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Summary
Background The existing dementia risk models are limited to known risk factors and traditional statistical methods.
We aimed to employ machine learning (ML) to develop a novel dementia prediction model by leveraging a rich-phe-
notypic variable space of 366 features covering multiple domains of health-related data.

Methods In this longitudinal population-based cohort of the UK Biobank (UKB), 425,159 non-demented partici-
pants were enrolled from 22 recruitment centres across the UK between March 1, 2006 and October 31, 2010. We
implemented a data-driven strategy to identify predictors from 366 candidate variables covering a comprehensive
range of genetic and environmental factors and developed the ML model to predict incident dementia and
Alzheimer’s Disease (AD) within five, ten, and much longer years (median 11.9 [Interquartile range 11.2−12.5] years).

Findings During a follow-up of 5,023,337 person-years, 5287 and 2416 participants developed dementia and AD,
respectively. A novel UKB dementia risk prediction (UKB-DRP) model comprising ten predictors including age,
ApoE e4, pairs matching time, leg fat percentage, number of medications taken, reaction time, peak expiratory flow,
mother’s age at death, long-standing illness, and mean corpuscular volume was established. Our prediction model
was internally evaluated based on five-fold cross-validation on discrimination and calibration, and it was further com-
pared with existing prediction scales. The UKB-DRP model can achieve high discriminative accuracy in dementia
(AUC 0.848 § 0.007) and even better in AD (AUC 0.862 § 0.015). The model was well-calibrated (Hosmer-Leme-
show goodness-of-fit p-value = 0.92), and the predictive power was solid in different incidence time groups. More
importantly, our model presented an apparent superiority over existing models like Cardiovascular Risk Factors,
Aging, and Incidence of Dementia Risk Score (AUC 0.705 § 0.008), the Dementia Risk Score (AUC 0.752 §
0.007), and the Australian National University Alzheimer’s Disease Risk Index (AUC 0.584 § 0.017). The model
was internally validated in the general population of European ancestry and White ethnicity; thus, further validation
with independent datasets is necessary to confirm these findings.

Interpretation Our ML-based UKB-DRP model incorporated ten easily accessible predictors with solid predictive
power for incident dementia and AD within five, ten, and much longer years, which can be used to identify individu-
als at high risk of dementia and AD in the general population.
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Research in context

Evidence before this study

We searched PubMed without language constraints for
studies about dementia prediction published between
Jan. 1, 2002 and Jan 1, 2022 using the terms “(dementia
OR Alzheimer’s Disease) AND (prediction OR predict OR
predictive) AND (longitudinal)”. Numerous dementia
prediction models have been developed, most of which
were score-based systems that adopted predictors var-
ied from sociodemographic, cognitive, imaging, and
biomedical, to genetic variables that were largely based
on empirical knowledge, and they were primarily devel-
oped by traditional statistical methods (e.g. cox or logis-
tic regression). Current applications of ML in dementia
prediction often incorporate variables that are not easily
accessible in basic clinical practice (e.g., high-level neu-
roimaging features and cerebrospinal fluid biomarkers),
narrowing its application to research or expertise
settings.

Added value of this study

We leveraged a longitudinal study cohort of UK-Biobank
with richly phenotypic health-related variable space,
allowing us to maximize the potential in identifying
undiscovered risk factors for dementia risk predictions.
The deliberately designed ML-based data-driven pipe-
line identified the optimal combinations of key factors,
and the proposed UKB-DRP model exhibited excellent
performance in discriminating future incident dementia
events among a population of healthy subjects. The
model is also well-generalized in predicting Alzheimer’s
Disease (AD). Further, our novel UKB-DRP model dem-
onstrated an apparent superiority over existing risk pre-
diction models.

Implications of all the available evidence

The ML-based risk prediction models can learn expres-
sive representations from potential high-risked demen-
tia and AD patients. Predictors leveraged by the
proposed model can be rapidly available through ques-
tionnaires, physical measures, and simple blood tests.
Further, several identified predictors are intervenable at
an early stage, and it is worth paying more attention to
their potential mechanisms to reduce or delay the
development of dementia.
Introduction
Dementia is a group of symptoms affecting thinking,
mood, and behaviour severe enough to interfere with
daily life, which affects over 55 million people world-
wide.1 Given the long prodromal period when neuro-
pathological changes occur before dementia diagnosis,
there is an urgent need to establish approaches to iden-
tify the population appearing normal but at high risk of
developing dementia. The ability to predict dementia
incidence is critically relevant for decisions of clinicians
to manage patients in follow-up, and for investigators to
recruit participants into clinical trials. Early precise pre-
vention and intervention targeting the highly suspected
population can effectively reduce the disease burden
and save enormous medical resources from those
unlikely to progress to dementia.

Dementia can be attributed to genetic and modifi-
able risk factors which have been incorporated into vari-
ous prediction models in previous research, such as the
Cardiovascular Risk Factors, Aging, and Incidence of
Dementia (CAIDE) Risk Score,2 the Dementia Risk
Score (DRS),3 and the Australian National University
Alzheimer’s Disease Risk Index (ANU-ADRI).4 Never-
theless, these models were primarily established based
on predictors manually retrieved from literature like
age, apolipoprotein E (ApoE), education, body mass
index (BMI), physical activity, and blood pressure, while
many other potential factors can be ignored. Further,
the existing models were mainly conducted through tra-
ditional statistical methods, such as cox or logistic
regressions, so that the predicting power and solidness
can be limited.

