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Article

Testing the Anna Karenina Principle
in Human Microbiome-Associated Diseases
Zhanshan (Sam) Ma1,2,3,*

SUMMARY

TheAKP (AnnaKareninaprinciple),which refers toobservations inspiredby theopening lineof LeoTol-

stoy’s Anna Karenina, ‘‘all happy families are all alike; each unhappy family is unhappy in its ownway,’’

predicts that all ‘‘healthy’’microbiomes are alike andeachdisease-associatedmicrobiome is ‘‘sick’’ in its

own way in human microbiome-associated diseases (MADs). The AKP hypothesis predicts the rise of

heterogeneity/stochasticity in human microbiomes associated with dysbiosis due to MADs. We used

the beta-diversity in Hill numbers and stochasticity analysis to detect AKP and anti-AKP effects. We

tested the AKP with 27 human MAD studies and discovered that the AKP, anti-AKP, and non-AKP ef-

fects were exhibited in approximately 50%, 25%, and 25% of the MAD cases, respectively. Mechanis-

tically, AKPeffects areprimarily influencedbyhighly dominantmicrobial species and less influencedby

rare species. In contrast, all species appear to play equal roles in influencing anti-AKP effects.

INTRODUCTION

The mostly peaceful coexistence of human microbiomes with hosts and the tolerance by our immune sys-

tem is still poorly understood in human biology and modern biomedicine. In fact, the interaction between

the immune system andmicrobiome is bidirectional. On the one hand, the immune system certainly plays a

critical role in shaping and maintaining the human microbiome; on the other hand, gut microbiome of in-

fants may help to train the full development of their immune systems (Rooks and Garrett, 2016; Levy et al.,

2017; Thaiss et al., 2016). There is a hypothesis that animal regulation of immunity evolved to not only

defend against pathogens but also carefully regulate symbiotic microbes (Giongo et al., 2010; Zaneveld

et al., 2017; Rizzetto et al., 2018; Lotter and Altfeld, 2019). In consideration of the significance of immune

system, Zaneveld et al. (2017) argued that the so-termed AKP (Anna Karenina principle) effects in animal

microbiomes are ubiquitous and significant and frequently linked to deteriorating host health. The AKP

refers to observations derived from the opening line of Leo Tolstoy’s Anna Karenina: ‘‘all happy families

are all alike; each unhappy family is unhappy in its own way.’’ In terms of the microbiome-associated dis-

eases (MADs), it may be translated into a hypothesis: all ‘‘healthy’’ microbiomes (of healthy individuals)

are alike; each ‘‘diseased’’ microbiome (of a patient with MAD) is ‘‘sick’’ in its own way.

Studiesonanimal andhumanmicrobiomeshavesuggested thatmicrobiomestability isahallmarkofhealthyhost

physiology, which is consistent with the evolution of animals (humans) in a sea ofmicrobes (Zaneveld et al., 2017;

Ma and Ellison, 2019). For example, it has been found that compromised host immunity can induce AKP effects

(e.g., reviews byWilliams et al., 2016; Zaneveld et al., 2017) and gutmicrobiome has been found deeply involved

inallergenic andautoimmunedisorders (Giongoetal., 2010;Halfvarsonetal., 2017).AKPeffects imply thatmicro-

biome instability (dysbiosis) can only be observed in comparisonwith normal variation (heterogeneity) (Brüssow,

2016; Zaneveldetal., 2017). Furthermore,ahallmarkofAKPeffects is the risingheterogeneityand/or stochasticity

in community composition and assembly, which can bemeasuredwith beta-diversity (Zaneveld et al., 2017).We

perform ameta-analysis with a big dataset of 27MAD case studies that cover all fivemajormicrobiome habitats

(airway, oral, gut, skin, and vaginal) and includemost high-profileMADs suchasobesity, inflammatory bowel dis-

ease (IBD), diabetes, and neurodegenerative diseases. Methodologically, we take advantages of the Hill

numbers, which have been recognized as the most appropriate alpha-diversity metrics, and their multiplicative

partition of beta-diversity is found to be superior to other existing beta-diversity measures (Chao et al., 2014,

2019; Ma, 2017; Ma and Li, 2018). In addition, we use a very recent framework for assessing and interpreting

ecological stochasticity (Ning et al., 2019) to cross-verify the findings from the beta-diversity measures, given

that rising stochasticity is considered as another hallmark of the AKP (Zaneveld et al. 2017). Both the approaches

essentially measure similarity/dissimilarity among microbiome samples, each with unique advantages. The Hill

numbers present the so-termed diversity profile, which offer a series of diversity measures corresponding to

different diversity order (q = 0, 1, 2, .), weighted differently by species abundances. Therefore, the diversity
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Microbiome Treatments

(Healthy vs.

Diseased)

Diversity

Order

Average of

Healthy (H)

Treatments

Average of

Diseased (D)

Treatments

p Value

(HsD)

p value (H <

D) AKP

p value (H

> D)

Anti-AKP

IBD1 Healthy vs. CD q=0 1.678 1.696 0.036 0.018 0.982

q=1 1.619 1.607 0.850 0.575 0.425

q=2 1.667 1.602 0.033 0.983 0.017

q=3 1.691 1.598 0.012 0.994 0.006

Healthy vs. UC q=0 1.678 1.812 0.000 0.000 1.000

q=1 1.619 1.792 0.000 0.000 1.000

q=2 1.667 1.811 0.000 0.000 1.000

q=3 1.691 1.823 0.000 0.000 1.000

Obesity Lean vs. Overweight q=0 1.631 1.608 0.000 1.000 0.000

q=1 1.605 1.591 0.091 0.955 0.045

q=2 1.655 1.689 0.037 0.019 0.981

q=3 1.678 1.736 0.008 0.004 0.996

Lean vs. Obese q=0 1.631 1.618 0.000 1.000 0.000

q=1 1.605 1.585 0.000 1.000 0.000

q=2 1.655 1.675 0.001 0.000 1.000

q=3 1.678 1.719 0.000 0.000 1.000

CRC Healthy vs. CRC q=0 1.929 1.946 0.000 0.000 1.000

q=1 1.954 1.971 0.000 0.000 1.000

q=2 1.977 1.987 0.000 0.000 1.000

q=3 1.980 1.989 0.000 0.000 1.000

HIV1 Negative vs. ART q=0 1.635 1.675 0.000 0.000 1.000

q=1 1.697 1.733 0.000 0.000 1.000

q=2 1.759 1.787 0.005 0.002 0.998

q=3 1.780 1.813 0.002 0.001 0.999

Negative vs. Non-

ART

q=0 1.635 1.730 0.000 0.000 1.000

q=1 1.697 1.783 0.000 0.000 1.000

q=2 1.759 1.825 0.000 0.000 1.000

q=3 1.780 1.847 0.000 0.000 1.000

Type 1 Diabetes

(T1D) and Obesity

Normal Healthy vs.

