
Sensors 2010, 10, 330-341; doi:10.3390/s100100330 

 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

An Evolution Based Biosensor Receptor DNA Sequence  

Generation Algorithm  

Eungyeong Kim 
1
, Malrey Lee 

2,
*, Thomas M. Gatton 

3
, Jaewan Lee 

4
 and Yupeng Zang 

2
 

1 
Advanced Graduate Education Center for Electronics of Jeonbuk and Information  

Technology-BK21, Jeonju, Jeonbuk, 561-756, Korea; E-Mail: rotnrwk@kongju.ac.kr 
2 

The Research Center of Industrial Technology, School of Electronics & Information Engineering, 

ChonBuk National University, 664-14, 1Ga, DeokJin-Dong, JeonJu, ChonBuk, 561-756, Korea 
3 

The School of Engineering and Technology, National University, 11255 North Torrey Pines Road, 

La Jolla, CA 92037, USA; E-Mail: tgatton@nu.edu 
4 

School of Electronics and Information Engineering, Kunsan National University, San 68,  

Miryoung-dong, Gunsan, Jeollabuk-do, 573-701, Korea 

* Author to whom correspondence should be addressed; E-Mail: mrlee@chonbuk.ac.kr;  

Tel.: +82-63-270-3993; Fax: +82-63-270-2394. 

Received: 9 November 2009; in revised form: 30 November 2009 / Accepted: 21 December 2009 / 

Published: 31 December 2009 

 

Abstract: A biosensor is composed of a bioreceptor, an associated recognition molecule, 

and a signal transducer that can selectively detect target substances for analysis. DNA based 

biosensors utilize receptor molecules that allow hybridization with the target analyte. 

However, most DNA biosensor research uses oligonucleotides as the target analytes and 

does not address the potential problems of real samples. The identification of recognition 

molecules suitable for real target analyte samples is an important step towards further 

development of DNA biosensors. This study examines the characteristics of DNA used as 

bioreceptors and proposes a hybrid evolution-based DNA sequence generating algorithm, 

based on DNA computing, to identify suitable DNA bioreceptor recognition molecules for 

stable hybridization with real target substances. The Traveling Salesman Problem (TSP) 

approach is applied in the proposed algorithm to evaluate the safety and fitness of the 

generated DNA sequences. This approach improves efficiency and stability for enhanced 

and variable-length DNA sequence generation and allows extension to generation of 

variable-length DNA sequences with diverse receptor recognition requirements. 
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1. Introduction 

 

A biosensor, which is composed of a bioreceptor and a signal transducer, is a device for selectively 

detecting specific substances [1,2]. Biosensor design must consider how to select the target substance, 

how to initiate the selective hybridization with the target substance using a simple signal system, and 

how to control the mechanism for completing the hybridization operation and establish communication 

of the substance information [3]. DNA based biosensors utilize receptor molecules that allow 

hybridization with the target analyte. However, most DNA biosensor research uses oligonucleotides as 

the target analytes and does not address the potential problems of real samples. The identification of 

recognition molecules suitable for real target analyte samples is an important step towards further 

development of DNA biosensors [4]. DNA based bioreceptors perform hybridization, similar to those 

found in DNA computing operations [5-7]. DNA computing was proposed by Adleman in 1994 and 

was demonstrated using the Hamiltonian Path Problem (HPP) approach [8]. The process of DNA 

computing, sequence design and recognition DNA sequence generation algorithms has been 

documented and the implementation of a DNA chip is in progress [9-12]. The approach used in the 

identification of suitable DNA sequences for DNA computing operations is applicable to the 

identification of DNA receptors for molecule recognition in DNA biosensors. 

This study analyzes the problems and current solutions in identifying suitable DNA material as a 

recognition molecule in DNA computing. A new algorithm for identifying DNA molecule recognition 

bioreceptor sequences that integrates evolution programming and TSP is introduced, developed and 

evaluated, and the conclusions are presented. Section 2 presents a brief overview of the background and 

current state-of-the-art in DNA computing. Section 3 explains the problems and deficiencies of the 

existing approaches and introduces the proposed algorithm. Section 4 provides an evaluation of the 

safety and efficiency of the generated bioreceptor recognition molecule DNA sequences. Section 5 

contains an interpretation of the evaluation of the proposed algorithm and the conclusions and 

recommendations for further research. 