In the present study, we employed machine learning
(ML) in a large prospective cohort UK Biobank (UKB),
containing 502,414 participants with over ten years of
follow-up5 to establish and validate a novel UKB demen-
tia risk prediction model, named UKB-DRP. We intend
to develop a generalisable model for all-cause dementia
(ACD) and its dominant subtype Alzheimer’s Disease
(AD) with an aim to identify a population who had a
higher risk of incidence of diseases in five, ten, and
much longer years. We also compared the predictive
performance of the UKB-DRP to the existing prediction
models mentioned above to demonstrate the superiority
of the proposed ML model that was developed based on
a data-driven approach. Our study performed model
development and internal validation based on a
www.thelancet.com Vol 53 November, 2022
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population that was mainly of White ethnicity and Euro-
pean ancestry; thus, further independent external vali-
dation is needed to confirm our findings.
Methods

Study participants
Our study adopted data from the UKB, a longitudinal
cohort study with over 500,000 individuals aged 40
−69 years at their baseline assessment between March
1, 2006 and October 31, 2010.5 The cohort enrolled the
general population in 22 recruitment centres across the
UK to undergo multiple assessments, including inter-
views and questionnaires covering their lifestyles and
health conditions, physical measures, biological sample
Figure 1. Flowchart of the participants selection.
(A) Individuals in the UK Biobank cohort were excluded if they h

follow-up records. The remaining participants were classified based
(B) Left: distribution of observation times for the derived study

(IQR 11.2-12.5). Middle: distribution of first reported years of demen
after baseline.

Abbreviations: AD = Alzheimer’s Disease
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assays, imaging, and genotyping. As shown in Figure 1,
all participants who completed the baseline assessment
(n=502,414) were included except if they were: (1) with
dementia at baseline (n=890), (2) with stroke at baseline
(n=7184), and (3) without follow-up records (n=70,071),
we finally included 425,159 non-demented participants
who had at least ten years follow-up (median 11.9 years)
until December 2020. The UK Biobank has research tis-
sue bank approval from the North West Multi-centre
Research Ethics Committee (https://www.ukbiobank.
ac.uk/learn-more-about-uk-biobank/about-us/ethics)
and provided oversight for this study. Written informed
consent was obtained from all participants. Participa-
tion is voluntary, and participants are free to withdraw
at any time without giving any reason.
ad reported dementia at baseline, stroke at baseline, or without
on their first reported years of dementia or AD after baseline.
population, whose median observation times were 11.9 years
tia after baseline. Right: distribution of first reported years of AD
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Dementia outcomes
The primary outcome was dementia containing AD,
vascular dementia, frontotemporal dementia, dementia
with Lewy bodies, and dementia in other neurodegener-
ative or specified diseases. AD, the most common sub-
type of dementia, was investigated as the secondary
outcome. To have an intensive survey of the incidence
time, we distributed the patients into 5-year, 10-year,
and all incident dementia or AD. The outcomes were
ascertained and classified according to the ICD and
Read codes (eTable 1, appendix p8), extracted from first
occurrences data reported (field 131036-37, 130836-43),
algorithmically defined (field 42018-25), death register
data documented (field 40001-02), hospital inpatient
data summarised (field 41270-71, 41280-81), and pri-
mary care data recorded (field 42040) dementia. Fol-
low-up visits began from the date attending the
assessment centre (field 53) to the earliest date of
dementia diagnosis, death, or the last available date
from the hospital or general practitioner, whichever
occurred first. The diagnosis data were linked to UK
electronic health records among which the dementia
cases were mainly reported by professional clinicians in
hospitals, family doctors in the primary care system, or
staff in the death register system of the UK. However,
the data of detailed diagnosis bases, e.g., lumbar punc-
ture or imaging, which the doctors referred to was
unavailable in the UKB dataset.
Candidate features
This study initially included all clinically relevant fea-
tures collected at the participants’ baseline visits. A
preliminary data screening step was conducted to
exclude non-informative variables whose missing val-
ues were over 40% of all participants, and procedure
metric variables (e.g., biological samples processing
metrics, diagnosis codes, measure device IDs, etc.)
that were clinical meaningless were manually
cleaned by our clinicians, as well. Still, we adopted a
relatively loose inclusion standard to avoid missing
any potential associations, and please refer to eTable
2 (appendix pp9-10) for all candidate features for
this study. Overall, a total of 366 features were
adopted, including the participants’ demographic
characteristics (n=3), touchscreen recorded lifestyle
and health information (n=173), physical measures
(n=66), cognitive function tests (n=23), and biologi-
cal sample assays (n=62). Furthermore, we generated
several variables not directly available from UKB
(n=39), like polygenic risk score (PRS).
Predictors identification
Predictors were determined mainly by two steps: candi-
date features ranking and sequential forward selection.
In the first step, a na€ıve classifier called LightGBM6 was
established, and each feature was ranked based on its
contribution to model performance based on the infor-
mation gain, which can be regarded as the predictor’s
ability to identify the future incidence of dementia.
Based on the ranking, the top-50 features were initially
chosen, and hierarchical clustering on the Spearman
rank-order correlations was conducted to alleviate the
multicollinearity issue (eMethods, appendix p3). Next, a
sequential forward selection strategy was employed that
the features within the pre-selected subset were re-
ranked based on a newly developed classifier. After-
wards, consecutive classifiers were developed with
sequentially added predictors based on the updated pre-
dictor importance ranking orders. The stopping point
was arbitrarily determined by ourselves that we initially
aimed to have an overall AUC of 0.85 (uncalibrated pre-
dicted probabilities), which seems as a prominent
result. Further, no significant improvement in model
performance can be observed when additional predic-
tors come in (Figure 2A). Overall, we identified ten pre-
dictors for model development.
Model development
We implemented LightGBM6 to establish a dementia
risk prediction model, named UKB-DRP, that per-
formed the classification task of determining whether a
participant falls into class 0 (predicted to remain
dementia-free) or class 1 (predicted to incident demen-
tia). The proposed model was developed based on
healthy control (n=419,872) and all incident dementia
(n=5287) participants from the UKB, incorporating ten
identified predictors. The employed LightGBM algo-
rithm works by starting from a weak base learner, usu-
ally a decision tree model, and sequentially training
each new learner to correct the errors from the previ-
ously trained ones. In such a manner, the predictions
can be added up to produce a strong overall final predic-
tive model. The hyperparameter tuning was performed
by an exhaustive selection from 1000 candidate sets of
parameters and finally chosen the optimal set based on
the performance measurement of the area under the
Receiver Operating Characteristic (ROC) curve (AUC).
Please refer to eTable 13 for detailed searching space
and final adopted parameters (appendix, p21). Further,
an isotonic regression7,8 served as a post-processor was
performed to calibrate the raw predicted probabilities to
actual risks (eMethods, appendix pp4-5). The ML algo-
rithm was implemented with LightGBM library (v3.3.2)
and scikit-learn library (v1.0.2)9 in Python (v3.9). Missing
values were not imputed as the LightGBM algorithm
can automatedly handle missingness in both model
training and validation. In addition, we established a
webpage application tool based on the Shiny package
(v1.7.1) under R (v4.1.2). The source code, as well as the
pre-trained models, are publicly available at https://
github.com/jasonHKU0907/UKB_DRP.
www.thelancet.com Vol 53 November, 2022
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Figure 2. Predictor selection and SHAP visualisation of modelling on all incident dementia population.
(A) Sequential forward selection from pre-selected candidate predictors. The bar chart represented the sorted predictor impor-