Normal T1D

q=0 1.535 1.541 0.007 0.003 0.997

q=1 1.615 1.605 0.546 0.727 0.273

q=2 1.724 1.669 0.014 0.993 0.007

q=3 1.759 1.690 0.006 0.997 0.003

Table 1. Wilcoxon Tests for the AKP Effects in the 27 MAD (Microbiome-Associated Diseases) Case Studies Based on the Beta-Diversity in Hill

Numbers, Portion of Results Excerpted from Table S3

(Continued on next page)
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profile in Hill numbers provides comprehensive diversity metrics, on the whole spectrum of commonness versus

rarity in terms of species abundance distribution (SAD) (level). Since the SAD is well known to be a highly skewed

long-tail distribution, the Hill numbers hence can comprehensively capture the characteristics of community

diversity (similarity) atdifferent sectionsof SADandproducenot only amore comprehensivebut also anaccurate

assessment than traditional diversity measures such as species richness and Shannon entropy.

Ning et al. (2019) recently developed a new null-model based framework for assessing and interpreting

ecological stochasticity. With sophisticated computational procedures and algorithms, the framework

was actually presented as a simple index—normalized stochasticity ratio (NSR), which makes its application

simple but provides a powerful tool for disentangling the relative importance of stochastic and determin-

istic forces in shaping community diversity. An underlying principle in devising the NSR framework Ning

et al. (2019) adopted is that deterministic forces drive the community more similar to dissimilar than null

expectation. In the present study, we take advantage of its similarity metrics to detect the AKP effects since

the similarity metrics can directly address our problem—determining whether or not the divergence

(difference) between the similarity of intra-healthy individuals and the similarity of intra-diseased individ-

uals in their microbiome compositions is statistically significant. If the similarity of ‘‘unhappy families’’ is

significantly lower than that of ‘‘happy families,’’ we may declare the presence of an AKP effect. In the

Ning et al. (2019) framework, they recommended using the Ru�zi�cka similarity metrics, which is a true

distance function based on species abundance (Ru�zi�cka, 1958), and we use this similarity metric to cross-

verify the AKP test results from the beta-diversity approach in the Hill numbers.

RESULTS

Detecting the AKP Effects with Beta-Diversity in Hill Numbers

Table S1 summarized brief descriptions on the 27 MAD (microbiome-associated disease) studies used in

this study. We first computed the pairwise beta-diversity for all samples in the healthy and diseased treat-

ments, respectively, for each study, based on Equations (1–4) (Table S2) and then computed the average

beta-diversity in the Hill numbers for each treatment of the 27 MAD cases, as well as the p values from

Wilcoxon tests for the differences in the beta-diversity between the healthy (H) and diseased (D) treatments

for each case study (Table S3).

Specifically, Table S2 listed the pairwise beta-diversity for each treatment (either H or D treatment), i.e.,

computing a beta-diversity value for each pair of samples within each treatment. The pairwise beta-diversity

values of samples within each H treatment represent the heterogeneity within the H treatment (intra-H treat-

ment). The pairwise beta-diversity values of sampleswithin eachD treatment represent the heterogeneity within

the D treatment (intra-D treatment). By conducting Wilcoxon test with the intra-H treatment beta-diversity and

intra-H treatment beta-diversity, we can detect the existence of AKP effects. Table S3 exhibited the summary

Microbiome Treatments

(Healthy vs.

Diseased)

Diversity

Order

Average of

Healthy (H)

Treatments

Average of

Diseased (D)

Treatments

p Value

(HsD)

p value (H <

D) AKP

p value (H

> D)

Anti-AKP

Obesity Healthy vs.

Obesity T1D

q=0 1.476 1.577 0.000 0.000 1.000

q=1 1.539 1.606 0.027 0.014 0.987

q=2 1.599 1.642 0.010 0.005 0.995

q=3 1.622 1.650 0.019 0.010 0.990

Gout Healthy vs. Gout q=0 1.666 1.775 0.000 0.000 1.000

q=1 1.533 1.682 0.000 0.000 1.000

q=2 1.596 1.696 0.000 0.000 1.000

q=3 1.636 1.710 0.000 0.000 1.000

--- --- --- --- --- --- --- ---

Table 1. Continued

CD, Crohn’s Disease; UC, Ulcerative Colitis; IBD, Inflammatory Bowel Disease; CRC, Colorectal Cancer; ART, Antiretroviral Therapy.
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statistics (mean, standard error) of beta-diversity and p values from theWilcoxon test. The threshold ofp value =

0.05 is used to determine whether a particular MAD case satisfies the AKP (D >H), anti-AKP (D <H), or non-AKP

(DzH). Table 1excerptedportionof the results fromTableS3, andTable 2 (Figure1) summarized the test results

from Table S3. From Table 2 and Table S3, we summarize the following three findings:

(1) The proportions (percentages) of the 27MAD studies exhibiting AKP effects varied from 38.1% to 57.1%

depending on the diversity order (q), withq= 0 (species richness) having the lowest proportion and q= 3

having the highest proportion. This suggests that the AKP effects are more sensitive to highly dominant

species (q=3) than tocommonspecies (q=1)or total speciesnumbers (q=0). Inotherwords,whatmatter

more are the highly dominant species, rather than rare species, in terms of displaying the AKP effects.

(2) The proportions of the 27 MAD studies exhibiting anti-AKP are relatively stable across diversity or-

ders (q = 0–3), ranged from 26.2% to 33.3%, with q = 3 (very dominant species) exhibiting the lowest

proportion and q = 1 (common species) and q = 0 (total species or species richness) exhibiting the

highest proportion. As expected, the pattern of anti-AKP is opposite to that of the AKP. That is, what

matter less are the highly dominant species, rather than rare species, in terms of displaying the

anti-AKP effects.