 

2. DNA Computing 

 

DNA computing is a biologically based computer technology that uses chemically synthesized DNA 

as a means of computation and a medium of information storage. A double helix DNA strand is 

composed of the four bases of A (Adenine), T (Thymine), C (Cytosine), and G (Guanine). These bases 

have a memory function that can save large quantities of data. A and G are in a complementary  

Watson-Crick bond with T and C, respectively [13-15]. The complicated base pattern mixture contains 

a piece of hereditary information and is read by an enzyme that naturally occurs in the human body. In 

addition, enzymes, together with biological experiment methods, are being used as operators for DNA 
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computing. Representative operators are melting, annealing, ligation, PCR and Gel electrophoresis. 

Table 1 shows a comparison of the characteristics between DNA and silicon based computers [16].  

Table 1. Comparison of DNA and Silicon based computer characteristics. 

 DNA computer Silicon computer 

Processing Ballistic Hardwired 

Medium Liquid (wet) or Gaseous (dry) Solid (dry) 

Communication 3D collision 2D switching 

Configuration Amorphous (asynchronous) Fixed (synchronous) 

Parallelism Massively parallel Sequential 

Speed Fast (millisec) Ultra-fast (nanosec) 

Reliability Low High 

Density Ultrahigh Very high 

Reproducibility Probabilistic Deterministic 

 

The basic DNA computing model formulated by Adleman in 1994 solved the Hamiltonian Path 

Problem (HPP), which is a combinatorial optimization problem, through a biological experiment. In 

solving the HPP, the process expressed possible solutions in DNA codes to find the path that includes 

all vertexes from the start vertex to the end vertex, exactly once. It then produced candidate solutions 

among sequences bound through synthesis and separation, and determined if there was an acceptable 

solution. [8]. Adleman’s algorithm for generation of suitable DNA sequences is modified in the 

proposed algorithm to produce suitable DNA sequences for recognition molecules in DNA biosensors, 

as presented in the next section. 

 

3. DNA Biosensor Recognition Molecule Receptor DNA Sequence Generating Algorithm 

 

Recent research reports a biosensor using DNA as the bioreceptor and examined the possibility of a 

recognition molecule bioreceptor using fixed-length DNA sequences and an analysis of images from 

biochemical experiments [17]. A fixed-length DNA sequence cannot reflect the characteristics of DNA 

accurately. Therefore, it is difficult to secure stability in consideration of the diverse properties of DNA 

encountered during experimentation. In addition, if an enzyme is used in signal transduction,  

fixed-length DNA sequences may produce unexpected results. 

To solve these problems, this paper proposes a recognition molecule DNA sequence generation 

algorithm that reflects the properties of DNA and allows stable hybridization, when DNA is used for 

molecule recognition in the bioreceptor. The proposed bioreceptor recognition molecule DNA sequence 

generation algorithm applies an evolution algorithm for the generation of the initial recognition molecule 

DNA sequences. This allows more stable expression of the DNA than existing fixed-length receptor 

DNA sequence generation, and accurately reflects the characteristics of the DNA. As shown in Figure 1, 

the structure of the recognition molecule DNA sequence algorithm is an enhancement of Adleman’s 

DNA computing algorithm. It is comprised of a pre and post-process and takes into account the 

characteristics and capabilities of using TSP in the approach. 
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Figure 1. The flow of the recognition molecule receptor DNA sequence generation algorithm. 

 

 

First, the preprocess layer is divided into the encoding, initialization and fitness evaluation methods. 

The encoding method generates variable-length edges, including vertexes and weights, using the 

evolution algorithm, in order for the given sequence to reflect the characteristics of DNA molecules. 