tance based on their contributions to model classifications. The line chart delineated cumulative AUCs (right axis) upon the inclusion
of predictors one by each iteration. Top-10 predictors (colored in red) were finally selected for ML model building.

(B) SHAP visualisation plot of selected predictors. The width of the range of horizontal bars can be interpreted as the impact on
the model prediction that the wider its range, the larger its impact. The color of the horizontal bars represented the magnitude of
predictors, which was coded in a gradient from blue (low) to red (high), shown as the color bar on the right-hand side. The directions
on the x-axis represented the likelihood of developing dementia (right) or being healthy (left). Readers can then infer the possibility
of developing dementia given each predictor’s specific value (coded in a gradient of colors).

Abbreviations: SHAP = SHapley Additive exPlanations, ApoE e4= Apolipoprotein E (ApoE) e4.
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The model was developed and validated using a five-
fold cross-validation strategy that the validation set (one-
fold of data) was kept untouched and merely used for
evaluation purposes, while the hyperparameters tuning
and post-calibration were performed within an inner-
looped cross-validation within the training sets (four-
fold of data). Please refer to appendix (eMethods, appen-
dix p4) for detailed data partition and training process.
Statistical analysis
In the descriptive analysis of variables of interest, con-
tinuous variables were summarised by median and
interquartile range, while discrete variables were sum-
marised by frequency and percentage. Comparisons
between groups (healthy control vs incident dementia/
AD) were performed using the Chi-square tests for dis-
crete variables and the Student’s t-tests for continuous
www.thelancet.com Vol 53 November, 2022
variables. Odds ratios were calculated using univariate
analysis based on normalised data.