Category, Treatment & Statistics q = 0 q = 1 q = 2 q = 3

AKP Healthy Mean 1.646 1.584 1.635 1.674

Std. Err. 0.029 0.037 0.035 0.030

Diseased Mean 1.707 1.656 1.714 1.753

Std. Err. 0.028 0.033 0.029 0.025

Anti-AKP Healthy Mean 1.707 1.688 1.776 1.811

Std. Err. 0.032 0.032 0.030 0.029

Diseased Mean 1.641 1.620 1.707 1.731

Std. Err. 0.033 0.038 0.038 0.041

Non-AKPa Healthy Mean 1.637 1.664 1.699 1.720

Std. Err. 0.067 0.044 0.043 0.042

Diseased Mean 1.634 1.642 1.695 1.726

Std. Err. 0.067 0.053 0.049 0.047

Total Healthy Mean 1.663 1.632 1.689 1.715

Std. Err. 0.024 0.024 0.023 0.022

Diseased Mean 1.664 1.644 1.707 1.736

Std. Err. 0.024 0.023 0.021 0.020

The percentage for each of the three categories (AKP, Anti-AKP, and Non-AKP), summarized from Table S3 and

computed based on Wilcoxon tests of the differences between the intra-H and intra-D treatments in their beta-

diversity with Hill numbers

Category q = 0 q = 1 q = 2 q = 3

Percentage of AKP 38.1 50.0 50.0 57.1

Percentage of Anti-AKP 33.3 33.3 28.6 26.2

Percentage of Non-AKP 28.6 26.2 23.8 23.8

Table 2. The Mean and Standard Error of the Beta-Diversity (at Different Diversity Order q = 0–3) for the Healthy

and Diseased Treatments of the Three Categories (AKP, Anti-AKP, Non-AKP), Respectively, Summarized from

Table S3; See the Bottom Section for the Percentages of AKP, anti-AKP, and non-AKP
aTable S2 contains the pairwise beta-diversity in Hill numbers for the microbiome samples of the 27 MAD case studies. Table

S3was obtained from performing Wilcoxon test based on the beta-diversity listed in Table S2.
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(3) The proportions of the 27 MAD studies exhibiting non-AKP are relatively stable across diversity or-

ders (q = 0–3), ranged from 23.8% to 28.6%, with q = 2–3 (dominant species) exhibiting the equal

proportion (23.8%, also the lowest) and q = 0 (species richness) exhibiting the highest proportion.

Hence, it appears that the continuum (spectrum) of commonness versus rarity in species abun-

dances does not influence the proportion of non-AKP pattern, given that the continuum determines

the weights (of species abundance distribution) used for computing the diversity (Hill numbers) at

different diversity orders.
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Figure 1. Beta Diversity

The mean beta-diversity (at each diversity order q = 0–3) for each of the 27 MAD (microbiome-associated disease) case

studies used for detecting the AKP (Anna Karenina principle): the cases detected with AKP effects are marked with *; the

cases detected with Anti-AKP effects are marked with #.
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Site Disease Case Study Index Treatments Similarity (C) p Value of Wilcoxon Test

Healthy

(H)

Diseased

(D)

Healthy

(H)

Diseased

(D)

s > <

Gut IBD (Inflammatory Bowel

Disease)

1 Healthy CD 0.124 0.128 0.776 0.612 0.388

Healthy UC 0.124 0.060 0.000 0.000 1.000

2 Healthy CD 0.108 0.065 0.000 0.000 1.000

Healthy UC 0.108 0.110 0.001 1.000 0.000

Obesity 3 Lean Overweight 0.121 0.125 0.273 0.864 0.136

Lean Obesity 0.121 0.132 0.000 1.000 0.000

Cancer 4 Healthy Cancer 0.011 0.007 0.000 0.000 1.000

HIV 5 Negative Treatment 0.091 0.082 0.004 0.002 0.998

Negative Non-treat 0.091 0.064 0.000 0.000 1.000

6 Negative Treatment 0.135 0.107 0.000 0.000 1.000

Negative Non-treat 0.135 0.173 0.001 0.999 0.001

7 Negative Treatment 0.136 0.158 0.012 0.994 0.006

Negative Non-treat 0.136 0.095 0.002 0.001 0.999

T1D (Lean) 8 H T1D 0.119 0.131 0.274 0.863 0.137

HO T1DO 0.156 0.143 0.881 0.560 0.440

Gout 9 Healthy Gout 0.164 0.102 0.000 0.000 1.000

MHE 10 Healthy MHE 0.062 0.072 0.043 0.979 0.021

Control MHE 0.058 0.072 0.000 1.000 0.000

Parkinson’s Disease 11 Healthy PD 0.131 0.104 0.000 0.000 1.000

Schizophrenia 12 Healthy Diseased 0.141 0.117 0.000 0.000 1.000

Autism 13 Healthy Autism 0.092 0.160 0.000 1.000 0.000

Healthy Neurotypical 0.092 0.132 0.000 1.000 0.000

Atherosclerosis 14 Healthy Diseased 0.080 0.071 0.062 0.031 0.969

Intra-H (healthy) treatments Mean 0.138 NA

Std. Err. 0.015

Intra-D (diseased) treatments Mean 0.118

Std. Err. 0.010

% With significant differences

between intra-H and intra-D treatments

NA 72.5 (29/40) 50.0 (20/

40)

30.0 (12/

40)

% Without significant differences

between intra-H and intra-D treatments

27.5 (11/40) 50.0 (20/

40)

70.0 (28/

40)

AKP (%) 50% (20/

40)

Table 3. The Means of the Similarity (C) for the Intra-healthy Treatment, Intra-diseased Treatment, as well as Wilcoxon Tests for Detecting the AKP

Effects: C(H)>C(D) Indicating AKP Effects, C(H)<C(D) Indicating Anti-AKP Effects, C(H) = C(D) Indicating Non-AKP Effects

(Continued on next page)
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Detecting the AKP Effects with the Ning et al. Framework for Quantifying Ecological

Similarity and Stochasticity

Table S4 listed the results of similarity (C) and p value fromWilcoxon tests for the differences in the similarity

(C) between the H and D treatments of 27 MAD case studies. As introduced previously, if the similarity of H

treatment is lower (higher) than that of D treatment, then the test indicates the existence of AKP (anti-AKP)

effects; otherwise no AKP effects exist. Table 3 is excerpted and summarized from Table S4. It is shown that

the percentages of MAD studies with AKP effects and anti-AKP effects were 50% and 30%, respectively.

