chronic small intestinal inflammation, and

villous atrophy (34), and hyper-oxidation of TRPM6 in PPIH

rats might have been induced by chronic small intestinal

inflammation. Interestingly, oxidation of the M1755 residue in

TRPM6 was seen in the duodenum and the jejunum of only

PPIH rats and not controls. Thus, it is possible that TRPM6

channel activity was markedly suppressed upon oxidation at

M1755 (27), which then led to disruption of transcellular Mg2+

absorption in the small intestine of our PPIH rat model (7).

The TRPM6 kinase domain can phosphorylate serine and

threonine residues in TRPM7, but not vice versa (35, 36), TRPM6

a-kinase also regulates TRPM7 intracellular trafficking (35), and

the activea-kinase for TRPM6 can suppress membrane TRPM6/7

and TRPM7 expression (35) even though a mutant TRPM6 a-
kinase promotes membrane TRPM6/7 and TRPM7 expression

(35). Here, membrane TRPM7 was markedly decreased in PPIH

while cytosolic TRPM7 was significantly increased, and hyper-

phosphorylation of the a-kinase domain of TRPM6 was seen in

PPIH, which might induce its kinase activity (37). Thus, high

TRPM6 kinase activity in PPIH rats probably induced

internalization of membrane TRPM7.

CNNM4 mediates basolateral Mg2+ extrusion and is

implicated in small intestinal transcellular Mg2+ absorption

(38). Recently, fibroblast growth factor-23 (FGF-23) has been

reported to systemically and directly increase membrane

CNNM4 expression in the duodenum and the jejunum (12)

and our PPIH rat model shows significantly higher plasma FGF-

23 compared to controls (12). Therefore, the observed increase

in membrane CNNM4 in the duodenum and the jejunum of

PPIH rats may involve an FGF-23-dependent mechanism.

Prolong PPI induced gastrointestinal cancer and

hypomagnesemia (1–5, 7, 8). Dysregulation of systemic Mg2+

homeostasis induced risk of cancer (5, 39). Previous reports

revealed that dysregulation of Mg2+ channels involved in the

regulation of numerous hallmarks of cancer cells, including

sustained proliferation, enhanced survival, angiogenesis, and

invasion and metastasis (3, 39). In the present study we

reported the change in intestinal TRPM6, TRPM7, and

TRPM6/7 expression and function in PPIH rats. However, the

role of TRPM6, TRPM7, and TRPM6/7 induced risk of cancer in

PPIH model requires further study.
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To summarize, we confirm the presence of TRPM6, TRPM7,

and TRPM6/7 heterodimer in the small intestine of rats and show

that prolonged PPI treatment induces hyper-phosphorylation and

hyper-oxidation of TRPM6, but hypo-phosphorylation of

TRPM7, which then lowers membrane TRPM7 and TRPM6/7

expression and TRPM6 channel permeability, thereby suppressing

small intestinal Mg2+ absorption in PPIH.
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