The model’s performance was assessed in two accu-
racy indices, discrimination, and calibration. Discrimi-
nation was measured by the AUC, which varies
between 0¢5 for a non-informative model and 1 for a per-
fectly discriminating one. Calibration refers to the level
of agreement between predicted probabilities and
observed proportions of events, and it was assessed
using the Hosmer-Lemeshow goodness-of-fit test10 with
ten sub-groups and graphically depicted in calibration
plots (eMethods, appendix pp4-5). We also reported
accuracy, sensitivity, specificity, precision, and F1-score
based on a cutoff defined by the achievement of the larg-
est Youden index.11 In addition, we adopted SHapley
Additive exPlanations (SHAP) plots to visualise the
extent to which each predictor contributed to the target
variable. All data analysis and visualisations were
5
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implemented under Python (v3.9) with packages of the
scikit-learn library (v1.0.2) and Shap library (v0.40.0).12
Model deployment across dementia and AD at
different incident times
To assess the generalisability of the UKB-DRP model,
we deployed it to the other five target populations: 5-
year/10-year incident dementia and 5-year/10-year/all
incident AD. Both their AUCs and calibrations were cal-
culated and plotted as performance measurements. Par-
ticularly, five post-processing calibrators (isotonic
regressions) were performed on each of the target
groups, and evaluation metrics were calculated based
on those regressed outputs. Moreover, we repeated the
procedures of predictors selection and model develop-
ment in each of the target populations; hence, five indi-
vidual ML models were established with their own
optimised sets of predictors, which were used to com-
pare with the one developed from all incident dementia.
Comparison with existing prediction scales
Existing dementia risk prediction models, including the
CAIDE,2 DRS,3 and ANU-ADRI,4 were considered
(please refer to eTable 5 for detailed descriptions, appen-
dix p13). We deployed these models to the UKB and
compared their performance to our model. Specifically,
simple imputation (mean for continuous variables and
mode for discrete variables) based on the rule of thumb
was performed for the variables with missingness less
than 5%, while multiple imputations for variables with
missingness over 5%. We adopted Delong’s test13 to
assess the significance of AUCs between the UKB-DRP
and the existing models; as for calibrations, we both
plotted their raw predicted probabilities and regressed
ones.
Role of the funding source
The funders were not involved in the study design, col-
lection, analysis, and interpretation of data, nor did they
have a role in the writing of the manuscript and deci-
sion to submit it for publication. All authors had full
access to all the data in the study and accepted the
responsibility to submit it for publication.
Results

Population characteristics
After filtering 78,145 participants with prevalent demen-
tia, stroke, or missing follow-up data, we included
425,159 participants in the study (Figure 1). They were
mainly comprised of white ethnicity (94.3%) with a
mean age of 58 (IQR 51−64) years, and 54.4%
(n = 231,187) were females and 45.6% (n=193,972) were
males. During a median follow-up time of 11.9 (IQR
11.2−12.5) years, 5287 participants developed dementia,
among whom 3914 were incidents within 10 years and
857 were incidents within 5 years, respectively. Specifi-
cally, for incident dementia participants, 94.9% were
white ethnicity (p-value 0.053), mean age was 66 (IQR
62−68) years (p-value <0.001), and 47.4% were
females (p-value <0.001). A total of 2416 patients were
diagnosed with AD, among whom 1766 were incidents
within 10 years and 329 were incidents within 5 years,
respectively. For incident AD participants, 95.7% were
white ethnicity (p-value 0.004), mean age was 66 (IQR
62−68) years (p-value<0.001), and 52.1% were females
(p-value 0.024). The critical baseline predictors are pre-
sented by incident dementia and AD status in Table 1
and please refer to eTable 14 (appendix p22) for further
detailed statistics on the causes of dementia.
Data-driven predictors selection
Among 366 candidate predictors, the initial selection
procedure picked out 50 candidates, most of whom
were previously discovered to be associated with demen-
tia risk. Several predictors were highly correlated, e.g.,
leg fat percentage and leg fat mass, and hierarchical
clustering was performed to eliminate the multicolli-
nearity (eFigure 1A&1B, appendix p23). A set of 27 pre-
dictors was determined and sorted based on their
importance to the prediction task as shown in the bar
chart (Figure 2A). The sequential forward selection
scheme can be demonstrated by the line chart that the
model’s performance (AUC on the right axis) climbed
steeply when taking part in the first several predictors
and gradually went to flat with gentle fluctuation when
additional ones came in. Ultimately, we chose the top-
10 variables as the final predictors for ML model devel-
opment. Their summary statistics and unadjusted odds
ratios are shown in Table 1.

We would like to elaborate on several selected predic-
tors. The “Long-standing illness” was a self-reported var-
iable, representing any chronic health conditions that
lasted six months or longer, such as cancer, diabetes,
chronic pain, heart disease, etc. Besides, the selection
strategy included two time-related variables that repre-
sented participants’ cognitive functions, reaction time
and pairs matching time, which were measured under
two different tests of the Snap game and Pairs matching
game, respectively. The Snap game was designed to test
participants’ reaction time and simple processing speed.
During the game, participants were shown two cards at
a time on the touchscreen and instructed to press the
button on the button box as quickly as possible when
the symbols on the cards matched. Each pair was dis-
played for 2 seconds, followed by a one second gap.
Reaction time (million seconds) was then recorded the
button-press occurred during a gap against the previous
pair. For the pairs matching game, participants were
asked to memorise the position of as many matching
www.thelancet.com Vol 53 November, 2022



Participants Characteristics Overall Healthy control Incident dementia Incident AD

(n=425,159) (n=419,872) (n=5287) p-value Odds ratio p-value (n=2416) p-value Odds ratio p-value

Age, y 58 [51−64] 58 [51−63] 66 [62−68] <0.001 4.57 [4.31−4.85] <0.001 66 [63−68] <0.001 5.03 [4.67−5.42] <0.001