There were approximately 27% of MAD cases without displaying AKP effects. These numbers are rather

close to the previous AKP test results from the beta-diversity approach. Both approaches cross-verified

each other’s findings, but the beta-diversity approach offered more comprehensive results obviously.

Hence, in the remainder of this article, we focus on the findings from beta-diversity approach.

Conclusions and Discussion

In summary, our tests based on the beta-diversity profiles (Hill numbers) and a big dataset of 27MAD studies

demonstrate that the AKP effects exist in 50%ormore of theMAD cases, except for the species richness (q=

0). Furthermore, the effects seem more significant (sensitive) for highly dominant species (OTUs) (57%) and

less significant (sensitive) at species richness level (38%). In other words, the far-reaching changes occurred

with the very abundant (dominant) species in themicrobiome associatedwith diseases, but the total species

number (species richness) is less sensitive to MAD. Therefore, we postulate that the AKP effects can be pri-

marily attributed to highly abundant species and less to rare species. In contrast with the AKP effects, the

anti-AKP effects, i.e., lower beta-diversity associated with MAD, are demonstrated in approximately one-

fourth of the studied cases. The remaining one-fourth of theMAD cases show no changes in the beta-diver-

sity, namely, the non-AKP cases. Interestingly, the patterns of anti-AKP and non-AKP appear relatively stable

across diversity orders. In other words, all species appear to play equal roles in the anti-AKP and non-AKP

effects, unlike in the AKP effects, in which highly dominant species can play a more important role.

The approximately 50% or more of positive cases of AKP effects echo the finding in a previous shared-spe-

cies analysis (SSA) by Ma et al. (2019), which used the same dataset as this study. In the SSA, it was found

that, in approximately 50% of the studied cases, shared species between the healthy and diseased micro-

biome samples were lower than that expected by chance. That is, MADs are associated with increased

heterogeneity in species compositions, which is manifested by the reduced number of shared species

between the healthy and diseased treatments. In the same study, it was found that, in only approximately

one-third of the studied cases, there were significant diversity-disease relationships (DDRs), i.e., significant

differences between the healthy and diseased treatments in term of the alpha-diversity. In contrast with the

50% of AKP effects, the DDR (measured with alpha-diversity) seems less sensitive. This also indicates that

AKP effects, measured by beta-diversity, are more sensitive to MADs than the DDR measured with alpha-

diversity. Hence, we argue that the AKP effects should be more promising for developing personified

diagnosis indicators for diseases, as suggested by Zaneveld et al. (2017), than the routinely computed

alpha-diversity indexes in the DDR analysis (Ma et al., 2019).

A key element of the AKP is the bidirectional interactions between the immune system and human micro-

biome. The notion that stability is associated with the healthy microbiome or host physiology mirrors the

notion that dysbiosis (or rising heterogeneity) is often associated with the diseased microbiome or

Site Disease Case Study Index Treatments Similarity (C) p Value of Wilcoxon Test

Healthy

(H)

Diseased

(D)

Healthy

(H)

Diseased

(D)

s > <

Anti-AKP (%) 30% (12/

40)

Non-AKP (%) 27.5% (11/

40)

Table 3. Continued

CD, Crohn’s Disease; UC, Ulcerative Colitis; T1D, Type-1 Diabetes; T1DO, Type-1 Diabetes)(Obese); MHE, Minimal Hepatic Encephalopathy; PD, Parkinson’s

Disease.

Summarized from Table S4.
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abnormal host physiology. The disruption or breakdown modes of the bidirectional interactions between

the immune system and symbiotic microbiotas can vary from case to case (of diseases), and therefore, AKP

effects are unlikely to emerge in all MAD cases. In our opinion, a demonstration of 50% or more positive

AKP effects should be a strong piece of evidence supporting the AKP hypothesis in the human MADs.

The AKP hypothesis predicts the rise of stochasticity in animal/human microbiomes due to stress, dis-

eases, and immune system dysfunctions. However, it does not negate the importance of deterministic

changes in community composition (Zaneveld et al., 2017). In the human microbiome research, the

effects of deterministic forces have been well recognized. One such example is the community state

types (CSTs) of human vaginal microbiomes (Ravel et al., 2011; Gajer et al., 2012; Doyle et al., 2018).

According to the four processes (mechanisms) synthesis of community dynamics (Vellend, 2016; Han-

son et al., 2012), which states that it is the four processes (i.e., selection, drift, dispersal, and speci-

ation) that drive the community dynamics, CST should primarily be shaped by deterministic selection

forces (such as host genome). Nevertheless, one of the CSTs, the CST-IV that is almost exclusively

associated with BV (bacterial vaginosis) disease, showed significant intra-type heterogeneity (vari-

ability). For example, the initial classification of the CST-IV (Ravel et al., 2011) was further classified

into two sub-types to accommodate more diverse communities associated with BV (Gajer et al.,

2012); yet, the classification system could not fully cover more diverse communities (Doyle et al.,

2018; Li and Ma, 2019). This example of human vaginal microbiome and associated BV suggests

that deterministic selection forces and stochastic disturbances such as BV are often interwoven and

it is their joint forces that drive the dynamics of human vaginal microbiome, possibly leading to

the rising heterogeneity of community compositions and even displaying AKP effects.

It should be noted that, to increase the robustness of the statistical analyses performed for detecting the

AKP, anti-AKP effects, we conducted two additional statistical analyses. One was to apply the FDR (false

discovery rate) control to the test results (p values) of the AKP/anti-AKP effects with non-parametric

Wilcoxon test exhibited in Table S3, and the FDR-adjusted results were exhibited in Table S5. The FDR

control was applied to control the expected proportions of ‘‘discoveries’’ (rejected null hypotheses) that

are false (i.e., wrong rejections) during multiple tests. In other words, FDR control was designed to increase

the test power to detect true positives, while still controlling the proportion of type I errors (i.e., false pos-

itives) at a specified level (Korthauer et al., 2019). Another alternative test we adopted was to use the ‘‘Ef-

fect Size test’’ based on Cohen (1988) d-statistic in place of Wilcoxon test, and the results from the alter-

native test were displayed in Table S6. The advantage of using the effect size test can be to alleviate or

even eliminate the potential influence of different sample sizes on the test results. We observed that the

differences these two additional tests made were less than 5% on average and did not cause any change

of the conclusions we inferred in previous sections.