The vertexes and edges cannot be expressed directly, and they are converted to DNA sequences using 

the procedure illustrated in Figure 2. First, the position of start codon (ATG) is identified, and DNA 

code from the (i)th start codon position to the codon in front of the (i + 1)th start codon position is 

expressed as a vertex. Then, DNA code from the (i + 1)th start codon position to the codon in front of 

the (i + 2)th start codon position is expressed as a weight. However, if the DNA code does not begin 

with a start codon, the vertex from the beginning of the DNA code to the codon in front of the ith start 

codon position is used.  

Figure 2. Procedure to express vertexes and weights. 
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Figure 2. Cont.  

 

 

Edges that link the expressed vertexes follow the procedure illustrated in Figure 3 for all DNA codes. 

First, designate AT*(ATT, ATC, ATA), which appears first in vertex Vi, as E(i) and stop codons TAA, 

TGA and TAG, which appear first in V(i+1) as E(i+1). Then, encode an edge between the two ver-texes. If 

there is no stop codon, then take the DNA code of 1/2bp (base pair) of V(i+1) as the edge.  

Figure 3. Procedure to express edges. 

 

 

Through the procedures in Figures 2 and 3, DNA sequences with vertexes, weights and edges are 

generated, and the edges containing generated vertexes and weights are integrated into a two-strand 

DNA sequence. After the weight sequences are included in the edges they receive complementary 

matching and a path to the bioreceptor DNA sequences can be generated, as in Figure 4. 
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Figure 4. An example of path creation containing a weight. 

 

 

Equation (1) obtains the weight of an edge using the value of the hydrogen bond conversion function 

for edge i (Nei), the actual weight of edge i (Wei), the sum of weights in the entire graph (Sw), the sum of 

hydrogen bonds of all edges (Sv) and a threshold (θ) determined through experimentation. An edge 

containing a weight is generated by including the number of hydrogen bonds for the pair of A/T’s and 

for the pair of G/C’s in the edge with a low and high weight, respectively:  

 

(1) 

Using a weight conversion equation, the length of the DNA code is adjusted with the encoded 

weights. This significantly expands the scope of the encoded weights and makes it possible to encode a 

wide range of weights with short codes.  

After the encoding is completed, all sequences are removed, except for the DNA codes reflecting the 

selected bioreceptor requirements. In addition, a fitness evaluation, the last step of the preprocess layer, 

is performed by random selection to evaluate the proportion determined by Equation 2. This equation is 

an inverse function that applies the amino acid codes shown in Table 2. Conditions which may cause 

errors in biological experiments, such as inaccurate synthesis or shifting of the synthesis position, are 

removed in advance. If the fitness is not satisfactory, DNA codes with the highest fitness are selected 

and processed with a two-point crossover, which occurs only on the sequences of vertexes. Crossover 

points are then selected at random. For mutation, arbitrary base pairs are selected from the sequences of 

vertexes and mutated. This process is then repeated the same number of times as the number  

of generations.  

 (2) 

Table 2. Amino acid code. 

Phe 16 Pro 3 His 15 Glu 13 

Leu 7 Thr 5 Gln 11 Cys 6 

Ile 8 Ala 1 Asn 9 Trp 19 

Met 14 Tyr 18 Lys 12 Arg 17 

Ser 2 Val 4 Asp 10 Gly 0 

Phe 16 Pro 3 His 15 Glu 13 

Leu 7 Thr 5 Gln 11 Cys 6 

Ile 8 Ala 1 Asn 9 Trp 19 
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The postprocessor layer performs the synthesis and separation of superior codes obtained through 

fitness evaluation as many times as the given number of reactions. In the process of separation, those 

codes that are unlikely to be solutions are removed in advance using biological operations, such as 

antibody affinity reaction, polymerase chain reaction (PCR) and gel electrophoresis. Lastly, the 

sequences in specific parts of the code are amplified by reapplying PCR. Then, a particular length of 

DNA sequence is abstracted with gel electrophoresis, and the path that passes through all vertexes on 

the graph only once is selected as the final solution, using antibody affinity.  

 

4. Experiment and Evaluation 

 

Testing and evaluation of the proposed algorithm compares DNA sequences that are generated 

through the recognition molecule DNA sequence generation algorithm, with those generated using 

Adleman’s DNA computing algorithm. This is accomplished by applying the TSP algorithm, as 

illustrated in the sample graph of Figure 5, for evaluation of the fitness of the sequences generated by 

each algorithm. 