Sex

female 231,187 (54.4%) 228,683 (54.5%) 2504 (47.4%) <0.001 0.75 [0.71−0.79] <0.001 1258 (52.1%) 0.024 0.91 [0.84−0.99] 0.023

male 193,972 (45.6%) 191,189 (45.5%) 2783 (52.6%) 1.33 [1.26−1.40] <0.001 1158 (47.9%) 1.10 [1.01−1.19] 0.023

Ethnicity (White) 400,879 (94.3%) 395,861 (94.3%) 5018 (94.9%) 0.053 1.13 [1.00−1.28] 0.050 2317 (95.7%) 0.004 1.42 [1.17−1.75] <0.001

Education, y 11 [10−12] 10 [11−12] 10 [10−12] <0.001 0.87 [0.86−0.89] <0.001 10 [10−12] <0.001 0.87 [0.86−0.89] <0.001

ApoE e4

Single-copy carriers 95,618 (22.5%) 93,684 (22.3%) 1934 (36.6%) <0.001 2.60 [2.44−2.77] <0.001 1013 (41.9%) <0.001 3.70 [3.37−4.07] <0.001

Double-copies carriers 8647 (2.0%) 8126 (1.9%) 521 (9.9%) 8.07 [7.31−8.90] <0.001 327 (13.5%) 13.58 [11.89−15.48] <0.001

Pairs matching time, s 383 [305−497] 382 [305−495] 491 [376−689] <0.001 1.33 [1.31−1.35] <0.001 498 [381−701] <0.001 1.30 [1.27−1.33] <0.001

Reaction time, ms 547 [484−640] 547 [484−640] 609 [531−704] <0.001 1.33 [1.31−1.36] <0.001 609 [531−703] <0.001 1.30 [1.27−1.34] <0.001

Long-standing illness 141,290 (33.2%) 138,497 (33.0%) 2793 (52.8%) <0.001 2.29 [2.17−2.42] <0.001 1147 (47.5%) <0.001 1.83 [1.69−1.98] <0.001

Number of medications taken 2 [0−4] 2 [0−4] 4 [2−6] <0.001 1.55 [1.52−1.55] <0.001 3 [1−6] <0.001 1.45 [1.41−1.49] <0.001

Leg fat percentage 33.5 [22.5−41.3] 33.5 [22.5−41.3] 30.6 [22.0−41.2] <0.001 0.94 [0.91−0.96] <0.001 33.0 [22.2−41.6] 0.498 0.99 [0.95−1.03] 0.493

Peak expiratory flow (PEF), L/min 320 [225−423] 321 [226−424] 257 [154−360] <0.001 0.66 [0.63−0.68] <0.001 247 [143−351] <0.001 0.62 [0.59−0.66] <0.001

Mother’s age at death 76 [66−84] 76 [66−84] 76 [67−84] <0.001 0.94 [0.92−0.97] <0.001 77 [67−84] 0.007 0.95 [0.91−0.99] 0.007

Missing (still alive) 166,362 (39.1%) 165,656 (39.5%) 706 (13.4%) <0.001 0.24 [0.22−0.26] <0.001 291 (12.0%) <0.001 0.21 [0.19−0.24] <0.001

Mean corpuscular volume (MCV), fL 91.2 [88.5−93.9] 91.2 [88.5−93.9] 91.8 [89.0−94.7] <0.001 1.18 [1.15−1.21] <0.001 91.9 [89.1−94.8] <0.001 1.19 [1.14−1.24] <0.001

Table 1: The baseline characteristics of UKB participants included in the study by dementia and AD status.
Data are presented as median [Interquartile range] for continuous variables and number (%) for discrete variables. P-values were calculated based on the Student’s t-tests for continuous variables, and Pearson’s Chi-square tests for

discrete variables. Odds ratios were calculated based on univariate analysis using normalised data.
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pairs of cards as possible. The cards were then turned
face down on the screen, and the participants were
asked to touch as many pairs as possible in the fewest
tries. The pairs matching time measured the time (sec-
onds) consumed upon finishing the test. Please refer to
eTable 4 (appendix p12) for detailed notations of all the
selected predictors.