Limitations of the Study

It is suggested that future tests of AKP theory should be expanded in two frontiers: one is to use tem-

poral data and another is to simultaneously assess and interpret the balance and relative importance of

deterministic versus stochastic forces. The former is necessary for investigating the diversity-stability

relationship (DSR) (the other side of disease-associated dysbiosis) (Ma and Ellison, 2019), which can

be simultaneously utilized to assess the temporal heterogeneity associated with AKP effects. The latter

can be much more challenging and requires both methodological innovations and more sophisticated

datasets. Obviously, the recent development of the normalized stochasticity ratio framework by Ning

et al. (2019) presented a promising methodological advance, and yet, sufficient datasets from longitu-

dinal studies are still rare. Still, as suggested by one anonymous expert reviewer of this article, a third

frontier for investigating the AKP theory can be to perform ‘‘cross-diseases’’ tests by asking the ques-

tion: ‘‘do microbiomes associated with different diseases demonstrate greater heterogeneity than con-

trol healthy microbiomes across the same studies?’’ For example, Duvallet et al. (2017) demonstrated

that there are both universal and disease-specific signatures in the gut microbiome. With more exten-

sive datasets (e.g., sufficiently large numbers of disease cases for all microbiome types such as gut and

skins), the proposed approach used in this study should also be useful for performing cross-diseases

AKP tests.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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Supplemental Tables S1, S4 & S6  
(Supplemental Tables S2, S3 & S5 are in Excel tables) 
 
 
Table S1. The 27 datasets of human microbiome associated diseases (MADs) case studies based 
on the 16s-rRNA amplicon sequencing, utilized for testing the AKP (Anna Karenina principle). 
Related to the Transparent Methods and Table Figure 1. 

Index Sites Disease Treatments (the sample size for 
each treatment is parenthesized) References* 

1 Crohn’s disease (CD) (18), Ulcerative colitis 
(UC) (38), Healthy (18) Papa et al (2012) 

2 

IBD (Inflammatory Bowel 
Disease) 

CD (251) , UC (324), Healthy (62) Halfvarson et al (2017) 

3 Obesity Lean (61), Obese (196) and Overweight (24) Turnbaugh et al (2009) 

4 CRC Cancer (46) vs. Healthy (56) Wang et al (2012) 

5 Non-treatment (7) vs. ART treatment (11) Neff et al (2018) 

6 WithART(14), WithoutART(12), Healthy (22) Lozupone et al (2013)  

7 

HIV 

HIV Negative (20) vs. Positive (40) McHardy et al (2013) 

Normal T1D (33) vs Normal Healthy (33) 
8 Type 1 diabetes and Obesity 

Obesity T1D (24) vs. Obesity Healthy (26) 

Kim, Jane: 
https://clinicaltrials.gov/ct2/sh
ow/NCT02938806  

9 Gout Disease (41) vs. Healthy (42) Guo et al (2015) 

10 MHE MHE (25), Cirrhotic (25), Healthy (25) Zhang et al (2013) 

11 Parkinson’s Disease Disease (205) vs. Healthy (133) Hill-Burns et al 2017) 

12 Schizophrenia Disease (25). vs. Healthy (25) Dilip Jeste (UC San Diego): 
https://profiles.ucsd.edu/dilip.jeste 

13 Autism, Neurotypical Autism (88), Neurotypical (41), Healthy (14) Kang et al (2017) 

14 

Gut 

Atheroscierosis Disease (15) vs. Healthy (15) Koren et al (2010) 

15 Atheroscierosis Disease (14) vs. Healthy (15) Koren et al (2010) 

16 PB (22), PnB (22), Healthy (17) Abusleme et al (2013) 

17 
Periodontitis 

Disease (29), Control (29), Healthy (29) Griffen et al (2012) 

18 Smoking (6) vs. Non-smoking (9) Lazarevic et al (2010) 

19 

Oral 

Smoking 
Smoking (74) vs. Non-smoking (72) Charlson et al (2010) 

20 Nostril Smoking Smoking (74) vs. Non-smoking (71) Charlson et al (2010) 

21 Skin Psoriasis Disease (77), Control (83), Healthy (76) Alekseyenko et al (2013) 

22 End of Treatment (23) vs. Exacerbation (23) Fodor et al (2012) 

23 
Cystic Fibrosis (CF) 

Disease (16) vs. Healthy (10) Blainey et al 2012) 

24 

Lung 

HIV Disease (82) vs. Healthy (77) Lozupone  et al (2013) 

25 Vaginal Bacterial Vaginosis (BV) BV (Nugent score=7-10) vs. healthy (Nugent 
score=0-6)  Srinivasan et al (2012) 

26 Semen Infertile Abnormal (33), Subnormal (28), Normal (35). 
Genus level and species level Weng et al 2014 

27 Milk Mastitis Mastitis (4) vs. Healthy (16) Urbaniak (2015) 
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Table S4. The mean and median of the similarity (C) for the intra-healthy treatment, intra-
diseased treatment, respectively, as well as Wilcoxon tests for detecting the AKP effects based 
on C: C(H)>C(D) indicating AKP effects, C(H)<C(D) indicating anti-AKP effects, C(H)=C(D) 
indicating non-AKP effects.  Related to Table 3. 