Figure 5. Sample TSP graph. 

 

 

Simulation was implemented in C on a 2 GHz P4 PC with 512 M RAM. Because the proposed 

recognition molecule DNA sequence generating algorithm can perform synthesis and separation 

repeatedly, the number of repetitions was set at 10, and the number of reactions at 100. Accordingly, 

the total number of reactions was set at 1,000 (10 × 100). However, because Adleman’s DNA 

computing algorithm can perform synthesis and separation just once, the number of repetitions is set  

to 1 and the number of reactions at 1,000. This makes the same number of total reactions, as shown in 

Table 3. Although the length of the DNA sequences was variable in the proposed recognition molecule 

DNA sequence generating algorithm, the length of DNA sequences in the experiment is fixed between 

the ranges of 10 bp to 20 bp. This is due to the fact that Adleman’s DNA computing algorithm uses 

fixed-length sequences,. 
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Table 3. Parameters. 

Parameter 
DNA sequence 

bioreceptor algorithm 

Adleman’s DNA 

computing algorithm 

population size 1,000 1,000 

generation 200 200 

crossover rate 0.5 0.5 

mutation rate 0.01 0.01 

threshold 0.3 0.3 

total  

reaction 

cycle  

max recycle  10 1 

reaction cycle  100       1,000 

error rate in biology experiment  0.01 0.01 

 

As shown in Table 4, the mean fitness, the mean number of searches, and search times are measured 

for each algorithm. According to the results, the recognition molecule DNA sequence generating 

algorithm shows a higher mean fitness than Adleman’s DNA computing algorithm. Also, when the 

DNA codes of ACO, in which the length of vertexes was over 20 bp, are compared to Adleman’s 

algorithm, in which the length was 20 bp, the path search time is reduced by approximately 50 percent. 

Table 4. Performance of DNA sequence bioreceptor algorithm. 

Content 

DNA sequence 

bioreceptor 

algorithm 

Adleman’s DNA 

computing 

algorithm 

Average fitness Values Vertexes #10 0.747 0.927 

Average Search Number Vertexes #10 24.3 7.41 

Search time(s) Vertexes #10 3.92 × 10
4
 7.83 × 10

4
 

 

Figure 6 shows the fitness of the generated recognition molecule DNA sequences hybridization, 

when evaluated using the TSP approach. The x axis is the number of generations and the y axis 

represents fitness. When the number of vertexes is 10, the DNA sequence generating algorithm shows 

uniform fitness from the 8
th
 generation, indicating stable production of recognition molecule DNA 

sequences. However, Adleman’s DNA computing algorithm shows irregular fitness and production of 

unstable bioreceptor DNA sequences. This indicates that the recognition molecule DNA sequence 

generating algorithm performs stable bioreceptor DNA sequence generation for variable-length states 

and produces the desired sequences of bioreceptor DNA codes. 

Figure 7 shows the number of searches for recognition bioreceptor molecule DNA sequences 

identified by the TSP fitness evaluation, when the number of vertexes is 10. It also shows that the DNA 

sequence generating algorithm and Adleman’s DNA computing algorithm search successful paths from 

the 31st generation and 52nd generation, respectively. This suggests that the proposed DNA sequence 

generating algorithm can find the desired bioreceptor DNA sequences within a shorter period of time, 

and more efficiently removes inadequate recognition molecule bioreceptor DNA sequences. 
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Figure 6. Generation Fitness. 

 

Figure 7. Search number for ten vertexes. 

 

 

In addition, Table 5 and 6 shows DNA sequences used in this experiment. Table 5 shows variable-

length vertex codes and weight codes of the DNA sequence generating algorithm, and Table 6 shows 

DNA codes for Adleman’s fixed-length vertex codes 10 bp and 20 bp. 