The repeated procedures were performed indepen-
dently for the rest target populations, and the results are
shown in eFigure 2-6 (appendix pp24-28). A summar-
ised table of selected predictors was listed in eTable 3
(appendix p11). It can be found that age, ApoE e4, and
pairs matching time were consistently picked up in all
6 models, followed by the number of medications taken
and mother’s age at death in 5 models, and peak expira-
tory flow (PEF) in 4 models, indicating their strong pre-
dictive powers for both dementia and AD. Particularly,
the reaction time extracted from the individual test and
mean reaction time were crossover selected by three dif-
ferent models. They presented a high correlation to
each other and similar contributions to the dementia
prediction model. Similar scenarios were indicated in
that of leg fat percentage and leg fat mass.
Model and interpretation and visualisation
To better visualise the different contributions of the pre-
dictors to the proposed ML model, we drew the SHAP
plot (Figure 2B) that each participant exhibited as a data
point and was coded with gradient colours representing
the magnitude of the predictor. The plot can be inter-
preted in two aspects. On the one hand, the overall pre-
dictive power of each predictor can be visually
measured by its horizontal range. Specifically, age
seemed to have the widest range, indicating it had the
most considerable prediction power and can signifi-
cantly impact the model’s output. ApoE e4, pairs match-
ing time, and the number of medications taken were
also witnessed in relatively wide ranges, demonstrating
their importance to the prediction task. On the other
hand, the specific effect of each predictor can be inter-
preted by its value magnitude and tendency direction
on the x-axis, which represents the extent of likelihood
to develop dementia. Take the predictor age as an exam-
ple, older participants (coloured in red) are more likely
to develop dementia (right side) compared with younger
ones (coloured in blue) who tend to keep healthy (left
side). Similarly, for the rest predictors, participants car-
rying ApoE e4, spending more time on pairs matching
games, containing less leg fat, taking more medications,
with longer reaction time, having lower PEF, losing
mothers at a younger age, suffering long-standing ill-
nesses, and showing the higher value of mean corpus-
cular volume (MCV), are prone to dementia. Their odds
ratios were consistent with the explainable effects of
SHAP values; please refer to eTable 11 & 12 (appendix
pp19-20) for their odds ratios calculated under the
univariate and multivariate analyses regarding demen-
tia and AD at different timelines.
Model performance across different populations
The discrimination ability of the UKB-DRP model was
assessed using the AUC. According to Figure 3B, the
model for all incident dementia achieved an AUC of
0.848 § 0.007, and its deployment to the 10-year/5-
year incident dementia also achieved comparable results
of 0.849 § 0.009 and 0.847 § 0.015, respectively. All
incident dementia model obtained an accuracy of 0.764
§ 0.013, sensitivity of 0.774 § 0.024, specificity of
0.764 § 0.013, precision of 0.040 § 0.001, and F1-
score of 0.075 § 0.002. The deployment to the different
AD population groups also observed good discrimina-
tion abilities that all/10-year/5-year/ incident AD each
achieved AUCs of 0.862 § 0.015, 0.866 § 0.015 and
0.890 § 0.018, respectively (Figure 3E). All incident
AD model obtained an accuracy of 0.756 § 0.013, sensi-
tivity of 0.815 § 0.037, specificity of 0.756 § 0.013, pre-
cision of 0.019 § 0.001, and F1-score of 0.037 § 0.001.
Specific metrics of 10-year/5-year dementia and AD are
reported in eTable 6 (appendix p14).

The calibration was assessed using Hosmer-Leme-
show goodness-of-fit test, where a p-value greater than
0.05 indicates sufficient goodness-of-fit. The calibration
plot (Figure 3A) of all incident dementia was nicely fit-
ted (p=0.92) that the predicted probabilities and
observed actual proportions were closely matched
within all decile groups. In addition, the deployment to
the rest five population groups, 5-/10-year incident
dementia (Figure 3A) and 5-year/10-year/all incident
AD (Figure 3D), also witnessed satisfied calibrations
that all had p-values greater than 0.05. Specifically, for
5-year incident dementia and AD, the predicted proba-
bilities and observed proportions were all zeros in the
first few decile groups, which were mainly resulted
from insufficient target cases.

Participants with strokes at baseline were excluded
from model development. This is because stroke is one
of the top prevalent neurological disorders, which might
influence the development and progression of demen-
tia. Thus, we maintain a relatively healthier cerebral
population to ensure the efficiency of longitudinal
dementia prediction. To correct the selection bias, we
performed an additional experiment that re-evaluated
the UKB-DRP model after the inclusion of the partici-
pants with stroke at baseline. According to the results
shown in eTable 8 (appendix, p16), no significant varia-
tions were observed, which further demonstrates the
robustness of the proposed model.
Model comparison with existing prediction scales
A series of pairwise comparisons were conducted on all
incident dementia and AD between the proposed UKB-
www.thelancet.com Vol 53 November, 2022



Figure 3. Performance of the UKB-DRP and existing prediction scales.
(A) Calibration plots of the UKB-DRP on dementia at different incident times.
(B) AUC plots of the UKB-DRP on dementia at different incident times.
(C) AUC plots of the UKB-DRP and existing prediction scales on all incident dementia.
(D) Calibration plots of the UKB-DRP on AD at different incident times.
(E) AUC plots of the UKB-DRP on AD at different incident times.
(F) AUC plots of the UKB-DRP and existing prediction scales on all incident AD.
The UKB-DRP model was developed based on all incident dementia population, and the results of 5-year/10-year incident

dementia and all/5-year/10-year incident AD were obtained by the deployment of that model. Isotonic regressions were employed
to adjust the raw predicted probabilities to the actual risks of different deployment populations, all calibration and AUC plots were
drawn based on regressed probabilities, and 5-fold cross-validation strategy was conducted to calculate the results. Calibration plots
of (A) and (D) was evaluated using Hosmer-Lemeshow goodness-of-fit tests on the decile groups of predicted probabilities and
observed proportions of events, where a p-value greater than 0.05 indicated the goodness of fit. Delong’s tests for AUCs comparison
were conducted between the UKB-DRP and each of the existing prediction models on plots (C) and (F). A p-value less than 0.05 indi-
cated the statistical significance of the difference. Notably, the CAIDE had two versions of scaling systems upon the inclusion of pre-
dictor ApoE e4 or not, and we exhibited results derived from both versions.