Treatments Similarity (C) (Mean) Similarity (C) (Median) P-value of Wilcoxon Test 
Site Disease Case 

Study Index 
Healthy (H) Diseased (D) Healthy (H) Diseased (D) Healthy 

(H) 
Diseased 

(D) 
≠  > < 

Healthy CD 0.124 0.128 0.122 0.106 0.776 0.612 0.388 
1 

Healthy UC 0.124 0.060 0.122 0.034 0.000 0.000 1.000 

Healthy CD 0.108 0.065 0.082 0.044 0.000 0.000 1.000 

IBD  
(Inflammatory 
Bowel 
Diseased) 2 

Healthy UC 0.108 0.110 0.082 0.102 0.001 1.000 0.000 

Lean Overweight 0.121 0.125 0.112 0.112 0.273 0.864 0.136 
Obesity 3 

Lean Obesity 0.121 0.132 0.112 0.126 0.000 1.000 0.000 

Cancer 4 Healthy Cancer 0.011 0.007 0.007 0.004 0.000 0.000 1.000 

Negative Treatment 0.091 0.082 0.075 0.073 0.004 0.002 0.998 
5 

Negative Non-treat 0.091 0.064 0.075 0.032 0.000 0.000 1.000 

Negative Treatment 0.135 0.107 0.118 0.071 0.000 0.000 1.000 
6 

Negative Non-treat 0.135 0.173 0.118 0.169 0.001 0.999 0.001 

Negative Treatment 0.136 0.158 0.101 0.125 0.012 0.994 0.006 

HIV 

7 
Negative Non-treat 0.136 0.095 0.101 0.075 0.002 0.001 0.999 

H T1D 0.119 0.131 0.122 0.118 0.274 0.863 0.137 
T1D (Lean) 8 

HO T1DO 0.156 0.143 0.141 0.146 0.881 0.560 0.440 

Gout 9 Healthy Gout 0.164 0.102 0.139 0.073 0.000 0.000 1.000 

Healthy MHE 0.062 0.072 0.054 0.056 0.043 0.979 0.021 
MHE 10 

Control MHE 0.058 0.072 0.027 0.056 0.000 1.000 0.000 
Parkinson’s 
Diseased 11 Healthy PD 0.131 0.104 0.119 0.093 0.000 0.000 1.000 

Schizophrenia 12 Healthy Diseased 0.141 0.117 0.129 0.104 0.000 0.000 1.000 

Healthy Autism 0.092 0.160 0.073 0.149 0.000 1.000 0.000 
Autism 13 

Healthy Neurotypical 0.092 0.132 0.073 0.101 0.000 1.000 0.000 

\Gut 

Atherosclerosis 14 Healthy Diseased 0.080 0.071 0.074 0.062 0.062 0.031 0.969 

Atherosclerosis 15 Healthy Diseased 0.122 0.130 0.096 0.115 0.107 0.947 0.054 

Healthy PB 0.101 0.094 0.051 0.080 0.002 0.999 0.001 
16 

Healthy PnB 0.101 0.108 0.051 0.098 0.000 1.000 0.000 

Healthy Diseased NA NA NA NA NA NA NA 
Periodontitis 

17 
Control Diseased NA NA NA NA NA NA NA 

18 Non-
Smoker Smoker 0.184 0.223 0.146 0.163 0.506 0.754 0.253 

19 Non-
Smoker Smoker 0.423 0.287 0.399 0.265 0.000 0.000 1.000 

Oral 

Smoking 

20 Non-
Smoker Smoker 0.175 0.160 0.167 0.151 0.000 0.000 1.000 

Control Lesion 0.065 0.038 0.048 0.025 0.000 0.000 1.000 
Skin Psoriasis 21 

Normal Lesion 0.041 0.038 0.027 0.025 0.080 0.040 0.960 
22 Treated Exacerbation 0.196 0.201 0.052 0.065 0.010 0.995 0.005 Cystic Fibrosis  

(CF) 23 Healthy Diseased 0.124 0.117 0.121 0.108 0.878 0.439 0.563 Lung 

HIV 24 Negative Positive 0.090 0.079 0.033 0.022 0.200 0.100 0.900 
Vaginal BV 25 Healthy BV 0.251 0.159 0.178 0.129 0.000 0.000 1.000 

Normal Subnormal 0.247 0.218 0.253 0.194 0.000 0.000 1.000 Infertile  
(Genus level) Normal Abnormal 0.247 0.180 0.253 0.156 0.000 0.000 1.000 

Normal Subnormal 0.186 0.163 0.189 0.143 0.000 0.000 1.000 
Semen 

Infertile  
(Species level) 

26 

Normal Abnormal 0.186 0.137 0.189 0.116 0.000 0.000 1.000 
Milk Mastitis 27 Healthy Mastitis 0.178 0.234 0.153 0.220 0.098 0.952 0.049 
Intra-H (Healthy) Treatments Mean  0.138      
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 Std. Err. 0.015      

Mean 0.118      
Intra-D (Diseased) Treatments  

Std. Err. 0.010      
% With Significant Differences between Intra-H and Intra-D 
treatments     72.5 

(29/40) 
50.0 

(20/40) 
30.0 

(12/40) 
% Without Significant Differences between Intra-H and Intra-D 
treatments     27.5 

(11/40) 
50.0 

(20/40) 
70.0 

(28/40) 

AKP (%)      50 
(20/40)  

Anti-AKP (%)       30 
(12/40) 

Non-AKP (%)     27.5 
(11/40)   

 
 
 
Table S6. Tests of the AKP effects with the “Effect Size Test” [Cohen (1988) d-statistic] based 
on Ning et al. (2019) similarity (C) and the beta diversity in Hill numbers*. Related to the 
Discussion Section and Figure 1.   