In Figure 5, the optimal path used in this experiment is (V1, W1→2) → (V2, W2→3) → (V3, W3→4) → 

(V4, W4→5) → (V5, W5→6) → (V6, W6→7) → (V7, W7→8) → (V8, W8→9) → (V9, W9→10) → (V10, W10→1) 

→ (V1), and according to the results of applying the DNA sequence bioreceptor algorithm, the optimal 

sequence code is as follows: 
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(ATGTAGCATTCCCTAGG, TACGGTAGTATCAGTATGAT) →  

(ATGGCATCCGGG, TACATTAATAA) →  

(ATGTACTCCATCGT, TACGTCGCGC) →  

(ATGTAGCATCGTTTGGG, TACGTCGCGC) →  

(ATGCTAGCTTAATGAGT, TACCGCGCGCGGCCC) →  

(ATGCTAACGGATCTCCCG, TACGTCGCGC) →  

(ATGCCTATACTTTCC, TACGCGAGGTC) →  

(ATCCGATAGCC, TACAATAATTATAGA) →  

(ATGTTAGGATTTAAG, TACGTCGCGC) →  

(ATGTGGATCAGC, TACATTAATAA) →  

(ATGTAGCATTCCCTAGG) 

Table 5. DNA code for DNA sequence generating algorithm vertexes. 

DNA sequence bioreceptor algorithm vertexes DNA code 

vertexes weights 

1 ATGTAGCATTCCCTAGG 10 ATGTAATTATT 

2 ATGGCATCCGGG 20 ATGCAGCGCG 

3 ATGTACTCCATCGT 30 ATGTTATTAATATCT 

4 ATGTAGCATCGTTTGGG 40 ATGCGCTCCAG 

5 ATGCTAGCTTAATGAGT 50 ATGCCATCATAGTCATACTA 

6 ATGCTAACGGATCTCCCG 60 ATGGCGCGCGCCGGG 

7 ATGCCTATACTTTCC 70 ATGCGGGCCGGCCGCGC 

8 ATCCGATAGCC     

9 ATGTTAGGATTTAAG     

10 ATGTGGATCAGC     

Table 6. DNA code for Adleman’3 vertexes. 

vertexes Code length Adleman’s vertexes DNA cod 

1 
10 bp TTGCTCTATA 

20 bp AGTAATAGTGCAATACGTTC 

2 
10 bp TACTCGCGGA 

20 bp GACTGCATCTGATATAACCC 

3 
10 bp GGTTAGTAAC 

20 bp GGTGCAGCTGACCTACTGCT 

4 
10 bp TACGCTGATT 

20 bp CTGAACTCGTCGGTACGTAA 

5 
10 bp TCAAGTTCTA 

20 bp CATCTACGGGCCTCTATCTC 

6 
10 bp AGTCAAGAGT 

20 bp GTTTACTGACGAGGTCTCCC 

 

5. Conclusions and Recommendations 

 

A bio-sensor is a chemical sensor that must select a suitable target substance, acquire and store 

information from the substance and convert that information into an electric signal. The molecule 
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recognition part of the bioreceptor part must have in vivo affinity for the target analyte, and the 

transduction function part has an electro-chemical device and a transducer. This study analyzed 

problems in the recognition molecule portion of a bioreceptor in a DNA biosensor and proposed a 

recognition molecule DNA sequence generating algorithm as a solution. 

The proposed bioreceptor DNA sequence algorithm used the evolution algorithm in order to reflect 

the properties of DNA and efficiently generated stable bioreceptor DNA structures. In addition, because 

it can bind variable-length DNA sequences, the algorithm can be extended to different bio-sensor 

requirements. A TSP algorithm was applied to evaluate the DNA sequences generated by the proposed 

algorithm. The results of the experiment indicated that the proposed DNA sequence generation 

algorithm using variable length produced higher fitness sequences, and performed searching up to 3 

times faster than Adleman’s algorithm, when only using fixed lengths. These results suggest that the 

proposed algorithm is superior to existing methods for better molecule recognition bioreceptor DNA 

sequence generation and performs more efficient searching.  

It is recommended that further research should be directed towards studying the composition of 

electro-chemical devices and transducers for converting the results of the selection function part into 

electric signals. This research would contribute towards furthering the practical application and 

realization of utilizing DNA technologies in biosensor devices. Further, it is recommended that 

alternative agent-based algorithms be investigated for improved efficiency over the TSP approach. 
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