Abbreviations: AUC = Area under the ROC Curve, AD = Alzheimer’s Disease, w/o = without, ApoE e4= Apolipoprotein E (ApoE) e4,
CAIDE = Cardiovascular Risk Factors, Aging, and Incidence of Dementia Risk Score, DRS = Dementia Risk Score, ANU-
ADRI = Australian National University Alzheimer’s Disease Risk Index, UKB-DRP = UK Biobank Dementia Risk Prediction model.
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DRP model and existing prediction models. Specific
metrics of accuracy, sensitivity, specificity, precision,
and F1-score were shown in eTable 7 (appendix p15).
The DeLong’s tests were performed by comparing our
models to each of the existing prediction models, where
all p-values less than 0.001 (p<0.05 indicates statistical
significance) in both populations of all incident demen-
tia (Figure 3C) and all incident AD (Figure 3F),
www.thelancet.com Vol 53 November, 2022
demonstrating a remarkable superiority of our proposed
ML model. Specifically, the CAIDE score had two ver-
sions defined by the inclusion of predictor ApoE e4 or
not, where the ApoE e4 exhibited significant discrimina-
tion power.

Calibration plots were drawn and exhibited in eFig-
ure 7-10 (appendix pp29-32). We naively plotted the raw
predicted probabilities of each score against the
9



Figure 4. A stylized representation of the UKB-DRP tool.
An example of a 63-year-old female participant who was enrolled in the UKB in 2008 is demonstrated on this webpage. The par-

ticipant’s baseline information is shown on the left panel, and UKB-DRP outputs that her risks of dementia and AD are 36.02% and
16.33%, respectively. In fact, this example participant was diagnosed with Alzheimer’s Disease in 2014 (6 years after) at hospital
admission.
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observed proportions of events, and the proposed UKB-
DRP model delineated a relatively good calibration
(p=0.09) in all incident dementia group while all the
existing models exhibited overall underestimations
across all decile subgroups (eFigure 7, appendix p29).
To have a fair comparison, we regressed raw probabili-
ties from all existing models to our study cohort and
plotted their calibrations (eMthods, eFigure 9-10, pp31-
32). All calibrations then achieved satisfied p-values
(>0.05) in both dementia and AD groups, indicating
their good abilities in stratifications in general, and poor
performance in raw probabilities may result from the
variations in the prevalence of events within their deri-
vation cohorts during model development (eTable 5,
appendix p13).
Webpage deployment tool
We implemented the UKB-DRP model into a web appli-
cation (Figure 4) that provides risk predictions for indi-
viduals. Baseline characteristics can be inputted on the
left panel and estimated risks of dementia and AD at
different incident times are shown in the right panel
marked in red colours. Two calibration plots are dis-
played to represent the stratified risk groups of all inci-
dent dementia and AD based on decile partitions. The
horizontal dash line within the calibration plot gives an
explicit level of risk measure. The source codes and the
pre-trained weights to establish the webpage are pub-
licly available at https://github.com/jasonHKU0907/
UKB_DRP. The web application was made accessible
online at https://jiayou0907.shinyapps.io/UKB-DRP-
Tool/.
Discussion
In this study, we developed a dementia risk prediction
model utilising the ML LightGBM algorithm based on
large cohort data from UKB, which showed superior
prognostic accuracy compared with previously pub-
lished CAIDE, DRS, and ANU-ADRI. The model con-
sisting of the ten important genetic and clinical
predictors achieved AUCs of around 0.85 in predicting
dementia incidence within five, ten, and much longer
years. The model’s performance was even better in AD
predictions with all AUCs more than 0.86. In addition,
the model was well-calibrated with predicted probabili-
ties perfectly plotted against the observed proportions of
events.

Compared with the models established based on var-
iables obtained from elaborate neuropsychological tests,
expensive whole genome sequencing (WGS), invasive
www.thelancet.com Vol 53 November, 2022
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lumbar puncture, or brain positron emission tomogra-
phy (PET) imaging,14−16 our model is solely based on
the easily accessible predictors which can be collected
from quick questionnaires, physical measures, and sim-
ple blood tests. Therefore, this prediction model can be
widely applied to medical institutions at different levels.
Besides, we separately performed the feature selection
and model development in six population groups,
including all-time, 10-year, and 5-year incident dementia
or AD. The models favoured different top features in
these groups, but the dominant ones were similar, so
we chose the model derived from all-time incident
dementia and found remarkable generalisability into
other groups. It can be concluded that our model is solid
and consistent enough to predict dementia in multiple
scenarios.