Beta diversity 
Treatments Similarity 

(C) q=0 q=1 q=2 q=3 Site Disease Case 
Study Index 

Healthy (H) Diseased (D) d p d p d p d p d p 

Healthy CD -0.13 0.24 -0.16 0.17 0.07 0.57 0.27 0.02 0.32 0.01 
1 

Healthy UC 0.91 0.00 -1.14 0.00 -0.93 0.00 -0.58 0.00 -0.46 0.00 

Healthy CD 0.50 0.00 NA NA NA NA NA NA NA NA 

IBD  
(Inflammatory 
Bowel 
Diseased) 2 

Healthy UC -0.01 0.56 NA NA NA NA NA NA NA NA 

Lean Overweight -0.08 0.21 0.32 0.00 0.10 0.11 -0.15 0.02 -0.22 0.00 
Obesity 3 

Lean Obesity -0.12 0.00 0.19 0.00 0.16 0.00 -0.08 0.00 -0.14 0.00 

Cancer 4 Healthy Cancer 0.50 0.00 -0.47 0.00 -0.33 0.00 -0.15 0.00 -0.12 0.00 

Negative Treatment 0.17 0.00 -0.23 0.00 -0.17 0.00 -0.12 0.04 -0.13 0.03 
5 

Negative Non-treat 0.44 0.00 -0.58 0.00 -0.39 0.00 -0.28 0.00 -0.29 0.00 

Negative Treatment 0.30 0.02 -0.07 0.60 -0.35 0.01 -0.24 0.05 -0.21 0.10 
6 

Negative Non-treat -0.51 0.00 0.92 0.00 0.52 0.00 0.50 0.00 0.50 0.00 

Negative Treatment -0.25 0.02 0.40 0.00 0.27 0.01 0.16 0.12 0.10 0.35 

HIV 

7 
Negative Non-treat 0.37 0.00 -0.39 0.00 -0.31 0.00 -0.36 0.00 -0.43 0.00 

H T1D -0.08 0.20 -0.04 0.55 0.05 0.41 0.21 0.00 0.24 0.00 
T1D (Lean) 8 

HO T1DO 0.25 0.00 -0.53 0.00 -0.27 0.00 -0.12 0.14 -0.06 0.44 

Gout 9 Healthy Gout 0.66 0.00 -1.25 0.00 -0.73 0.00 -0.33 0.00 -0.22 0.00 

Healthy MHE -0.28 0.00 0.35 0.00 0.22 0.01 0.18 0.04 0.17 0.04 
MHE 10 

Control MHE -0.40 0.00 0.56 0.00 0.41 0.00 0.24 0.00 0.18 0.03 
Parkinson’s 
Diseased 11 Healthy PD 0.39 0.00 NA NA NA NA NA NA NA NA 

Schizophrenia 12 Healthy Diseased 0.32 0.00 -0.91 0.00 -0.35 0.00 0.08 0.30 0.21 0.01 

Healthy Autism -0.73 0.00 0.75 0.00 0.74 0.00 0.70 0.00 0.68 0.00 
Autism 13 

Healthy Neurotypical -0.57 0.00 0.68 0.00 0.48 0.00 0.35 0.00 0.31 0.01 

Gut 

Atherosclerosis 14 Healthy Diseased 0.29 0.04 -0.23 0.10 -0.33 0.02 -0.24 0.09 -0.23 0.10 

Atherosclerosis 15 Healthy Diseased -0.18 0.21 0.03 0.86 0.13 0.37 0.21 0.16 0.24 0.10 

Healthy PB -0.18 0.10 0.60 0.00 0.03 0.78 -0.23 0.04 -0.25 0.02 
16 

Healthy PnB -0.30 0.01 0.61 0.00 0.19 0.07 0.00 0.97 -0.01 0.89 

Healthy Diseased -0.25 0.00 0.27 0.00 0.20 0.00 0.14 0.04 0.11 0.13 
Periodontitis 

17 
Control Diseased -0.06 0.37 0.03 0.70 0.09 0.18 0.14 0.04 0.15 0.03 

18 Non-Smoker Smoker -0.25 0.42 -0.09 0.77 0.22 0.49 0.07 0.82 0.01 0.97 

19 Non-Smoker Smoker 0.77 0.00 -1.00 0.00 -0.84 0.00 -0.49 0.00 -0.41 0.00 

Oral 

Smoking 

20 Non-Smoker Smoker 0.20 0.00 -0.39 0.00 -0.19 0.00 -0.18 0.00 -0.21 0.00 
Skin Psoriasis 21 Control Lesion 0.62 0.00 -0.59 0.00 -0.64 0.00 -0.51 0.00 -0.45 0.00 
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   Normal Lesion 0.05 0.04 -0.04 0.15 -0.07 0.01 -0.13 0.00 -0.14 0.00 

22 Treated Exacerbation -0.11 0.20 0.62 0.00 0.11 0.17 0.08 0.31 0.08 0.34 Cystic Fibrosis  
(CF) 23 Healthy Diseased 0.02 0.93 0.20 0.31 0.05 0.79 -0.24 0.21 -0.35 0.08 Lung 

HIV 24 Negative Positive 0.10 0.01 0.06 0.16 -0.09 0.02 -0.13 0.00 -0.13 0.00 

Vaginal BV 25 Healthy BV 0.18 0.00 0.75 0.00 -0.20 0.00 -0.29 0.00 -0.32 0.00 

Normal Subnormal 0.18 0.01 0.12 0.07 -0.20 0.00 -0.32 0.00 -0.34 0.00 Infertile  
(Genus level) Normal Abnormal 0.48 0.00 0.10 0.09 -0.48 0.00 -0.60 0.00 -0.59 0.00 

Normal Subnormal 0.19 0.00 0.02 0.78 -0.25 0.00 -0.33 0.00 -0.30 0.00 
Semen 

Infertile  
(Species level) 

26 

Normal Abnormal 0.47 0.00 0.05 0.37 -0.51 0.00 -0.59 0.00 -0.56 0.00 

Milk Mastitis 27 Healthy Mastitis -0.86 0.04 -0.23 0.61 1.19 0.01 0.29 0.53 0.01 0.99 
% With Significant Differences between Intra-H and Intra-D 
treatments 76.2 (32/42) 61.5 (24/39) 74.4 (29/39) 74.4 (29/39) 71.8 (28/39) 

% Without Significant Differences between Intra-H and Intra-D 
treatments  23.8 (10/42) 38.5 (15/39) 25.6 (10/39) 25.6 (10/39) 28.2 (11/39) 

AKP (%) 52.4 (22/42) 28.2 (11/39) 51.3 (20/39) 51.3 (20/39) 48.7 (19/39) 
Anti-AKP (%) 23.8 (10/42) 33.3 (13/39) 23.1 (9/39) 23.1 (9/39) 23.1 (9/39) 
Non-AKP (%) 23.8 (10/42) 38.5 (15/39) 25.6 (10/39) 25.6 (10/39) 28.2 (11/39) 

*Cohen J (1988) The Statistical Power Analysis for the Behavioral Sciences. J. of the American Statistical Association.  
For the “Effect Size Tests” based on Similarity (C), P-value<0.05 indicates there is significant difference between the H 
(healthy) and D (diseased) treatments, if d (similarity)>0 signaling AKP effects, and d(similarity)<0 signaling anti-AKP 
effects. P-value>0.05 indicates Non-AKP effects.  

For the “Effect Size Tests” based on Beta-diversity, P-value<0.05 indicates there is significant difference between the H 
(healthy) and D (diseased) treatments, if d (beta-diversity)<0 signaling AKP effects, and d(similarity)>0 signaling anti-
AKP effects. P-value>0.05 indicates Non-AKP effects.  
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TRANSPARENT METHODS 
 

Datasets of Microbiome Associated Diseases (MADs)  

Table S1 of the online supplementary information (OSI) exhibited a brief description on the 

metagenomic datasets of the 27 MAD (microbiome associated disease). These datasets of 16s-

rRNA sequencing reads cover all five major habitats and two major body fluids of the human 

microbiomes (gut, oral, lung, skin, vaginal, milk and semen). They include majority of the high-

profile MADs such as obesity, IBD, diabetes, gout, HIV, Parkinson’s disease, Schizophrenia, 

autism, periodontitis, BV (bacterial vaginosis), CRC (colorectal cancer), mastitis, and infertility. 

These publically available datasets represent for state-of-the-art studies in MADs and were 

previously used in a meta-analysis by Ma et al. (2019) for diversity-disease relationship (DDR) 

analysis.    

Alpha-Diversity in Hill Numbers  

Hill numbers are derived from Renyi’s entropy and defined with the following formula:  

€ 

qD = pi
q

i=1

N

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1/(1−q )

      (1)  

where N is the number of species or OTUs, pi is the relative abundance of species i, q is the order 

number of alpha-diversity, qD is the alpha-diversity at diversity order q, i.e., the Hill numbers of 

q-th order. A recent consensus is that Hill numbers offer the most appropriate measures for 

alpha-diversities and their multiplicative partition is advantageous over other existing definitions 

for beta-diversities (Chao et al. 2014, 2019, Ma 2017).    

 

The Hill number cannot be defined when q=1, but its limit exists as q approaches to 1: 

    

€ 

1D =lim
q→1

qD = exp − pi log(pi)
i=1

N

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟     (2) 

The diversity order (q) reflects the sensitivity of Hill numbers to the relative frequencies of 

species abundances. If q=0, species abundances do not matter at all since 

€ 

pi
0  =1, and 0D=N, i.e., 

the number of species in community or species richness of community. If q=1, 1D is the 

exponential function of Shannon entropy, and measures the number of typical or common species. 

If q=2, 2D equals the reciprocal of Simpson index, and it measures the number of dominant or 

very abundant species in the community. Using Hill numbers as biodiversity measures has 

multiple advantages, and here we mentioned two of the most significant benefits. Hill numbers 

are in the units of species or species equivalents weighted differently at different diversity orders 
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(q) and the weights are determined by the species abundance distribution (SAD). For this reason, 

all Hill numbers at the same diversity order are in the same units and fully comparable across 

communities, and furthermore the Hill numbers at different diversity orders constitute the so-

termed diversity profiles, i.e., a series of Hill numbers at different diversity orders. Therefore, 

Hill numbers provide comprehensive measures for biodiversity in consideration of the whole 

spectrum of rarity vs. commonness of species abundance distribution. It also makes the issues 

associated with choosing different existing diversity orders moot because Hill numbers are 

functions of the major existing diversity measures as explained previously.  

Gamma-Diversity in Hill numbers   

While the previously defined alpha-diversity is aimed to measure the diversity within a (single) 

community, the following gamma-diversity is defined to measure the total diversity of pooled 

multiple (N) communities.   

 

Assuming there are M communities, which can be the community samples from M individuals, 

the gamma diversity of M communities is defined as: 

€ 

qDγ = pi( )q
i=1

N

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1/(1−q )

,      (3) 

where

€ 

pi is the relative abundance of the i-th species (i=1, 2,…, N) in the pooled assemblage of M 

communities. Comparing Eqn. (3) for gamma diversity with Eqn. (1) for alpha diversity indicates 

that the gamma diversity is the Hill numbers based on the relative abundance of the i-th species 

gene in the pooled assemblage of M communities.      

Beta-Diversity in Hill numbers  

Traditionally, there are two types of definitions for the beta-diversity: the additive partition or 

multiplicative partition of gamma diversity into assumingly independent alpha-diversity and 

beta-diversity. Recent consensus has supported the use of multiplicatively defined beta-diversity 

in terms of Hill numbers, i.e., by partitioning gamma diversity into the product of alpha and beta 

diversities, in which both alpha 

€ 

(qDα ) and gamma 

€ 

(qDγ )diversities are measured with the Hill 

numbers (Chao et al. 2014, 2019, Ma 2017). That is:  

€ 

qDβ =qDγ /
qDα .       (4) 

Detecting AKP effects with Beta-Diversity in Hill numbers  

We use beta-diversity (in Hill numbers) as metrics for determining the AKP effects because 

higher beta-diversity reveals rising heterogeneity in community composition, which is 
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considered as a hallmark of the AKP (Zaneveld et al. 2017). We conduct non-parametric 

significant test (Wilcoxon test) to determine the statistical significance of the differences in beta-

diversity between the healthy (H) and diseased (D) treatments. If the pair-wise beta-diversity 

within H treatment is significantly lower (higher) than pair-wise beta-diversity within D 

treatment (P<0.05 from Wilcoxon test), then the test reveals AKP (anti-AKP) effects; otherwise, 

there is no MAD effect.    

Ning et al. (2019) framework for quantifying ecological similarity and stochasticity   

We use a new framework recently developed by Ning et al. (2019) for quantifying ecological 

stochasticity to cross-verify the results from neutral theory modeling. The theoretical basis of 

their mathematical framework is that deterministic processes should drive ecological 

communities more similar or dissimilar than null expectation, and they formulated a 

sophisticated procedure to implement a null model for quantifying stochasticity. In this study, to 

test the AKP, we only need portion of their framework, their similarity metric. Ning et al. (2019) 

recommended using the Ružička similarity metrics, which is a true distance function based on 

species abundance (Ružička 1958). Ružička similarity is a generalization of Jaccard binary 

similarity coefficient. Let Cij represent the observed similarity between the i-th and j-th 

community, 

€ 

Cij =
min(pk

i , pk
j )

S
∑
max(pk

i , pk
j )

S
∑

      (5) 

where S is the number of species, 

€ 

pk
i  and 

€ 

pk
j  are the relative abundance of k-th species in the i-th 

and j-th community.  

 

We use Wilcoxon test to determine the statistical significance of the difference between the 

healthy and diseased treatments in their intra-treatment sample similarities. If the intra-treatment 

similarity (C) of the healthy treatment is significantly lower (higher) than that of the intra-

treatment similarity (C) of the diseased treatment, it indicates that the MAD follows the AKP 

(anti-AKP) principle; otherwise, there is no MAD effect.    
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