In our prediction model, age is the most critical fac-
tor with AUC surpassing 0.81 when combing with
ApoE e4. It is worth noting that the predicting power of
PRS was highly correlated with but weaker than that of
ApoE e4. Brief cognitive tests variables, including pairs
matching time and reaction time reflecting visual epi-
sodic memory and processing speed, respectively, added
1.4% to the cumulative discriminative accuracy of ROC
curves, which is consistent with Calvin’s study.17 The
complicated long-standing illness and the number of
medications taken were selected as the features predict-
ing a higher risk of dementia, supported by the findings
that comorbidity and polypharmacy were more preva-
lent in the dementia population18 and could predict the
mortality of dementia patients.19 Except for the above
familiar predictors, it is notable that many other novel
factors also significantly contributed to our model. Leg
fat percentage, a marker of regional body fat deposit, is
first proved to be a protective factor for dementia inci-
dence in this study. It has been proposed that leg fat per-
centage can reduce the risk of cardiovascular diseases20

and diabetes21 independent of BMI potentially by affect-
ing adipose inflammation and lipid metabolism, so it is
reasonable that leg fat percentage is inversely associated
with dementia. Another protective factor identified in
our model, PEF, is a widely adopted lung function
parameter to assess and monitor airway obstruction.22

It has been extensively accepted that impaired lung
function was associated with a greater risk of
dementia,23,24 among which PEF was one of the stron-
gest risk factors.25,26 The lung function contributes to
the dementia process potentially through modulating
the neurodegenerative pathology27 and brain
structures.28,29 Furthermore, the mother’s age at death
is negatively related to the offspring’s dementia onset,
which may be explained by potential family history and
psychosocial trauma.30 The last predictor MCV was
observed to increase dementia risk probably due to the
underlined reduction in erythrocyte lifespan resulting
from increased oxidative stress and adenylate
metabolism.31
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This study has strengths. Our proposed UKB-DRP
model was established based on a large prospective
cohort containing more than 500,000 participants with
at least 10 years of follow-up clinical records. Predictor
determination underwent exhausted and cautious selec-
tion in a data-driven manner from a comprehensive
clinical feature space, and only ten predictors were
finally picked out. The UKB-DRP model was established
using the LightGBM algorithm, one of the most power-
ful ML techniques among the other methods. It works
in an ensemble strategy and perfectly fits huge datasets
with large sample sizes and high feature spaces. In addi-
tion, the LightGBM algorithm can split the missingness
into the optimised node; that is, it can automate handle
the missingness in both training and validation, elimi-
nating the potential bias resulting from inaccurate
imputations.

Several limitations need to be considered when inter-
preting our findings. Firstly, the incidence of dementia
especially 5-year cases was lower than that in other
reported cohorts because the participants from UKB are
younger, healthier, and better-educated. To ascertain
potential dementia patients, we already included records
from hospital inpatient data, death register data, and
primary care data as suggested in the previous study.32

Secondly, our model did not identify the variables like
BMI and blood pressure which were common in other
models as candidate predictors. The possible explana-
tion may be the tree-based LightGBM algorithm relies
heavily on the first a few split nodes (predictors), and
resting predictors were chosen on the shoulder of their
pioneers; as such, those commonly used candidate pre-
dictors might not able to donate sufficient contribu-
tions, while some other more sensitive factors like leg
fat percentage and long-standing illness can compen-
sate for it. Thirdly, although we have performed hierar-
chical clustering to handle multicollinearity issues
during predictor selection, there are still weak correla-
tions exist within the selected predictor set (eFigure 11,
appendix p33), e.g., elder individuals might suffer more
comorbidities and worse cognitive functions. Thus, the
potential confounding issue needs to be aware of as it
might lead to inaccurate interpretations of risk factors
to the prediction outcomes. Fourth, the machine learn-
ing algorithm has its own limitations as well. Although
a preliminary data screening procedure was performed
to include candidate predictors that are health-related
and clinically meaningful (eTable 2, appendix pp9-10),
the predictor selection process was merely data-driven
that emphasized achieving higher performance metrics
but paid less attention to the empirical claims of funda-
mental mechanisms, which might cause potential bias
in real clinical settings.33 Besides, we tried to transpar-
entise the employed ML model by visually interpreting
with SHAP plots; however, it can still not be fully
explained with the exact extent to which it can affect the
model and impact the prediction outcomes, leading to
11
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misused applications under certain circumstances.34,35

Last, the model we established was based on data from
UK-Biobank where the anticipated individuals were
mainly of White ethnicity and European ancestry, and
the proposed model has not been adequately validated
in other cohorts. To somehow undermine the inade-
quacy of validations, two additional experiments were
performed: 1) A leave-one-centre-out cross-validation by
partitioning the study cohort based on the locations of
22 recruitment centres around the UK, and each time
we developed a model based on the population from 21
centres and evaluated it using the rest one (eTable 10,
appendix p18). 2) A subgroup validation by merely
deploying the UKB-DRP model to individuals with
non-British ancestries, which accounts for 11.5%
(n = 49,052) of the whole population (eTable 9, appen-
dix p17). The results of the additional two validations
were consistent with our current results. Still, the vali-
dations were performed internally. Thus, our findings
in populations with different backgrounds remain
unclear. We believe it is worthy of performing further
validation using independent external datasets as future
work.

In conclusion, we identified regular and novel pre-
dictors and then translated them into a promising tool
for the rapid delivery of dementia screening. In future
studies, it is worthy of testing the model comprising
genetic and clinical factors in real-world clinical practise
for further promotion and application. What’s more,
studies are needed to investigate whether targeting
these factors can reduce the possibility of developing
dementia, which may enable precise prevention and
intervention in the early stage.
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